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STUDIA MATHEMATICA

BULGARICA

OPTIMIZATION PROBLEM IN A CLASS OF LINEAR

SYSTEM. APPLICATION TO MULTIPLE DRUG

ADMINISTRATION

Krasimira Prodanova

The optimal control settings are useful tools in studying the behavior of
the plasma concentration of a drug (medicine) after its application. Linear
compartmental systems are widely used as mathematical models for study-
ing this behavior. In this paper we develop a strategy for minimizing the
total amount of applied drug under the restriction: the mean plasma con-
centrations belongs to prescribed therapeutic interval. The aim of the article
is to give to the therapeutist an simple and applicable formula for the op-
timal input sequence of multiple doses as a function of the time and rate
constant of drug elimination. The desired formula is given as a result of the
theorems for optimal input function which we proved. The optimal input is
important specially for patients, which needs of treatment with antibiotics
but they have kidney shortage function. Because of this the relationship be-
tween the optimal dose and the time intervals of administration to maintain
a effective drug concentration in plasma is considered too. The results are
applied to the two compartment stochastic model using experimental data
of plasma concentration after single administration of antibiotic Tobramicin
to a patient with kidney shortage function.

1. Introduction

Over the past decades, the treatment of illness has been accomplished by ad-
ministering drugs to the human body via various pharmaceutical dosage forms,

2000 Mathematics Subject Classification: 62H15, 62P10.
Key words: optimal control, application to medical science.



188 Krasimira Prodanova

like tablets. These traditional pharmaceutical products are still commonly seen
today in the prescription and over-the-counter drug marketplace. To achieve and
maintain the drug concentration in the body within the therapeutic range re-
quired for a medication, it is often necessary to take this type of drug delivery
system several times a day. This yields an undesirable drug level in the body.

A number of advancements have been made recently in the development of
new techniques for drug delivery. These techniques are capable of regulating
the rate of drug delivery, sustaining the duration of therapeutic action, and/or
targeting the delivery of drug to a specific tissue. These advancements have
already led to the development of several novel drug delivery systems that could
provide one or more of the following benefits [8]:

1. Controlled administration of a therapeutic dose at a desirable rate of de-
livery.

2. Maintenance of drug concentration within an optimal therapeutic range for
prolonged duration of treatment.

3. Maximization of efficacy-dose relationship.

4. Reduction of adverse side effects.

5. Minimization of the needs for frequent dose intake.

6. Enhancement of patient compliance.

Based on the technical sophistication of the controlled-release drug delivery
systems (CrDDSs) that have been marketed so far, or that are under active
development, the CrDDSs can be classified as follows [8]:

1. Rate-preprogrammed drug delivery systems.

2. Activation-modulated drug delivery systems.

3. Feedback-regulated drug delivery systems.

4. Site-targeting drug delivery systems.

One class of models that reflected the biological understanding of a system
and is formulated in terms of the kinetics of the system is the class of linear com-
partment models. The method of compartmental analysis is frequently applied to
pharmacokinetics [1]. These models are applied for analysis of feedback-regulated
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Figure 1: Drug concentration profiles in the systemic circulation as a result
of taking a series of multiple doses of a conventional drug-delivery system
(A1, A2, . . . ) in comparison with the ideal drug concentration profile (B)
(Adapted from Ref. [8]).

drug delivery systems. In [12] a feedback-regulated drug delivery systems with
delay is considered for modeling HIV pathogenesis

On multiple administration of drug it is important (as the six benefits pointed
in [8]) to maintain the concentration of drug in blood plasma in a appropriate
range, while minimizing the total dosage of drug used in order to reduse side
effects. In this paper we consider the optimal drug administration i.e. the mode
of multiple drug application which satisfy the above two conditions.

In [9] and [10] the optimal input is discussed but the model is without gas-
trointestinal tract, because of infusion administration of drug.

