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MANY FACET, COMMON LATENT TRAIT POLYTOMOUS

IRT MODEL AND EM ALGORITHM

Dimitar Atanasov

There are many areas of assessment where the level of performance can not
be determined using ordinal, “objective” test. For example, there are aspects
of writing language skills which should be subjectively qualified by judges
based on some criteria. Usually such data is studied using the Many Facet
Rasch Model. To address the problem with Item Response Theory (IRT)
approach a Many Facet IRT model for polytomous item response in the case
of common latent trait is presented. For estimation of the parameters of the
model the EM-algorithm is derived.

1. Introduction

The methods of analysis of a classical test items determine the result of the exam
as a interaction between the abilities of the individuals and the properties of the
test items. A common problem arise when the the answer of the individual is
judged by a referee or rater. Such is the case of essay evaluation, where number
or raters rate the essay according to some criteria on a fixed scale. This adds
to the process of evaluation additional facets of rater severity and the difficulty
of the particular criteria. In a similar way, if an individual can choose different
themes for the essay, there is a facet, representing the difficulty of the chosen
theme. In order to have a fair assessment of the student ability all these facets
should be included in the process of evaluation.

2000 Mathematics Subject Classification: 91E45.
Key words: item response theory, many facets, EM algorithm.



6 Dimitar Atanasov

From different point of view it is needed to have coordination and agreement
between the raters, so their severity should be compared as well the way of
application of different criteria.

One of the classical approaches to the problem is the so called Many Facet
Rasch Model (Linacre, 1994). This model expands the Rasch-based models for
achievement evaluation (Andrich, 1985) and includes the influence of the different
facets to the final result.

In this work we present an approach to this problem based on the Item
Response Theory (IRT) properties (parameters) of the facets. An EM algorithm
for estimation of these parameters is derived.

We assume that the abilities of the students can be estimated using the uni-
directional scale. Therefore one can suppose that there is a common latent trait,
which is responsible for the performance of the student on the rating criteria.

2. The Model

Let us consider the classical essay scoring, where a number of raters evaluates
the essays according to the set of criteria. For any of the criteria, the rater gives
a score using a linear non-decreasing scale. The estimation of the parameters of
the model is based on the following representation, common in the Many Facet
approach (Linacre, 1994)

log

(

Pnijk

Pnij(k−1)

)

= Bn − Di − Cj − Fk,

where Pnijk is the probability an individual n to be rated on criteria i from rater j

with rate k. The parameter Bn is the student ability, Di is the criteria difficulty,
Cj is the rater severity and Fk is the level, needed to achieve grade k from grade
k − 1.

The model can be expanded with additional facets as well as with an assump-
tion that the step Fk can differ for different raters.

According to the IRT model (Crocker & Algila, 1986), the probability for
correct performance on the given test item, defined by 2-parametric logistic model
is

P (θ) =
1

1 + e−aD(θ−b)
,

where θ is the level of the measured abilities of the individual, the parameters
of the model b and a represent the difficulty and the level of discrimination of
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the item respectively. The value D = 1.7 is a scaling parameter, giving an
approximation to the Normal ogive curve.

To represent the model in the terms of the IRT concept let us consider the
following model.

Let θ be the latent ability of the individual. Let the essay of the student be
rated on the set of J criteria using a scale from 0 to K − 1. A specific ability
Θj, j = 1, . . . , J is related to any of these criteria. For the relation between specific
abilities and the generic latent ability of the individual the following factor model
holds

Θj = αjθ + εj ,

where αj is a factor loading and εj is a N(0, σ2) random error.
Let us note with r = (r1, . . . , rJ) the rates of the essay over all criteria. Then

for j = 1, . . . J we have

P (rj ≥ k | θ) = P (Θj ≥ δk | θ) =

= P (αjθ + εj ≥ δk) = P (εj ≥ δk − αjθ) =

= 1 − Φε(δk − αjθ) = Φ(
αjθ − δk√

σ2
),

where δk is the is the level of the specific ability θj for an examinee to achieve
grade of k or higher, Φε is the distribution function of ε and Φ is the distribution
function of the standard normal distribution.

