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EM ESTIMATION OF THE OFFSPRING DISTRIBUTION IN

MUTITYPE BRANCHING PROCESSES — A MODEL IN

CELL KINETICS

Nina Daskalova
1 2

Multitype branching processes (MTBP) have been proven to be very useful
models in cell kinetics. A typical example is the process of oligodendrocyte
generation in cell culture, which is regarded as two-type branching process.
Usually, such a process is not observable in the sense of the whole tree,
but only as the “generation” at given moment in time, which consist of the
number of cells of every type. An EM-type algorithm is used to obtain
a maximum likelihood (ML) estimation of the offspring distribution. The
performance of the presented algorithm is assessed using simulated data.

1. Introduction

Multitype branching processes (MTBP) are stochastic models in population dy-
namics, where particles are of different types. The theory and application of such
processes could be found in a number of books [1, 2, 9, 14]. Statistical inference
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in MTBP depends on the kind of observation available, whether the whole fam-
ily tree has been observed, or only the particles existing at given moment t, or
sometimes even the relative frequencies of types at that moment.

We consider a MTBP Z(t) = (Z1(t), Z2(t), . . . Zd(t)), where Zk(t) denotes
the number of particles of type Tk at time t, k = 1, 2, . . . d. Some estimators if
the entire tree has been observed could be found in [8, 18], but usually we don’t
have such information about the process. Yakovlev and Yanev in [17] develop
some statistical methods to obtain ML estimators for the offspring characteris-
tics, based on observation on the relative frequencies of types at time t. Other
approaches use simulation and Monte Carlo methods [7, 10, 11].

When the entire tree is not observed, but only the particles existing at given
moment, an Expectation Maximization (EM) algorithm could be used, regarding
the tree as the hidden data. Such algorithms exist for strictures, called Stochastic
Context-free Grammars (SCFG). A number of sources point out the relation
between MTBPs and SCFGs [6, 16].

We have proposed an approach to estimate offspring distribution probabilities
in some MTBPs using the well developed methods for estimating parameters of
SCFGs. The details are given in [3]. This approach is used here for the particular
example of the process of oligodendrocyte generation in cell culture.

The paper is organized as follows. In Section 2 the algorithm is briefly ex-
plained. Section 3 defines the biological model. The algorithm was performed on
simulated data and some results are shown in Section 4.

2. The Algorithm

The EM algorithm was explained and given its name in a paper by Dempster,
Laird, and Rubin [4]. It is a method for finding maximum likelihood estimates
of parameters in statistical models, where the model depends on unobserved
latent variables. Let a statistical model is determined by parameters θ, x is
the observation and Y is some “hidden” data, which determines the probability
distribution of x. Then the joint probability of the “complete” observation is
P (x, Y |θ) and the probability of the “incomplete” observation is the marginal
probability P (x|θ) =

∑
y P (x, y|θ). Write

Q(θ|θ(i)) =
∑

y

P (y|x, θ(i)) log P (x, y|θ).

The Expectation Maximization Algorithm is usually stated formally like this:

• E-step: Calculate function Q(θ|θ(i)).
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• M-step: Maximize Q(θ|θ(i)) with respect to θ.

More about the theory and applications of the EM algorithm could be found
in [13].

An EM algorithm for estimating the offspring probabilities in MTBP is easy
to define. Let x be the observed set of particles, π is the unobserved tree struc-
ture and θ is the set of parameters - the offspring probabilities. Then the joint
probability of the “complete” observation is:

P (x, π|θ) =
∏

ω

θ(ω)c(ω;π,x) =
∏

Tv→A

p(Tv → A)c(Tv→A;π,x),

where Tv → A is the rule that a particle of type Tv produces the set of particles
A and c is a count function. We have

∑
A

p(Tv → A) = 1. The probability of
the “incomplete” observation is the marginal probability P (x|θ) =

∑
π P (x, π|θ).

Then

Q(θ|θ(i)) =
∑

Tv→A

Eθ(i)c(Tv → A) log p(Tv → A)

and directly maximizing it we get to the result that the re-estimating parameters
are the normalized expected counts

p(i+1)(Tv → A) =
Eθ(i)c(Tv → A)∑
A

Eθ(i)c(Tv → A)
=

Eθ(i)c(Tv → A)

Eθ(i)c(Tv)

where the expected number of times a particle of type Tv appears in the tree π
is:

Eθ(i)c(Tv) =
∑

π

P (π|x, θ(i))c(Tv ;π, x).

The M-step is explicitly solved, so no effort on maximization is needed. The
problem is that in general enumerating all possible trees π is of exponential
complexity. As cited above, we have proposed using the inside-outside algorithm
for stochastic context-free grammars to reduce complexity.

Grammars are well developed tool for modelling strings of symbols in com-
putational linguistics. Stochastic grammars give a probabilistic approach to the
problems in that field. A stochastic context-free grammar (SCFG) consists of a
number of symbols and a number of production rules of the form α → β, where α
and β are sequences of these symbols. The symbols could be two kinds – abstract
nonterminal and terminal that actually appear in an observation. There are also
probabilities assigned to the rules. For a SCFG to be in Chomsky normal form it
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is necessary rules to be of the form X → Y Z or X → a, where X,Y,Z are nonter-
minals and a is a terminal symbol. Every CFG could be represented in Chomsky
normal form. For such grammars there exist an EM-type algorithm, called the
inside-outside algorithm [12], which finds a ML estimator of the parameters θ
of that grammar, namely the probabilities of the rules, called the transition and
emission probabilities respectively for the first and the second type of rules above.
It is a three dimensional dynamic programming algorithm.

