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This is a survey of the works of Bulgarian mathematicians in the area of
Branching Stochastic Processes.

1. Introduction

Branching stochastic processes arise as models of population dynamics of particles
having different nature, like photons, electrons, neutrons, protons, atoms, mole-
cules, cells, microorganisms, plants, animals, individuals, prices, information, etc.
(see e.g. Gihman and Skorohod [228], Harris [229], Assmusen and Hering [209],
Sevastyanov [263], Jagers [240], Srinivasan [264], Yakovlev and N. Yanev [17],
[30], [51], [81], Haccou, Jagers and Vatutin [236]). Thus, many real situations in
physics, chemistry, biology, demography, ecology, economy, etc. could be modeled
by different types of branching processes. Recall that the terminology “branching
processes” was first introduced by Kolmogorov and his coauthors [207, 208] con-
sidering multitype branching processes in the Markov case, which have received
much attention in the literature on stochastic processes.

Investigations of branching structures increase significantly during forties be-
cause of their application in studying of nuclear chain reactions. In many ap-
plications the phase space of the branching processes is the set of nonnegative
integers in R or Rd, but the branching processes with continuous state spaces
are studied too (see [209]).
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A lot of papers deal with statistical problems for branching processes and
among them at first we will mention some books and survey articles: Dion
and Keiding [224], Basawa and Scott [211], Nanthi [253], Iosifescu et al. [239],
Vatutin and Zubkov [268], Winnicki [269], Sankaranarayanan [259]), Badalbaev
and Mukhitdinov [218], Guttorp [219], Dion [220], N. Yanev [187].

In Bulgaria some problems of the theory of branching processes were first con-
sidered in the book of Obreshkov [1]. Further a chapter in the book of Obretenov
[6] gave short representation of some classical models. In fact the first Bulgarian
articles on branching processes appeared in 1972. In 1985, N.Yanev gave the in-
vited talk “Branching Stochastic Structures” [56] on the 14th Spring Conference
of the Union of Bulgarian Mathematicians. The talk represented the results of
Bulgarian mathematicians in the area of branching processes by that time.

During the last 25 years the Bulgarian group working in the area of branching
processes attracted new members and published about 150 papers, books, chap-
ters of books, invited talks, application works, dissertations, etc. The main goal
of this article is to present the results obtained during the last two decades. Since
the main directions of the studies are the same as before 1985, we will repeat par-
tially the structure and the results presented in [56]. Among others we would like
to point out the book of Yakovlev and N. Yanev [81] with applications in the field
of Biology and Medicine, the book for students with classical (and some modern)
models of branching processes published recently by Slavtchova-Bojkova and N.
Yanev [177] and the review chapters of Mitov and N. Yanev [186], N. Yanev [187]
and G. Yanev [188]. It is worth to note that twelve dissertations in the field of
branching processes are defended and among them two for Dr. Math. Sci.

Finally, we would like to point out that the First World Congress on Branching
Processes was organized in Varna in 1993 by the Bulgarian branching team. The
chairman of the Program Committee was C.C. Heyde and the chairman of the
Organizing Committee was N. Yanev. The talks are published in [238] and three
of them are Bulgarian. A lot of Bulgarian papers are presented as invited talks at
some international conferences and among them we would like to note the World
Congresses of ISI and Bernoulli Society (Istanbul, 1996), Classical and Modern
Branching Processes (Minneapolis, 1994) and Conference on Branching Processes
(Oberwolfach, 1995).

2. Controlled branching processes

2.1. Bienaymé-Galton-Watson branching processes

Assume that on the probability space (Ω,A,P) is given the set of indepen-
dent identically distributed (i.i.d.) integer valued random variables ξ = {ξi(t), i,
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t = 0, 1, 2, . . .} with probability generating function F (s) = E{sξi(t)}. Then the
classical Bienaymé-Galton-Watson (BGW) branching process is well defined by
the recurrence:

(1) Z0 = 1, a.s., Zt+1 =

Zt∑

i=1

ξi(t + 1), t = 0, 1, 2, . . . .

Usually ξi(t + 1) is interpreted as the number of particles in the (t + 1)−th
generation which were born by i-th particle living in the t−th generation. The
independence of ξ′s means the independence of the evolution of the particles.
This restrictive assumption is satisfied in many real situations in physics, but in
biology it is not always satisfied. More realistic models should assume certain kind
of dependence. A possible way is the model of φ-controlled branching processes
introduced by Sevastyanov and Zubkov [266].

2.2. General model of controlled branching processes

Assume that on the same probability space (Ω,A,P) are given two sets of i.i.d.
integer valued random variables: the set of the reproduction ξ = {ξjk(t), j ∈
J, k = 1, 2, . . . , t = 1, 2, . . .} and the set of control functions φ = {φjt(n), j ∈
J, t = 1, 2, . . . , n = 0, 1, 2, . . .}, where J is a certain set of indexes, either finite
or infinite.

Then we define the controlled branching process as follows:

(2) Z0 ≥ 0, Zt+1 =
∑

j∈J

φjt(Zt)∑

k=1

ξjk(t + 1), t = 0, 1, 2, . . . .

Evidently, if J = {1} and φ1t(n) ≡ n a.s. then we have the BGW process defined
in (1).

Sevastyanov and Zubkov [266] found the conditions for extinction and non-
extinction in the case J = {1}, φ1t(n) ≡ φ(n) a.s., where φ(.) is a non-random
integer valued function.

The first result for φ-controlled branching processes with random control
functions was proved by N. Yanev in [7]. He considered the case when J = {1}
and

φ = {φt = {φt1(0), φt1(1), . . . , φt1(n), . . .}, t = 0, 1, 2, . . .}
are independent stochastically equivalent integer valued processes. More precisely
he assumed that φt(n) ∼ αtn, n → ∞ where αt are i.i.d. random variables. The
critical parameter in this case is ρ = E{log αtF

′(1)}.
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Under the same assumptions for the controlled functions N. Yanev and Mitov
[16] considered the case

P{ξ1k(t) > x} ∼ Cx−α, x → ∞, 0 < α < 1,

i.e. when the offspring distribution has infinite mean. In this situation they
obtained the asymptotic behaviour of the probability for extinction. N. Yanev
and G. Yanev [78] continued these investigations.