In [2] and [11] a linear two compartment model consisting of gastrointestinal
tract and an apparent space of drug distribution is proposed. A control input to
achieve the drug concentration in this space above a certain level (plateau effect in
Fig. 1) is derived. In this model the transfer of drug between two compartments
is assumed to be in one direction and treated neither optional time intervals nor
the optimization of drug administration. In [3] and [4] the optimal impulsive
control of compartmental models and a solution algorithm is reported. There is
pointed out that the problem of optimal drug administration can be resolved into
the optimal impulsive control.

In this article we consider the optimal impulsive control problem of arbitrary
time intervals for a subclass of compartment linear systems, which usually de-
scribe the kinetics of drugs in a body. The impulse response of this system has
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the unique maximum and is strictly monotone increasing before (decreasing af-
ter) the maximal point. Because of this the optimal solution is given in a more
simple form than in [4]. For considered model the transfer of drug between the
compartments is assumed to be in two directions (i.e. more complicate than in
[2]. The choice of this particular compartment pharmacokinetic models is based
on its popularity in the some pharmacokinetics investigations about kinetics of
antibiotic Tobramicin and its generic [5], [6], [13].

2. Description of the model and mathematical problem state-

ment

Let us consider N -compartment linear pharmacokinetics model, where the trans-
fer of drug between two compartments is assumed to be occur in two directions.
Let the application of drug is from depot i.e. oral, muscular, subcutant and
etc. The administration is regarded as an impulsive input to the gastrointestinal
tract or muscular tissue or etc. The compartment receiving a nonnegative input
is assumed to be the first and an apparent space of drug distribution in the body
containing the blood space to be 2, 3, . . . , N . On the Fig. 2 this model of the
kinetics of the drug distribution is placed.

S
1

S
2

k
1

k
2

k
3

S
N

Figure 2: N -compartment pharmacokinetics model of drug distribution in the
human body.

The kinetics of the drug is assumed to be first order. This means for instance
that the outlet from compartment 1 per time unit at time t is k1S1(t).

Let the impulses (i = 0, 1, . . . , n) are loaded at the prescribed times ti (0 =
t0 < t1 < · · · < tn). Than the dynamics of the system is described by the
following differential equations:

d~S

dt
= K~S(t) + ~Bǫ, t ∈ [ti, ti+1], i = 0, . . . , n

(1)

~S(t−0 ) = 0



Optimization problem in a class of linear system 191

where ~S(S1, . . . , SN )T (T – transpose of a matrix) is the state vector and its
components Si (i = 1, . . . , N) are the drug concentrations in first and etc. com-
partments, K is the matrix, called compartment matrix [1] and ~B(1, 0, . . . , 0)T

The impulse response of the system (1) after a single administration of a unit dose
(δ-impulse) is the drug concentration in the blood plasma (second compartment)
and it is given by [2]:

(2) y(t) =

N
∑

i=1

Aie
−αit

where t > 0 and 0, α1, α2 < · · · < αN are eigenvalues of the matrix K. Ai are
real constants, which depends from the eigenvalues of K,

∑N
i=1 Ai ≤ 0, AN < 0.

Let for the function y(t) the following properties are valid:

(i) y(t) has a unique maximum at the time tmax.

(ii) y(t) is strictly monotone decreasing for t > tmax.

(iii) y(t) is strictly monotone increasing for t < tmax.

The state of the second compartment — S2 — at the time t ∈ [tk, tk+1],
(k = 1, . . . , N) may be expressed by the discrete analog of Duhamel’s integral:

(3) S2(t) =

k
∑

i=0

ǫy(t − ti).

We consider the following two problems:
Problem 1. The total amount Φ(ǫ) =

∑n
i=1 ǫi of the input doses ǫ0, ǫ1, . . . , ǫn,

to be minimum and the state of the second compartment (S2) to be maintained
above the given constant c > 0 (c – minimal effective plasma concentration of
the drug in steady-state):

S2(t) ≥ c, t ∈ [ti, ti+1];

Problem 2. The total amount Φ(ǫ) =
∑n

i=0 ǫi of the input doses ǫ0, ǫ1, . . . , ǫn,
to be minimum and the mean value of the state of the second compartment (S2):

(4) mi =
1

ti − ti−1

ti
∫

ti−1

S2(τ)dτ ≥ C, i = 1, 2, . . . , n
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to be maintained above the given constant C > 0 (C – maximal effective plasma
concentration of the drug in steady-state).