Let the level δk be a result of influence of h different facets of the assessment
procedure. In the case of a equitable assessment these facets should not depend
on the assessment scale. Then δk can be represented by the factor model

δk =
h

∑

i=1

γi∆i + ∆k + ǫ,

where ∆i are the assessment facets and γi are their factor loadings, ∆k is a
specific value, needed for rate k, ǫ is a N(0, σ2

δ ) random error, independent from
εj , j = 1, . . . , J . Then

P (αjθ + εj ≥ δk) = P (εj − ǫ ≥
h

∑

i=1

γi∆i + ∆k − αjθ) = Φ(αjθ −
h

∑

i=1

γi∆i − ∆k),
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for properly normalized αj , γi and ∆k.
For the probability of to receive grade category k from a person with latent

trait θ we have

P (rj = k | θ) = P (δk ≤ θ < δk+1 | θ) =

= Φ(αjθ −
h

∑

i=1

γi∆i − ∆k) − Φ(αjθ −
h

∑

i=1

γi∆i − ∆k+1).

If we use the approximation of the normal ogive curve with a logistic function
we have

(1) P (rj = k | θ) =
1

1 + e−D(αjθ−
Ph

i=1 γi∆i−∆k)
− 1

1 + e−D(αjθ−
Ph

i=1 γi∆i−∆k+1)

Remark

In the general factor model, used for the relation between the specific abilities
and the latent trait of the individual the set of criteria can be replaced by different
facet of the assessment if it is inherit in the individual. A model, where all the
factor loading αj , j = 1, . . . , J are equal, can be used as well. In that case the
assessment criteria should be considered as one of the facets in the factor model
for δk. In similar way an interactions between the latent trait and other facets can
be included in the model. Hence all the configuration of facets given in Linacre
(1994) can be presented.

3. The EM Algorithm

For the estimation of the parameters of the model an EM algorithm is derived.
A similar algorithm in the case of IRT model without influence of different facets
is given in Woodruff & Hanson (1997). A complete description of the concept
of the EM algorithm is given in McLachlan & Krishnan (2008). The idea is to
maximize the complete likelihood function on the set of unknown parameters of
the model as well as on the value of the unknown latent trait θ.

Let θ take discrete values θ[1], . . . , θ[P ] with corresponding probabilities
π1, . . . , πP . Let R = {rij} be a matrix of the students rates, where rij is the grade
of the individual i, i = 1, . . . , N on the criteria j, j = 1, . . . , J . Let H = Hij, i,
i = 1, . . . , N ; j = 1, . . . , h be the matrix, which defines the levels of the assess-
ment facets, where Hij is the level of the facet j, which influences the grade of
the individual i. With ri and H i we note the i-th row of the matrices R and H

respectively.
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Then the probability of a given grade ri over the all population of individual
is

f(ri | ∆, π,H i) =
P

∑

t=1

f(ri | θ[t],∆, π,H i)πt,

where ∆ is the set of unknown parameters in the model (1) and π is the vector
π = (π1, . . . , πP ). If the rates of the different criteria are independent we have

(2) f(ri | θ[t],∆,H i) =
J

∏

j=1

K−1
∏

k=1

P (rij = k | θ[t],∆,H i)I(rij=k),

whereP (rij = k | θ[t],∆,H i) is the probability, defined by (1) and I(·) is the
indicator function.

Therefore the likelihood function can be represented as

L(R | θ,∆, π,H) =

N
∏

i=1

P
∑

t=1

πt





J
∏

j=1

K−1
∏

k=1

P (rij = k | θ[t],∆,H i)I(rij=k)



 .

The probability that a randomly chosen individual with a given level of abil-
ities θ[t] has a set of rates ri is

f(ri, θ[t] | ∆, π,H) = f(ri | θ[t],∆,H i).πt.