N. Yanev [10] considered the evolution of these processes in more general
situation, namely when the evolution is in random environments. Further inves-
tigations of this case were done by N. Yanev and G. Yanev [84].

Branching processes with multitype random control functions were investi-
gated by Del Puerto and N. Yanev in the subcritical case [152], [182] and [190].
They have also shown that the most popular discrete-time branching processes
can be treated as particular cases: size-dependent branching processes, branching
processes in random environments, etc.

In this way the problem for extinction or non-extinction of the φ-controlled
branching processes were studied in rather general situation. On the other hand,
it became clear that some other problems which are important for a given branch-
ing process could not be solved completely in this general situation. For these
reasons further investigations have been done in some particular but still enough
general cases.

2.3. Random migration

The processes with random migration are particular cases of φ-controlled branch-
ing processes with random control functions of the following types: J = {1, 2}
and

φ1t(n) = max{0,min{n, n + ηt}}, φ2t(n) = max{ηt, 0}.

They were introduced independently by Nagaev and Han [252] and N. Yanev and
Mitov [15, 20]. The random variables ηt have distributions

P{ηt = −1} = pt, P{ηt = 0} = qt, P{ηt = 1} = rt, pt + qt + rt = 1, t ≥ 0.
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It is not difficult to check that the above definition can be represented in the
following form

(3) Zt+1 =





max{Zt−1,0}∑

i=1

ξ1i(t + 1), with probability pt

Zt∑

i=1

ξ1i(t + 1), with probability qt

Zt∑

i=1

ξ1i(t + 1) + ξ21(t + 1), with probability rt,

where we denote the p.g.f.’s F (s) = E{sξ1i(t)} and G(s) = E{sξ2i(t)}, for |s| ≤ 1.

The following well known models of branching processes can be obtained as
particular cases of the processes with random migration:

• Bienaymé-Galtion-Watson processes pt = qt = rt = 0.

• Bienaymé-Galtion-Watson processes with immigration pt = qt = 0, qt = 1.
(See [237], [23]).

• Bienaymé-Galtion-Watson processes with emigration pt = 1, qt = rt = 0.
(See [267]).

• Bienaymé-Galtion-Watson processes with immigration stopped at zero (The
process Z̃t defined by (4) with pt = qt = 0, rt = 1 (see [265]).)

The time homogeneous case when pt = p, qt = q, rt = r was studied together
with the process Z̃t, t ≥ 0, defined by

(4) Z̃0 > 0, Z̃t =

{
Zt, if Zt > 0,
0, if Zt = 0.

The state zero is an absorbing state for the process defined by (4). Hence the
time to extinction τ of the process (4) is an important characteristic. It is the
time between two consecutive visits of the state zero for the process defined by
(3) which is called ”life period” of this process. The asymptotic of the probability
ut = P{Z̃t > 0|Z̃0 > 0} = P{τ > t}, i.e. the survival probability of the ”life
period” is studied in all three cases: subcritical, critical and supercritical. Then
it was used to prove limit theorems under appropriate normalization.
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In the subcritical case it was shown that the probability ut decreases expo-
nentially. It was also found that there exists a discrete limiting distribution for
the process Zt. (See [42, 35]). The supercritical case was studied by Han [252].

The most interesting is the critical case. It was firstly investigated in [15, 252],
[20], and [29].

Later G. Yanev and N. Yanev [106, 109] studied a rather more general situ-
ation presented briefly below (see also [140]).

Let ξ = {ξi(t), i = 1, 2, . . . , t = 0, 1, 2, . . .} be a set of non-negative integer-
valued i.i.d. random variables. Denote Ut(j) =

∑j
i=1 ξi(t), j = 1, 2, . . . and

Ut(0) ≡ 0. Let additionally two independent of ξ sets E = {e1(t), e2(t)} and I =
{I+

t , Io
t } be given. Each of these sets consists of i.i.d. non-negative random

variables. Then the branching process {Zt, t = 0, 1, 2, . . .} is defined by the
following recurrent formula

(5) Z0 = 0, a.s. Zt = (Ut(Zt−1) + Mt)
+, t = 1, 2, . . . ,

where P{Mt = −(Ut(e1(t))+e2(t))} = p,P{Mt = 0} = q,P{Mt = I+
t I{Zt−1>0} +

Io
t I{Zt−1=0}} = r; p, q, r ≥ 0; p + q + r = 1. Here and later on IA denotes the

indicator of the event A.
The definition (5) shows the following three options for the further population

evolution in the t-th generation due to the migration component Mt :
(i) Emigration with probability p, that is e1(t) families emigrate which means

that Ut(e1(t)) members leave the population (family emigration) and, addition-
ally, e2(t) members randomly selected from different families are also eliminated
from the further evolution (individual emigration);

(ii) No migration with probability q, i.e. the reproduction is as in the classical
BGW branching process;

(iii) State-dependent immigration with probability r, which means that I+
t

new members join the population in the positive states or Io
t members appear

after the state zero.
The processes defined in (5) were studied under the following conditions

(6) m = E{ξi(t)} = 1 and 0 < V ar{ξi(t)} = 2b < ∞, critical case,

(7)





0 < m+
I = E{I+

t } < ∞, 0 < mE = E{e1(t) + e2(t)} < ∞,
0 < mo

I = E{Io
t } < ∞,

0 ≤ e1(t) ≤ N1 < ∞, 0 ≤ e2(t) ≤ N2 < ∞, a.s.

The authors have shown that the following critical parameter

∆ =
E{Mt|Zt−1 > 0}
(1/2)V ar{ξk(t)}

=
rm+

I − pmE

b
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plays an important role for the behavior of the process. Under the above condi-
tions they proved that:

• ut = P{Zt > 0} = P{τ > t} ∼ L∆(t)t−(1−∆)+ , t → ∞, where L∆(t) is a
s.v.f.

• If the conditions (6) and (7) hold then:

(i) If ∆ < 0 then the process possesses a stationary distribution.

(ii) If ∆ = 0 then lim
t→∞

P

{
log Z(t)

log t
≤ x

}
= x, 0 < x < 1.

(iii) If ∆ > 0 then lim
t→∞

P

{
Z(t)

bt
≤ x

}
=

1

Γ(∆)

∫ x

0
y∆−1e−ydy, x ≥ 0.