A MTBP could be represented as a SCFG the following way. First our process
have to be represented only with “rules” of the form

X
p
→ {Y,Z},

which means that a particle of type X could produce two particles of types Y
and Z with probability p. For every such rule in the process, the corresponding
SCFG will include nonterminals {X,Y,Z, Y T , ZT }, terminals {y, z} and rules

X
p1
−→ Y Z|ZY, X

p2
−→ Y T Z|ZY T , X

p3
−→ Y ZT |ZT Y,

X
p4
−→ Y T ZT |ZT Y T , Y T 1

→ y, ZT 1
→ z,

and p1 + p2 + p3 + p4 = p.
Here Y T and ZT are nonterminals of “terminal” type, meaning that they

transform into terminals y and z only. We regard these terminals like the ob-
served particles, and the other nonterminals represent the hidden structure of the
process. Thus, for a single rule in the process there are six rules in the grammar
and the number of types doubles.

In general, to use the Inside-Outside Algorithm for MTBP, we take the fol-
lowing steps:

1. Construct the corresponding SCFG.

2. Estimate parameters for SCFG using as observed sequences all possible
permutations of the observed set of particles. Thus, if we have observed
2 particles of type X and 1 of type Y , we use as “observed sequences” all
xxy, xyx and yxx.

3. If the number of permutations is large, a Monte Carlo sample approach
could be used to obtain the estimate.

4. Calculate probabilities in MTBP summing up ones estimated in SCFG.
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3. Biological Model

Oligodendrocyte type-2 astrocyte (O-2A) progenitor cells are known to be pre-
cursors of oligodendrocytes in the developing central nervous system. When
plated in vitro and stimulated to divide by purified cortical astrocytes or by
platelet-derived growth factor, these cells grow in clones giving rise to oligoden-
drocytes. An O-2A progenitor cell is partially committed to differentiation into
an olygodendrocyte but it retains the ability to proliferate. Oligodendrocytes
are terminally differentiated (mature) cells and they do not divide under normal
conditions. At different time points over a period of several days after plating,
the composition of each clone is examined microscopically to count the numbers
of O-2A progenitor cells and oligodendrocytes per clone. A certain number N of
cell clones, each originating from a single initiator cell, are followed-up with the
observation process being either longitudinal or serial sacrifice, depending on the
experimental design (see [17] for details).

We consider a MTBP with two types of particles T1 (progenitor cells) and
T2 (oligodendrocytes), where the second type is terminal – a particle of this type
does not reproduce. The productions allowed are:

T1
p1
→ {T1, T1}, T1

p2
→ T2,

where p1 + p2 = 1.

The corresponding SCFG has nonterminals T1, T2, T T
1 , T T

2 , terminals t1, t2 ,
and rules:

T1→T1T1|T
T
1 T1|T1T

T
1 |T T

1 T T
1 |T2|T

T
2 ,

T T
1

p1
→ t1, T T

1
p2
→ t2, T T

2
1
→ t2,

And in Chomsky normal form the grammar is:

T1→T1T1|T
T
1 T1|T1T

T
1 |T T

1 T T
1 ,

T T
1

p1
→ t1, T T

1
p2
→ t2.

A simulation of the process has been performed and several sets of inde-
pendent observations have been generated. Using the approach described above
estimates of p1 and p2 have been obtained and compared to the initial values.
Calculations are made in R (see [15]).
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4. Results and Conclusions

A Galton-Watson process with two types of particles have been simulated and the
population in the fifth generation has been observed. The offspring probabilities
have been set to p1 = P (T1→{T1, T1}) = 2/3, p2 = P (T1→T2) = 1/3. A set of
hundred observations has been generated and several subsets have been randomly
taken from it to form the test samples. The results for three of them are shown
in Table 1.

First sample consists of following sets: {3 T1, 3 T2}, {6 T1, 3 T2}, {8 T1, 1 T2},
{5 T1, 3 T2}, {6 T1, 2 T2}, (5 observations).

Second sample is: {8 T1, 1 T2}, {4 T1, 4 T2}, {4 T1, 2 T2}, {8 T1, 3 T2},
{6 T1, 5 T2}, (5 observations).

And the third sample consists of the sets included in the first and second
samples plus 5 more sets: {9 T1, 3 T2}, {6 T1, 3 T2}, {10 T1, 2 T2}, {1 T1, 4 T2},
{2 T1, 6 T2}, (15 observations).

real values sample 1 sample 2 sample 3

p1 0.667 0.665 0.590 0.642

p2 0.333 0.335 0.410 0.358

Table 1: Estimates of the offspring probabilities for three samples compared to
their real values.

Five more samples have been used and the resulting estimates can be seen
in Table 2. The mean and standard deviation of the estimates from the eight
samples have been calculated and the result is very close to the original values
used in the simulation.

s. 1 s. 2 s. 3 s. 4 s. 5 s. 6 s. 7 s. 8 mean st.dev.

p1 0.665 0.59 0.642 0.72 0.63 0.5 0.78 0.68 0.651 0.084

p2 0.335 0.41 0.358 0.28 0.37 0.5 0.22 0.32 0.349 0.084

Table 2: Estimates of the offspring probabilities for all eight samples.

The results of that simulation experiment show that the estimates obtained
through the algorithm described above could be used in practice where branch-
ing process models occur. They are obtainable in reasonable time. (It took
several seconds for each sample for this model on a contemporary PC, though
more complex models will need more time.) Being ML estimates, they have the
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drawback to be sensitive to outliers when the sample size is small (see sample 2
for example), but with larger samples they become consistent.
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