C on s i d e r a t i o n o f P r o b l em 1. If we denote: si – the state of S2 at time
ti and S = (s1, . . . , sn+1)

T , then the equation (3) will be rewritten as S = Y ǫ,
where the elements of the matrix Y are

(5) yij =

{

y(ti − tj−1), i ≥ j

0, i < j
for i, j = 1, 2, . . . , n + 1,

where y(t) is the function given by (2).
We shall prove the following theorem, which give the optimal solution of the

Problem 1.

Theorem 1. If the impulse response y(t) of the system (1) corresponding to
the unit impulse is

y(t) =
N
∑

i=1

Aie
−αit, (0 < α1 < α2 < · · · < αN )

which satisfy the properties (i)–(iii) and the length of all input intervals satisfy

|ti+1 − ti| > tmax, i = 0, 1, . . . , n,

then there exists a positive input sequence ǫ = (ǫ0, ǫ1, . . . , ǫn), which minimizes
the function

Φ(ǫ) =

n
∑

i=0

ǫi = IT ǫ

under the constrains Y ǫ ≥ c, where c > 0 is a given constant, and the input
sequence is given by ǫ̂ = cY −1I.

C on s i d e r a t i o n o f P r o b l e m 2. Let us denote the vector M = (m1, . . . ,
mn+1)

T , where mi is the mean value of the state of S2 during the input interval
[ti−1, ti]. Than the equation (3) will be rewritten as M = Ỹ ǫ, where the elements
of the matrix Ỹ are

(6) ỹij =















1

ti − tj−1

ti
∫

ti−1

dτ, i ≥ j

0, i < j

for i, j = 1, 2, . . . , n + 1,
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where y(t) is function given by (2). From the mean value theorem it follows that
the elements of the matrix Ỹ for i ≥ j, satisfy ỹij = y(τi − tj−1), for some τi

where ti−1 < τi < ti.
We shall prove the following theorem, which give the optimal solution of the

Problem 2.

Theorem 2. If the impulse response y(t) of the system (1) corresponding to
the unit impulse is

y(t) =

N
∑

i=1

Aie
−αit, (0 < α1 < α2 < · · · < αN )

which satisfy the properties (i)–(iii) and the length of all input intervals satisfy

|ti+1 − ti| > tmax, i = 0, 1, . . . , n,

then there exists a positive input sequence ǫ = (ǫ0, ǫ1, . . . , ǫn) , which minimizes
the function

Φ(ǫ) =
n
∑

i=0

ǫi = IT ǫ

under the constrains Ỹ ǫ ≥ C , where C > 0 is a given constant, and the input
sequence is given by ǫopt = CỸ −1I.

At first we shall prove two lemmas.

Lemma 1. Let I = (1, 1, . . . , 1)T and let Y is (n×n) lower triangular matrix
with positive elements and C > 0 is a given constant.

The minimum of the function

(7) Φ(ǫ) =

n
∑

i=0

ǫi = IT ǫ

under the constrains

(8) Qǫ ≥ C and ǫi > 0

is given by

(9) ǫ̂ = CQ−1I

if and only if all components of the vector Q−1I are nonnegative.
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P r o o f. The necessary and sufficient conditions for existence of an optimal
solution ǫ̂ of this optimization problem given in [7] are the following:

The equations

(10)

∣

∣

∣

∣

∣

−I + (gradΨ(ǫ̂))T µ = 0

(Ψ(ǫ̂))T µ = 0,

where

(Ψ(ǫ))T =

(

CI − Qǫ
−ǫ

)

to be satisfy for some no positive vector µ, which component are no positive.
Necessary : Let us suppouse that

(11) ǫ̂ = CQ−1I

is the optimal solution and that all components of ǫ̂ are nonnegative:

(12) ǫ̂ ≥ 0.