The process Z̃t with immigration stopped at zero (see (4)) was studied also
in all three cases: the subcritical case in [57]; the critical case in [61], [86], [111];
and the supercritical case in [63]

2.4. Nonhomogeneous Migration

The processes defined by (3) with non-homogeneous migration are better models
for some real phenomena. They are also interesting from theoretical viewpoint.
The investigation of these processes was initiated by N. Yanev and Mitov in
[22] and continued in the papers [38, 40, 37, 53, 55] of the same authors. The
most interesting results are obtained in the critical case under the assumption
qt → 1, (pt, qt → 0) as t → ∞. This means that the process becomes closer to
the critical process without any migration as t → ∞. The limiting distributions
depend on the balance between decreasing emigration and immigration. It is
worth representing some of the main results.

A. Predominated immigration.

If rt ∼
C

log t
, pt = o(rt), t → ∞, then

lim
t→∞

P

{
1 − log Zt

log t
≤ x|Zt > 0

}
=

1 − e−θx

1 − e−θ

for 0 < x < 1. Here θ = Cλ/b, λ = G′(1), b = F ′′(1)/2.

If rt ∼
L(t)

log t
, pt ∼

C

log t
, and L(t) is a s.v.f. such that L(t) → ∞, t → ∞, then

lim
t→∞

P

{
L(t)

(
1 − log Zt

log t

)
≤ x|Zt > 0

}
= 1 − e−x/b
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for x ≥ 0.

B. Balanced migration.

Suppose that rtλ ≡ pt ∼ t−ρL(t) → 0, t → 0 for some s.v.f.

If ρ = 0 and L(t) ∼ K

log t
, and α =

K

b
∈ (0, 1), then

lim
t→∞

P

{
log Zt

log t
≤ x

}
=

1

1 + α
+

αx

1 + α
, 0 ≤ x ≤ 1.

The restriction α ∈ (0, 1) was removed lately by Drmota, Louchard, and N. Yanev
[164].

If 0 < ρ < 1 or (ρ = 0 and L(t) = o(1/ log t), t → ∞) then

lim
t→∞

P

{
log Zt

log t
≤ x|Zt > 0

}
=

1

1 + α
+

αx

1 + α
, 0 ≤ x ≤ 1.

If ρ = 1, M(t) =
t∑

k=0

pk → ∞, and lim
t→∞

L(t) log t

M(t)
= γ, 0 ≤ γ ≤ ∞, then

lim
t→∞

P

{
log Zt

log t
≤ x|Zt > 0

}
=

γx

1 + γ
, 0 ≤ x ≤ 1

and

lim
t→∞

P

{
Zt

bt
≤ x|Zt > 0

}
=

γ

1 + γ
+

1 − e−x

1 + γ
, x > 0.

If
∞∑

k=0

pk < ∞ then P{Zt > 0} ∼ C

bt
, t → ∞, and

lim
t→∞

P

{
Zt

bt
≤ x|Zt > 0

}
= 1 − e−x, x ≥ 0.

3. Regenerative branching processes

In the seventies Foster [227] and Pakes [255] introduced BGW processes with
state-dependent immigration. The processes of this type allow immigration of
new particles only in state zero, i.e., the population regenerates when it becomes
extinct. Thus, the state zero is not an absorbing state anymore and becomes a
reflecting barrier. The process evolution consists of a sequence of cycles which
are independent and stochastically equivalent.
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Later the model was generalized for Markov branching processes with con-
tinuous time by Yamazato [271] and for Bellman-Harris branching processes by
Mitov and N. Yanev [50], [80] and Slavchova and N. Yanev [83], [88].

In this section we represent the results, obtained by Bulgarian researchers in
this direction. Evidently the regenerative property also arise in the evolution of
branching processes with homogeneous migration which were represented in the
previous section.

On the other hand the BGW branching processes with state-dependent im-
migration can be described in terms of φ-controlled branching processes (see
definition (2)), with J = {1, 2} and φ1t(n) = n, φ2t(n) = max{1 − n, 0}, t =
1, 2, . . . , n = 0, 1, 2, . . . . Then Zt+1 =

∑Zt

i=1 ξ1i(t + 1) + ξ21(t + 1)I{Zt=0}, where

we denote the p.g.f.’s F (s) = E{sξ1i(t)} and Gt(s) = E{sξ2i(t)}, for |s| ≤ 1.

3.1. BGW processes with state-dependent immigration

Foster [227] and Pakes [255] considered the case of time homogeneous immigration
in the state zero, i.e. Gt(s) does not depend on t. The BGW processes with non-
homogeneous state-dependent immigration were studied in [31], [43], [32], [33],
[73], [116], [118], [129] mainly in critical case.

3.2. Continuous time Markov processes

Later the Foster-Pakes model was generalized by Yamazato [271] for continuous
time Markov branching processes. Further these processes were studied assuming
that the immigration in the state zero is not homogeneous in time. (See [35],
[39], [59].) The process was defined as the time inhomogeneous Markov chain
{Zt, t ≥ 0} with transition probabilities given by

Pij(t, t + h) = P{Zt+h = j|Zt = i}

=





δ0i + qi(t)h + o(h), i = 0, j ≥ 0,

δij + ipj+1−ih + o(h), 1 ≤ i ≤ j + 1,

o(h), 0 ≤ j < i − 1.

as h → 0,

where q0(t) < 0, qj(t) ≥ 0, j ≥ 1,
∑∞

j=0 qj(t) = 0, t ≥ 0, p1 < 0, pj ≥ 0, j 6= 1,∑∞
j=0 pj = 0. For simplicity we assume Z0 = 0, a.s.
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Assume that

∞∑

j=1

jpj = 0, 0 < 2b =

∞∑

j=1

j(j − 1)pj < ∞, (critical case),(8)

0 < mI(t) =
∞∑

j=1

jqj(t) → 0, cI(t) =
∞∑

j=2

j(j − 1)qj(t) → 0,(9)

sup
t≥0

mI(t) < ∞, sup
t≥0

cI(t) < ∞.(10)

Depending on the rate of the convergence in (9) the limiting behavior of the
process essentially differs. (See e.g. [39]).