Then the complete likelihood is

L(R, θ | ∆, π,H) =
N
∏

i=1

P
∏

t=1

J
∏

j=1

K−1
∏

k=1

P (rij = k | θ[t],∆,H i)I(rij=k)πt =

=

P
∏

t=1

J
∏

j=1

K−1
∏

k=1

N
∏

i=1

P (rij = k | θ[t],∆,H i)πt =

(3)

P
∏

t=1

J
∏

j=1

K−1
∏

k=1

∏

H∈ℵ

P (r.j = k | θ[t],∆,H i)η
H
jtkπνt

t ,

where ℵ denotes the set of different values of the observed facets H i, P (r.j = k |
θ[t],∆,H i) is the probability of the rate k on the criterion j given the value of
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the other parameters kept fixed. Note with νt the number of individual with the
value of the latent trait θ[t] and ηH

jtk is the number of individual with latent trait
θ[t], rated on criterion j with grade category k, under the values of the facets

in H. The (ηH
jtk, νt), t = 1, . . . , P , j = 1, . . . , J , k = 0, . . . ,K − 1, H ∈ ℵ is a

sufficient statistics.

The aim of the algorithm is to find the expected value of the ηH
jtk and νt given

set of values for ∆ and π (E-step). The result is substituted in (3) and after that
(M-step) the complete likelihood function (3) is maximized on ∆ and π. The
obtained ML estimators are substituted in the E-step for calculating new values
for the expectation of ηH

jtk and νt and so on. This procedure continues until some
optimal criteria is reached, for example if the change of the likelihood function is
relatively small.

Let us first find the distribution of the latent trait θ given the set of rates ri

and the parameters of the model ∆ and π. The values ∆(s) and π(s) are found
on the previous step (s − 1) of the algorithm.

f(θ[t] | ri,∆(s), π(s),H i) =
f(θ[t], r

i | ∆(s), π(s),H i)

f(ri | ∆(s), π(s),H i)
=

=
f(θ[t], r

i | ∆(s), π(s),H i)

P
∑

p=1

f(ri | θ[p]∆
(s), π(s),H i)P (θ[p] | ∆(s), π(s),H i)

=

=
f(ri | θ[t],∆

(s), π(s),H i)P (θ[t] | ∆(s), π(s),H i)

P
∑

p=1

f(ri | θ[p]∆
(s), π(s),H i)π(s)

p

=

=
f(ri | θ[t],∆

(s), π(s),H i)π
(s)
t

P
∑

p=1

f(ri | θ[p]∆
(s), π(s),H i)π(s)

p

=
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(4) =

J
∏

j=1

K−1
∏

k=1

P (rij = k | θ[t],∆,H i)I(rij=k)π
(s)
t

P
∑

p=1

J
∏

j=1

K−1
∏

k=1

P (rij = k | θ[p],∆
(s),H i)I(rij=k)π(s)

p

,

where in the last equation (2) is substituted and P (θ[t] | ∆(s), π(s),H i) = π
(s)
t

E-step. Then

ν̂t = E(νt | R,∆(s), π(s),H) =

N
∑

i=1

f(θ[t] | ri,∆(s), π(s),H i) =

=

N
∑

i=1

J
∏

j=1

K−1
∏

k=1

P (rij = k | θ[t],∆
(s),H i)I(rij=k)π

(s)
t

P
∑

p=1

J
∏

j=1

K−1
∏

k=1

P (rij = k | θ[p],∆
(s),H i)I(rij=k)π(s)

p

η̂H
jtk = E(ηH

jtk | R,∆(s), π(s),H) =
N

∑

i=1

P (rij = k | θ[t],∆
(s)),

where P (rij = k | θ[t],∆
(s) is calculated from (1).

M-step. The values ν̂t and η̂H
jtk are substituted in the complete likelihood

function (3), after that the new values ∆(s+1) and π(s+1) are obtained by its
maximization.

Taking the logarithm of (3) we have

log L(R, θ | ∆, π,H) =

(5)

P
∑

t=1

J
∑

j=1

K−1
∑

k=1

∑

H∈ℵ

η̂H
jtkP (r.j = k | θ[t],∆,H i) +

P
∑

t=1

ν̂t log(πt)

The maximization of (5) is equivalent to the maximization of both terms
separately. The second term is the logarithm of the the likelihood function of the

multinomial distribution. Therefore its maximum is in the point π
(s+1)
t =

ν̂t

N
.
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This is the value, used in the next E-step. The value of ∆ is calculated by
maximizing the first term in the equation (5).
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