Then from the second equation of (10)

(Ψ(ǫ̂))T µ =

(

CI − QCQ−1I

−CQ−1I

)





µ1

. . .
µ2n



 =

(

0
−CQ−1I

)





µ1

. . .
µ2n



 =





0
. . .
0



 ,

it follows that there exist an vector µ = (µ1, . . . , µn, 0, . . . , 0)T , which satisfy the
equation. Now, substituting µ into first equation of (10), we get:

(13) −I +

(

−Q

−E

)T

(µ1, . . . , µn, 0, . . . , 0)T = −I + (−Q)T





µ1

. . .
µn



 = 0.

Let us denote µ̂ = (µ1, . . . , µn)T . Than from (13) it follows: −QT µ̂ = I and
−µ̂T = (IT Q−1)T . Now from (12) it follows that the components of the vector µ̂
and corresponding - components of µ, are no positive.

Sufficiency : Let us assume that components of the vector (Q−1I) are non-
negative i.e. Q−1I ≥ 0.

Let us define vector µ =

(

−(QT )−1I

0

)

i.e. all components µi ≤ 0 (i =

1, . . . , 2n). We shall proof that equations (10) are satisfied for this µ.
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If ǫ̂ = −C(Q−1I)T is the optimal solution,

−I+(gradΨ(ǫ))T µ = −I+

(

−Q

−E

)(

−(QT )−1I

0

)

= −I+QT (QT )−1I = −I+I = 0,

and

(Ψ(ǫ̂))T µ =

(

CI − Qǫ̂

ǫ̂

)(

−(QT )−1I

0

)

=

= (CIT − ǫ̂T QT )(−(QT )−1I) = (−C(Q−1I)T + ǫ̂T )I =

= (−C(Q−1I)T + −C(Q−1I)T ) = 0

This complete the proof. �

Therefore, if we prove, that the matrices Y and Ỹ are lower triangular matrix
with positive elements, then the proof of the Theorem 1 and Theorem 2 will be
completed.

Let us consider the matrix Y from the Problem 1.

Let us assume that the length of the inputs interval |ti+1 − ti| > tmax,
(i = 0, 1, . . . , n). Than for j < i1 < i2 we have

(14) yi1j − yi2j = y(ti1 − tj−1) − y(ti2 − tj−1) > 0,

because of (i)–(iii).

After this consideration, it is easy to prove the following:

Lemma 2. If Y is (n × n) lower triangular matrix with positive elements
defined by (10) and yi1j > yi2j for 1 ≤ j < i1 < i2 ≤ n, j = 1, . . . , n − 1, than
components of the vector (Y −1I) are nonnegative.

P r o o f. (by the method of mathematical induction):

Let n = 2 i.e. we consider the matrix

(

y11 0
y21 y22

)

with elements

(15) y11 > y21 and yij > 0 (i ≥ j).
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Than the components of (Y −1I) i.e. the row sum of the invert matrix

Y −1
2 =





1
y11

0

−y21

y11y22

1
y22





are positive because of (15):

2
∑

j=1

(Y −1
2 )1j =

1

y11
> 0,

2
∑

j=1

(Y −1
2 )2j =

1

y22
−

y21

y11y22
=

1

y22

(

1 − y21

(

1

y11

))

> 0,

Let us suppose that the Lemma is thought for n = k − 1, i.e. the row sum of
for the matrix

(16) Y −1
k−1 =











Y −1
k−2 0

−
k−2
∑

i=1

yk−1,i

yk−1,k−1

(

k−2
∑

j=1
(Y −1

k−2)ij

)

1
yk−1,k−1











are positive. We shall prove the Lemma for n = k. The matrix Y −1
k has the kth

row sum equal to:

(17)
k
∑

j=1

(Y −1
k )kj =

1

ykk



1 −
k−1
∑

i=1

yki

k−1
∑

j=1

(Y −1
k−1)ij





By the induction assumption and by the condition yk−1,i > yki it follows:

(18)

k−2
∑

j=1

(Y −1
k−2)ij =

k−1
∑

j=1

(Y −1
k−1)ij , i = 1, . . . , k − 2,

and

(19) 1 >
k−2
∑

i=1

yk−1,i

k−2
∑

j=1

(Y −1
k−2)ij >

k−2
∑

i=1

yki

k−2
∑

j=1

(Y −1
k−2)ij .