Assume (8), (9), (10), and mI(t) ∼ L(t)t−θ, cI(t) = o(mI(t) log t), t → ∞,
where 0 ≤ θ < 1, and L(.) is a function slowly varying at infinity. Then

(a) If 0 < θ < 1 or {θ = 0 and 0 ≤ lim
t→∞

b−1L(t) log t < 1} then

lim
t→∞

P {log Zt/ log t ≤ x|Zt > 0} = x, x ∈ (0, 1).

(b) If θ = 1 and lim
t→∞

(L(t) log t)

(∫ t

0
mI(u)du

)−1

= a, 0 ≤ a ≤ ∞, then

(i) for 0 < x < 1

lim
t→∞

P

{
log Zt

log t
≤ x|Zt > 0

}
=

ax

1 + a
;

(ii) for x ≥ 0

lim
t→∞

P

{
Zt

bt
≤ x|Zt > 0

}
=

a

1 + a
+

1 − e−x

1 + a
.

(c) If

∫ ∞

0
mI(t)dt < ∞ and c(t) = o(t−1), t → ∞, then for x > 0

lim
t→∞

P

{
Zt

bt
≤ x|Zt > 0

}
= 1 − e−x.

3.3. Age-dependent branching processes

We have already mentioned that the Foster-Pakes model was generalized to the
Bellman-Harris branching processes in [50], [80] for the critical case and in [83],
[88] for the noncritical cases. The general definition is as follows:
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Let on the probability space (Ω,A,P), three independent sets of random
variables be given:

(i) The set Z = {{Zt(k, j), t ≥ 0}, k, j = 1, 2, . . . .} of i.i.d. branching
processes with p.g.f. F (t; s) = E{sZt(k,j)}, |s| ≤ 1, and Z0(k, j) = 1 a.s., i.e.
F (0; s) = s.

(ii) The set I = {Ik, k = 1, 2, . . .} of i.i.d. integer valued positive random
variables with p.g.f. g(s) = E{sIk}, |s| ≤ 1 (the number of immigrants in the
state zero).

(iii) The set X = {Xk, k = 1, 2, . . .} of i.i.d., positive r.v. with cumulative
distribution function A(t) = P{Xk ≤ t}, t ≥ 0 (stay at zero or waiting period).

Define the sequence {{Zt(k), t ≥ 0}, k = 1, 2, . . .} of i.i.d. branching processes
starting with a positive random number of ancestors Ik at time t = 0, as follows

Zt(k) =

Ik∑

j=1

Zt(k, j), t ≥ 0.

By the independence of the sets Z and I it follows that Φ(t, s) := E{sZt(k)} =
g(F (t, s)), |s| ≤ 1. Denote by Tk the life period (time to extinction) of the
process Zt(k), i.e. Tk is a r.v. such that

Z0(k) = Ik > 0, Zt(k) > 0 for t ∈ [0, Tk), and ZTk
(k) = 0.

It is clear that the r.v. {Tk, k = 1, 2, . . .} are i.i.d. and the equivalence of the
events {Zt(k) = 0} and {Tk ≤ t} yields B(t) = P{Tk ≤ t} = Φ(t, 0) = g(F (t, 0)).
Consider the sequence Yk = Xk + Tk, k = 1, 2, . . . , of i.i.d. positive r.v. and
denote their c.d.f. by

D(t) = P{Yk ≤ t} =

∫ t

0
A(t − u)dB(u) = (A ∗ B)(t).

Define the renewal epochs S0 = 0, Sn+1 = Sn + Yn+1, n = 0, 1, 2, . . . and the
ordinary renewal process N(t) = max{n : Sn ≤ t}.

The alternating renewal sequence {(Sn, S′
n+1), n = 0, 1, 2, . . .}, where S′

n+1 =
Sn +Xn+1, n = 0, 1, 2, . . . , allows us to define the process σ(t), related with the
moment t, as follows

σ(t) = t − S′
N(t)+1 = t − (SN(t) + XN(t)+1).

If σ(t) ≥ 0 then it can be interpreted as the “spent lifetime.” If σ(t) < 0 then
−σ(t) > 0 is the rest of the “waiting period” (see Figure 1).
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. . .
S0 = 0

X1

S′

1

T1

S1

XN(t)+1

SN(t) S′

N(t)+1 =
SN(t) + XN(t)+1

σ(t) > 0

tt

TN(t)+1

τ(t)

SN(t)+1 =
S′

N(t)+1 + TN(t)+1

τ(t) = TN(t)+1σ(t) < 0

I-st case σ(t) > 0

II-nd case σ(t) < 0

Figure 1: Spend and residual life times

Finally, we define the branching process with state-dependent immigration
Zt, t ≥ 0, as follows

Zt = Zσ(t)(N(t) + 1)I{σ(t)≥0} .

The process {Zt, t ≥ 0} can be interpreted in the following way (see Figure 2).

t

S0 = 0

Zt

X1

Zt = 0

T1

I1

Zt = Zt−S′

1
(1)

S′

1 S1

Zt

X2

Zt = 0

T2

I2

Zt = Zt−S′

2
(2)

S′

2 = S1 + X2 S2 = S′

2 + T2

. . .

Figure 2: Branching process with state-dependent immigration

It starts at the moment t = 0 by Z0 = 0 and stays at the state 0 during
the random period S′

1 = X1. Then at the moment S′
1, I1 new particles (I1 >

0, a.s.) at age 0 immigrate. They initiate the branching process Zt−S′

1
(1) and Zt

coincides with this process up to the moment S1 = X1 + T1 when Zt−X1
(1) hits

the state zero. Commonly, during the waiting periods [Sn−1, S
′
n) the process Zt

is equal to zero, while in the life periods [S′
n, Sn) the process Zt coincides with

the corresponding branching process starting with the positive random number
In of new particles, which are the immigrants in the state 0.
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This construction was generalized further, rejecting the assumption that the
processes {{Zt(k), t ≥ 0}, k = 1, 2, . . .} are branching, but any nonnegative
excursion processes. A detailed investigation of these regenerative processes was
done in [132], [130], [131]. The general results were used later for additional
investigation of critical age-dependent regenerative processes in [135] and [146].

Some of the results were extended to the case of multi-type age-dependent
branching processes with state dependent immigration in [108], [110].

Another class of alternating regenerative branching processes was studied
by Mayster [158], [181]. The main idea in both papers is to control a branch-
ing process by another branching process. The model considered in [158] can
be described starting from the Sevastyanov and Zubkov’s model of φ-controlled
branching process,

Zt+1 =

φt(Zt)∑

i=1

ξi(t + 1), t = 0, 1, 2, . . . .

The control function is defined as follows φt(Zt) := θ ⊗ Zt + ηt, where the right
hand side is the fractional thinning operator introduced by Steutel and van Harn
as the ”discrete multiplication”. The author studied the extinction probability
and proved limit theorems for reproduction by t cycles, as t → ∞. In the second
paper [181] the author considers the model of alternating branching process in
autoregressive random environment.

Bojkova and N. Yanev [102], [105] studied processes with two types of im-
migration. The process of this type is a superposition of a sequence of state-
dependent Bellman-Harris branching processes starting at the renewal epochs of
an independent renewal process. The model was studied later in [110, 136], [144],
[156].

N. Yanev [3], [4] studied the more general Sevastyanov model of age-dependent
branching processes with general immigration. He obtained the asymptotic of the
moments and limiting distributions in all three cases: subcritical, critical, and
supercritical.

4. Branching diffusion processes

Let us consider diffusion process Xt, t ≥ 0 in the phase-space (X,A) with the
infinitesimal operator

Lx =
1

2

d∑

i,j=1

ai,j(x)
∂2

∂xi∂xj
+

d∑

i=1

bi(x)
∂

∂xi
.
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Suppose that particles move on the sample paths of the diffusion process, and
the intensity reproduction of a particle which is at the point x is k(x)∆t+ o(∆t),
and the number of particles are determined by the random measure ηx. Assume
that we know the initial distribution of particles in the space X. The processes
of this type are known as diffusion branching processes and they were studied by
Mayster in a series of papers [5], [11], [12], [24], [25], [26], [34], [45], [46].

In the paper [5] the author proved the asymptotic of mathematical expec-
tation and limiting distributions for branching diffusion processes with discrete
time, which evolve in a bounded region with absorbing bounds. The asymptotic
of the first two factorial moments for branching diffusion processes with continu-
ous time, which evolve in a bounded region with absorbing bounds were studied
in the papers [11], [12].

The paper [24] concerns branching diffusion processes in an unbounded do-
main. The author found sufficient conditions for the existence of a maximal
eigenvalue µ0 in the specter of the operator Mtf(x) = E

{∫
X

f(z)µxt(dz)
}

, which
plays role of a critical parameter. She also proved limit theorems:

• In the subcritical case (µ0 < 0) the finite dimensional distributions of the
measure µxt(u) on the set {µxt(u) > 0} converge to the finite dimensional
distributions of the given measure µ∗;

• In the critical case (µ0 = 0), under an appropriate normalization it is proved
the convergence to multidimensional exponential distribution;

• In the supercritical case (µ0 > 0) it is proved that for every bounded mea-
surable function ν(x) reduced process

∫

X

ν(z)µxt(dz)/ω∗
0(ν)eµ0t

converges in mean-square to a random variable independent of ν(x).

The results obtained in the paper [24] are used later for investigation of a har-
monic oscillator in [25]. The paper [26] deals with diffusion branching processes
with Poisson initial distribution. Branching random walk on a closed interval
and its convergence to a diffusion branching process is investigated in the paper
[45]. Some results for the mathematical expectation of the branching processes
with a small diffusion are obtained in the paper [46]. It is proved that under cer-
tain conditions the mathematical expectation is close to running wave. Several
particular cases are considered in details.
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5. Spatial branching processes

Let us assume that the particles which were born in a given generation are dis-
tributed in the space Rd accordingly with the given locally-bounded random
measure, independently of the position of the mother-particle, i.e. the measure is
space-homogeneous (see e.g. [245]). Some results in this direction are proved in
the papers of Tschobanov [18], [48], and [49]. In the paper [18], the author consid-
ered critical space-homogeneous Markov branching semi-groups with continuous
time. He proved a sufficient condition for weak continuity and the necessary and
sufficient condition for stability of such a semi-group. He also proved the weak
convergence to the invariant distribution independently of the initial one. In the
paper [48] the author generalized the space-homogeneous Bellman-Harris branch-
ing processes with finite number of types of particles, introduced in [245] to the
case where the set of the types of particles constitutes a bounded complete metric
space. In the third paper [49] the author solved two important problems for the
space-homogeneous Bellman-Harris branching processes: the full description of
their invariants is given (Theorem 4.1); the convergence of distributions of infinite
population of particles to the invariant distribution is proved (Theorem 4.3).

In the paper [178] the author studied the Sevastyanov model with a motion
of particles. The model is defined by:

• the motion process X(t), t > 0, which is a time homogeneous Markov
process on Rd;

• the life-span L(τ), τ > 0, which is a Levy process called subordinator: a
right continuous increasing stochastic process on R+ having stationary in-
dependent and positive increments with initial point being the origin;

• the offspring number η(u), u > 0, which is an integer value measure, in
general, depending on the age u of the parent-particle at the splitting time.

Now, for a fixed τ , the couple (L(τ), η(L(τ)) gives the Sevastyanov branching
mechanism. If the offspring number η does not depend on the age u, we have
the Bellman-Harris branching process. The life-span L(.) and the motion process
X(.) are assumed to be independent.

6. Extremes in branching processes

There is a significant amount of research in the theory of branching processes de-
voted to extreme value problems concerning different population characteristics.
The history of such studies goes back to the works of Zolotarev and Urbanik who
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consider the maximum generation size. Another direction of study concerns the
maxima related to the offspring size.

Let Mn denote the maximum offspring size of all individuals living in the
(n − 1)-st generation of a branching process. This is a maximum of random
number of independent and identically distributed (i.i.d.) integer-valued random
variables, where the random index is the population size of the process. Mn has
two characteristic features: (i) the i.i.d. random variables are integer-valued and
(ii) the distribution of the random index is connected to the distribution of the
terms involved through the branching mechanism. These two characteristics dis-
tinguish the subject matter maxima among those studied in the general extreme
value theory.

The study of the sequence {Mn} might be motivated in different ways. It
provides a fertility measure characterizing the most prolific individual in one
generation. It measures the maximum litter (or family) size. In the branching
tree context, it is the maximum degree of a vertex. The asymptotic behavior of
Mn gives us some information about the influence of the largest families on the
size and survival of the entire population.