After some simple transformations, take into a count (18) and (19), we obtain

(20)

k−1
∑

i=1

yki

k−1
∑

j=1

(Y −1
k−1)ij < 1.
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Therefore from (17) it follows that the Lemma 2 is thought for n = k. �

The statement of the Lemma 2, for the matrix Ỹ , which elements are given
by (6) can be proved by the analogues way.

Now, using the above proved Lemma 1 and the Lemma 2 we complete the
proof of the Theorem 1 and Theorem 2, which gives the optimal solution of the
Problem 1 and Problem 2.

3. Application to the two compartment model

Let us consider two compartment model:

S
1

S
2

k
1

2
k

k
3

Figure 3: Two compartment model of drug distribution in the human body.

Let the impulses ǫi(i = 0, 1, . . . , n) are loaded at the prescribed times ti,
(0 = t0 < t1 < · · · < tn). Then the dynamics of this system is described by the
following differential equations:

d~S

dt
= K~S(t), t ∈ [ti, ti+1]

~S(t+i ) = ~S(t−i )

(

1
0

)

ǫi

~S(t0) = 0, i = 0, 1, . . . , n,

where ~S(S1, S2)
T is the state vector and its components S1 and S2 are the drug

concentration in first and second compartment, and compartment matrix K is

K =

(

−k1 k2

k1 −k2 − k3

)

.

The drug concentration in the blood plasma after a single administration of
a unit dose i.e impulse response of the second compartment is given by

(21) y(t) =
k1

α1 − α2
(e−α1t − e−α2t) = A(e−α1t − e−α2t)
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where 0 < α1 < α2 are eigenvalues of K given by:

(22) α1,2 =
1

2

(

−(k1 + k2 + k3) ±
√

(k1 + k2 + k3)2 − 4k1k3

)

.

It must be emphasized that for the function y(t) the properties (i) - (iii) are
valid:

(i) y(t) has a unique maximum at time

(23) tmax =
1

α2 − α1
ln

(

α2

α1

)

;

(ii) y(t) is strictly monotone decreasing for t > tmax;

(iii) y(t) is strictly monotone increasing for t < tmax.

The state of the compartment 2 - S2, at time t ∈ [tk, tk+1] is expressed by (3)
i.e.

S2(t) =

k
∑

i=0

ǫiy(t − ti).

Let us consider the Problem 1 for this two compartment model. In order to
give to the therapeutist an simple and applicable formula for the optimal input
sequence ǫopt = (ǫ0, . . . , ǫn), we shall consider relationship between the optimal
dose and the time intervals of administration to maintain a minimal effective drug
concentration in plasma c > o (c-const.).

Let us denote by τ the length of each time intervals between the administra-
tions. Let the optimal dose ǫk from (21) is applied at the time tk = kτ . Then
from (3) it follows

(24) S2(t) =

k
∑

i=0

ǫiy(t − ti) =

k
∑

i=0

y(t − iτ) = c, kτ ≤ t < (k + 1)τ.

If we denote t = kτ , then (24) have a form

(25) S2(kτ) =
k−1
∑

i=0

ǫiy((k − 1)τ) = c.

In order to obtain ǫk, let us substitute i = j + 1 in (25):

k−1
∑

j=1

ǫjy(k − j + 1)τ) + ǫky(τ) = c,
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i.e.

(26) ǫk =
c

y(τ)
−

1

y(τ)

k−1
∑

j=1

ǫjy((k − j + 1)τ).