Bulgarian mathematicians also contributed to this topic. First of all we have
to point out the papers of Rahimov and G.Yanev [115], [122] on the maximum
family size of BGW processes. These two works initiate some further studies of
Bulgarian mathematicians in this direction. The papers [116], [118], [137], [139],
[117] concern with different characteristics of maxima related to the offspring size
for different classes of branching processes.

The review papers [172] and [188] by G. Yanev give a comprehensive up to
date overview of the results in these area of branching processes.

7. Other models

An important particular case of branching processes are the birth and death
processes. In the book of Obretenov [6] it was considered non-homogeneous
discrete time birth and death process with reflecting barrier at zero and absorbing
barrier at N < ∞.

Some results for Bienaymé-Galton-Watson branching processes with increas-
ing random number of ancestors are obtained by Dimitrov in his PhD thesis [194].
The author considered the Bienaymé-Galton-Watson branching process Zt, t =

0, 1, 2, . . . (see (1)) with Z0 = νn
P→ ∞, n → ∞, where limn→∞ P{νn/kn ≤ x} =

A(x), A(0) 6= 1, for some increasing sequence kn → ∞, n → ∞. Then in the
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supercritical case m = F ′(1) > 1,

Zt − mtνt

mtσ
√

νt(1 − 1/m)

d→ N(0, (1 − A(0))−1),

where σ2 = F ′′(1)+m−m2 is the offspring variance. In the subcritical case m < 1
the author proved that under the additional condition ktP{Zt > 0|Z0 = 1} =
γ, 0 < γ < ∞ there exists a stationary distribution on the non-degenerated
sample paths. The cases when γ → 0 and γ → ∞ were also considered. In
the critical case m = 1 it was found the limiting distribution with characteristic
function

h0(z) =

∫ ∞
0

[
eγxiz(1−iz) − e−γx

]
dA(x)

1 −
∫ ∞
0 e−γxdA(x)

.

An interesting investigation of the family tree of a Bienaymé-Galton-Watson
branching process is given by G. Yanev and Mutafchiev[163] and Mutafchiev [189].
Especially Mutafchiev [189] obtained the asymptotic behaviour as t → ∞ of the
process VN,t representing the count of the complete disjoint N−ary subtrees of
height at least t, which are rooted at the ancestor.

Two interesting papers were written by Kerbashev [104], [117]. In these
papers the author studied the maximum M of the critical Bienaymé-Galton-
Watson branching process conditioned on its total progeny N . A limit theorem
for M as N → ∞ is proved, imbedding the process in a random walk. The results
are transferred to the non-critical processes. A corollary for the maximal strata of
a random rooted labeled tree is obtained. The results refined a result of Kolchin.

8. Statistics of branching processes

It is well known that consistent and asymptotically normal estimators for offspring
characteristics of the classical Bienaymé-Galton-Watson process exist only in the
supercritical case on the explosion set. This restriction can be avoided introducing
an increasing random number of ancestors or an immigration component. In
the first case an unified estimation theory is proposed first by N. Yanev [8] for
subcritical, critical and supercritical processes. After that this idea is developed in
a series of papers by N. Yanev and also Dion and N. Yanev for different sample
schemes. It is shown also how to transfer the asymptotic results of the BGW
processes with an increasing random number of ancestors to the BGW processes
with immigration designing a suitable sampling scheme.
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8.1. Classical BGW branching process

Let us begin with the classical BGW branching processes defined in Section 2.1.
with the offspring distribution pk = P{ξ = k}, ∑∞

k=0 pk = 1, and the offspring
mean and variance m = E{ξ}, σ2 = V ar{ξ}.

The estimates for the offspring mean, variance, and distribution depend on
the observation scheme. Further on the following observation schemes will be
considered:

(O1) The entire tree up to the moment t: {ξi(k), i = 1, 2, . . . , Zk, k =
0, 1, . . . , t};

(O2) The successive generations: (Z0, Z1, Z2, . . . , Zt);

(O3) Two successive generations: (Zt, Zt+1);

(O4) The initial and another generation: (Z0, Zt);

(O5) Left censored observations: (Zt, Zt+1, . . . , Zt+T ).

Assume now the observation scheme (O1). This is the full information for the

process, by which it is easy to determine the statistics Zj(k) =

Zj∑

i=1

I{ξi(j)=k},which

means that Zj(k) is the number of individuals in the j-th generation having ex-
actly k offsprings in the next generation, j = 0, 1, 2, . . . , t; k = 0, 1, 2, . . . . Then
using the independence of individual’s evolutions we are able to obtain the max-

imum likelihood function (m.l.f.) Lt(p) =
∞∏

k=0

p
Pt−1

j=0
Zj(k)

k ,where the parameter

p = (p0, p1, p2, . . . ) is just the offspring distribution. Therefore the maximum
likelihood estimators (m.l.e.) for {pk} are p̂k(t) = Ut(k)/Ut, k = 0, 1, 2, . . . .,

where Ut(k) =

t−1∑

j=0

Zj(k) is the total number of individuals in the first t gen-

erations having exactly k offsprings and Ut =

∞∑

k=0

Ut(k) =

t−1∑

i=0

Zi is the total

number of individuals up to the moment t (i.e. from 0 to t − 1 including).
Note that p̂k(t) is the relative proportion of the parents with k offsprings. Then

the m.l.e. for m will be m̂t =

∞∑

k=1

kp̂k(t). It is not difficult to calculate that

m̂t = (Ut+1 − Z0)/Ut =
Z1 + Z2 + · · · + Zt

Z0 + Z1 + · · · + Zt−1
. Note first that the m.l.e. m̂t

can be interpreted as a ratio of the “total number of the sons” divided by the
“total number of the fathers” (which seems quite naturally). On the other hand,
m̂t depends surprisingly only by the successive generations (O2). Remark that
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these m.l.e. were proposed by Harris [230]. It was shown in Dion [221], Feigin
[226], and Keiding and Lauritzen [244] that m̂t is also a m.l.e. for m with respect
only to observations (O2). Similarly it is possible to consider the m.l.e. for the

individual variance σ2 : σ2
t =

∞∑
k=0

(k−m)2p̂k(t) with known offspring mean m and

σ̂2
t =

∞∑
k=0

(k − m̂t)
2p̂k(t) with unknown m, which cannot be presented in a closed

form and depend on the entire information (O1).

Let us first consider the most important estimator m̂t for which Harris [230]
proved that on the explosion set it is a consistent estimator for the critical parame-
ter m. Later Heyde [233] improved this result showing that the Harris estimator
is strongly consistent and Dion [221] obtain that it is also asymptotically normal.

Assume now the observation scheme (O3). Lotka introduced the estimator
m̃t = (Zt+1/Zt)I{Zt>0} +I{Zt=0}. This estimator was investigated by many au-
thors and asymptotic results on the non-extinction set are obtained. Pakes [254]
introduced and investigated the corresponding estimators for the offspring prob-
abilities: p̃t(k) = (Zt(k)/Zt)I{Zt>0} + I{Zt=0}, k = 0, 1, 2, . . . .

Suppose now that we can observe only the sample (O4). In this case Heyde

[235] suggested the moment-type estimator m∗
t = Z

1/t
t , having in mind that

E{Zt} = mt. Note that the estimator m∗
t is consistent but not asymptotically

normal distributed.

Another interesting problem is how to estimate the unknown age of the
process if we are able to observe only the current size Zt, where the parame-
ter t is unknown and we have to estimate it. Stigler [258] proposed the following
estimator t̂ = {log[Zt(1− q)− q]}/ log m. Unfortunately the estimator is not con-
sistent but in the next section we will propose a consistent and asymptotically
normal estimator in the noncritical cases and an unbiased estimator in the critical
case.

In the case of a sample (O5) Crump and Howe [215] introduce the follow-

ing estimator for m : m̂t,T =
t+T∑

i=t+1
Zi/

t+T−1∑
i=t

Zi, which can be considered as a

version of the Harris estimator (t = 0) or the Lotka-Nagaev estimator (T = 1).
Crump and Howe investigated the cases t → ∞, T− fixed and t−fixed, T → ∞.
They proved that m̂t,T is consistent and asymptotically unbiased estimator in
the supercritical case m > 1 on the explosion set. In the next section we will
consider also the case t, T → ∞ in a more general situation and not only in the
supercritical case.

Finally it is interesting to compare the different estimators. For example, the
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best estimator for m is the Harris estimator, which could be expected because it
uses more information than the others (see [126] for more details). We will come
back to this problem in the next sections. The estimation problems for σ2 will
be considered and discussed in the following section.

8.2. BGW branching processes with an increasing random number of
ancestors (BGWR)

As one can see by the previous section, the statistical inference for the classical
BGW processes is well developed only in the supercritical case on the explo-
sion set. To avoid that restriction we will consider in this section the following
generalization of (1):

(11) Zt+1(n) =

Zt(n)∑

i=1

ξi(t, n), t = 0, 1, 2, . . . ;n = 1, 2, . . . ,

where {ξi(t, n)} are i.i.d. r.v. and Z0(n) is an independent of them r.v. (which
goes to ∞ in some sense).

Note also that Zt(n) =
Z0(n)∑
k=1

Z
(k)
t , t = 0, 1, 2, . . . , where {Z(k)

t } are i.i.d. copies

of the classical BGW process defined by (1).
As noted in Yakovlev and N. Yanev [81], branching processes with a large

and often a random number of ancestors occur naturally in the study of cell
proliferation. Such is also the case in applications to nuclear chain reactions.

In general n and t are free parameters but very often we will assume that n =
n(t) → ∞ as t → ∞ (or vice versa). We will obtain consistent and asymptotically
normal estimators for offspring probabilities, mean and variance in the entire
range of 0 < m < ∞.

In the case (11) we will use the same notions from the previous section adding
everywhere the parameter n: p̂k(t, n), m̂t(n), σ2

t (n), σ̂2
t (n), m̃t(n), m∗

t (n), m̂t,T (n)
and so on.

8.2.1. Estimating the mean in the case Z0(n) ≡ n

The case Z0(n) ≡ n a.s. was first investigated in N. Yanev [8] and the asymptotic
properties of m̂t(n) were studied. We will summarize the main results in the
following theorems.

Theorem 8.1. [8] If m < ∞ and n → ∞ then uniformly in 0 ≤ t ≤ ∞ the
estimator m̂t(n) is strongly consistent and asymptotically unbiased, i.e. m̂t(n) →
m a.s. and E{m̂t(n)} → m.
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Further on we will use the notation ct = E{Ut} =
t−1∑
k=0

mk. We will put Xk ∼

N(ak,bk) for the asymptotic normality which means that (Xk−ak)/
√

bk
d→ N(0, 1)

as k → ∞.

Theorem 8.2. [8] Let σ2 < ∞ and t > 0 is fixed. Then

m̂t(n) ∼ N(m,σ2/nct), n → ∞.

When n and t tend to ∞ simultaneously then the relation between them is
essential for the asymptotic distribution as one can see by the following results.

Theorem 8.3. [8] Let σ2 < ∞ and n, t → ∞.
(i) If m < 1 then m̂t(n) ∼ N(m,σ2(1 − m)/n);
(ii) If m = 1 and n/t → ∞ then m̂t(n) ∼ N(m,σ2/nt);
(iii) If 1 < m < ∞ then m̂t(n) ∼ N(m,σ2(m − 1)/nmt).

Comment 8.1. By Theorem 8.3 if one has n/t → ∞ as n, t → ∞, then
independently of the criticality of the process (i.e. only for m < ∞) the limiting
distribution of m̂t(n) is normal (in fact the same as in Theorem 8.2). In the
critical case the asymptotic behavior is more complicated as one can see by the
following result.

Theorem 8.4. [8] Let m = 1, σ2 < ∞ and n2/t → 0 as n, t → ∞. Then

(2n/σ2)(1 − m̂t(n))
d→ 1/Y, where the r.v. Y as a stable distribution with para-

meter 1/2, i.e. E{e−λY } = exp{−λ1/2}.

Remark 8.1. For the critical processes the case O(n) ≤ t ≤ O(n2), n → ∞,
is still an open problem.

These investigations have been continued in N. Yanev [62] where random
normalizing constants have been used.