From (21) we obtain

y((k − j + 1)τ) = A(e−α1(k−j+1)τ − e−α2(k−j+1)τ ) =

=
A(e−α1(k−j)τ − e−α2(k−j)τ ).A(e−α1τ − e−α2τ )

A
+

A(e−α2(k−j)τ (e−α1τ − e−α2τ ) + e−α2τ (e−α1(k−j)τ − e−α2(k−j)τ ) =

=
y(k − jτ)y(τ)

A
+ y(τ)e−α2(k−j)τ + y(k − j)τ)e−α2τ

Substituting in (26) and take into account (25), we get for the kth component of
ǫ̂:

(27) ǫk = c(
1 − e−α2τ

y(τ)
−

1

A
) −

k−1
∑

j=0

ǫje
−α2(k−j)τ .

Now we shall give an approximate relationship between ǫk and τ . Let us present
ǫk from (27) in the form

(28) ǫk = c

(

eα1τ

A(1 − e−(α2−α1)τ )
−

1

A(e(α2−α1)τ − 1)
−

1

A

)

−

k−1
∑

j=0

ǫje
−α2(k−j)τ .

Because of α2 > α1 > 0 and (i)–(iii), the term with in y(t) is negligible for
t ≫ tmax. So, if τ is sufficiently large, then lim

τ→∞

e−α2τ = 0, lim
τ→∞

e−(α2−α1)τ = 0

and lim
τ→∞

1

A(e(α2−α1)τ − 1)
= 0. Therefore

(29) ǫk =
c

A
(eα1τ + sgn(e(α1−α2)τ − 1)).

From the above given considerations it follows, that if τ is sufficiently large, then
the maintenance dose ǫk, k = 1, . . . , n is independent of tk and it is approximately
constant.
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4. Application to the real data. Results and conclusion

In our disposition there were six experimental data points (ti, yi) of plasma con-
centration y(t), obtained after single intramuscular input of antibiotic Tobramicin
to the patient A.G. who had serious tissue infection (after motor-car accident) and
needs of antibiotic therapy. Employing the method of nonlinear regression to the
experimental points (ti, yi), i = 1, . . . , 6, the individual parameters α1 = 0.031/h,
α2 = 9 1/h, A = 3.96 were estimated according to the function y(t) from (2).
Therefore in this case (29) obtains the form:

(30) ǫk =
c

A
(eα1τ − 1)

Figure 4: The plasma concentrations levels S(t) if the conventional mode of
administration of Tobramicin is applied.

The therapeutic range (the effective levels of drug plasma concentrations)
of Tobramicin is [2.8 − 3, 8.5 − 10] µg/ml i.e. c = 3 µg/ml. The results (after
application of (30)) for the plasma concentrations levels S(t), if the conventional
mode of administration of Tobramicin: τ = 12 h, ǫk = 80 mg is taken, are shown
in Fig. 4. As it can be seen on Fig. 4, the minimal concentration of drug in plasma
would be about 12 µg/ml, i.e. greater than the limits of levels of therapeutic
range. It is because of the very long half-life of excretion t1/2(α1) ≈ 23 h of this
patient (t1/2(α1) = (ln 2)/α1 (in hours)). The first two doses are applied for τ =
12 h in order to reach quickly the prescribed maximal effective levels in plasma.
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Figure 5: The plasma levels S(t) of Tobramicin predicted using (30).

The optimal time interval τk = 36 h, (k = 3, . . . , 7) is calculated using (30) and
the resulting predicted plasma levels are shown in Fig. 5. There were taken four
test-samples: S(48) = 5.5 µg/ml, S(96) = 3.1 µg/ml, S(140) = 8.8 µg/ml and
S(168) = 3.1 µg/ml. They satisfy the prescribed therapeutic range of plasma
concentrations.

The results above shows that optimal control settings are useful tools in
studying the behavior of the plasma concentration of a drug after multiple its
administration.
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