8.2.2. Limiting distributions for BGW processes with an increasing
random number of ancestors

Further on we will consider with more details the general case of random Z0(n)
investigated in a series of papers of Dion and N. Yanev [85], [89], [91], [93], [97],
[98], [101], [103], [107], [113]. First of of all we will show that the limiting behavior
of the process is quite different from the classical BGW process. From now on
we will suppose that ν is a positive r.v. with d.f. Fν(x).
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Theorem 8.5. Let m < 1, σ2 < ∞, Z0(n)/n
d→ ν and n, t → ∞.

(i) If nmt → 0 then Zt(n)
P→ 0;

(ii) If nmt → C1, 0 < C1 < ∞, then Zt(n)
d→ η1, where ϕ1(λ) = E{e−λη1} =

E{exp{−α1ν(1 − g(e−λ)}}, λ > 0, and the p.g.f. g(s) is the unique solution of
the equation g(h(s)) = 1 − m(1 − g(s)) and α1 = C1/g

′(1).

Theorem 8.6. Let m = 1, σ2 < ∞, Z0(n)/n
d→ ν and n, t → ∞.

(i) If n/t → 0 then Zt(n)
P→ 0;

(ii) If n/t → C2, 0 < C2 < ∞, then Zt(n)/n
d→ η2, where ϕ2(λ) = E{e−λη2} =

E{exp{−λα2ν/(α2 + λ)}}, λ > 0, and α2 = 2C2/σ
2.

Remark 8.2. If ν = 1 a.s. then ϕ2(λ) is a Laplace transform of a compound
Poisson distribution.

Further on we will use the following condition:

(12) (m > 1) ∨ (m = 1, n/t → ∞) ∨ (m < 1, nmt → ∞),

which considers all cases not included in Theorems 8.5 and 8.6.

Theorem 8.7. Assume condition (12), σ2 < ∞, Z0(n)/n
d→ ν and

n, t → ∞.

(i) For every n ≥ 1, W (n) = {Wt(n) = Zt(n)/(Z0(n)mt), t ≥ 1} is a martin-

gale and Wt(n)
P→ 1 (LLN);

(ii)
√

Z0(n)At(Wt(n) − 1)
d→ N(0, 1) (CLT),

where At = mt
I{m<1} +

1

σ2t
I{m=1} +

m(m − 1)

σ2
I{m>1}.

8.2.3. Harris estimators

Theorem 8.8. Let n, t → ∞.

(i) If m < ∞ and Z0(n)
P→ ∞ then m̂t(n)

P→ m and p̂k(t, n)
P→ pk,

k = 0, 1, 2, . . . .

(ii) If σ2 < ∞ and Z0(n)/n
d→ ν then E{m̂t(n)} → m.

Remark 8.3. If Z0(n)
a.s.→ ∞ then m̂t(n)

a.s.→ m and p̂k(t, n)
a.s.→ pk for

k = 0, 1, 2, . . ..
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Let θ̂t(n) denote anyone of the following statistics:

(p̂k(t, n) − pk)/
√

pk(1 − pk), (m̂t(n) − m)/σ,

(σ2
t (n) − σ2)/D or (σ̂2

t (n) − σ2)/D,

where D = V ar{(ξ − m)2} = E{(ξ − m)4} − σ4.

Theorem 8.9. Let σ2 < ∞ and Z0(n)/n
P→ ν. If n, t → ∞ (additionally

n/t → ∞ for m = 1) then (
√

Ut(n)θ̂t(n), Ut(n)/nct)
d→ (N(0, 1), ν̃),where N(0, 1)

and ν̃ are independent random variables and ν̃ is identically distributed as ν.

Of course, in the case when θt(n) is an estimator for the variance σ2 we need
an additional condition E{ξ4} < ∞.

Corollary 8.1. Under the conditions of Theorem 8.9

(i)
√

Ut(n) θ̂t(n)
d→ N(0, 1);

(ii)
√

nctθ̂t(n)
d→ N(0, 1)/

√
ν̃.

In the case m > 1 and Z0(n) ≡ n a.s. Duby and Rouault [216], [217] consid-
ered the joint asymptotic distribution of (m̂t(n), (σ̂2

t (n)) and obtained asymptotic
normality of two independent r.v. with different norming factors. In the criti-
cal case the asymptotic behavior is more complicated and one can consider the
following result as a generalization of Theorem 8.4.

Theorem 8.10. Let m = 1, σ2 < ∞, Z0(n)/n
d→ ν and n2/t → 0 as

n, t → ∞. Then

(i)
√

2Ut(n)/σ2(1 − m̂t(n))
d→ |N(0, 1)|;

(ii) (2n/σ2)(1 − m̂t(n))
d→ 1/X, where E{e−λX} = E{exp{−

√
λν}}.

Note that if ν = 1 a.s. then X has a stable distribution with parameter 1/2.

Remark 8.4. For the critical processes (m = 1) the case O(n) ≤ t ≤
O(n2), n → ∞, is still an open problem.

Comment 8.2. Corollary (i) shows the asymptotic normality of θ̂t(n) (under
random norming) if one has n/t → ∞ (as n, t → ∞) unified for 0 < m < ∞.
This fact allows us to construct asymptotic confidence intervals (a.c.i.) and to
verify hypothesis for the criticality.
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Let the level be 1 − α and γ1−α/2 be the upper α/2 percentage point of the
standard normal distribution: Φ(γ1−α/2) = 1−α/2. Then the a.c.i. for m and pk

(k = 0, 1, 2, . . . ) are given as follows:

(i) (m̂t(n) ± σγ1−α/2/
√

Ut(n));
(ii) ({p̂k(t, n) + γ2

1−α/2}/{1 + γ2
1−α/2/Ut(n)}

±
√

γ4
1−α/2 + 4Ut(n)γ2

1−α/2p̂k(t, n)(1 − p̂k(t, n))/2{Ut(n) + γ2
1−α/2}).

One can apply similarly Theorem 8.10 to obtain a.c.i. in the case m = 1 and
n2/t → 0.

8.2.4. Lotka-Nagaev estimator

Assume now the sample scheme (O3) and let θ̃t(n) = (m̃t(n) − m)/σ.

Theorem 8.11. Assume σ2 < ∞, condition (12) and n, t → ∞.

(i) If Z0(n)/n
P→ ν then (

√
Zt(n)θ̃t(n), Zt(n)/nmt)

a.s.→ (N(0, 1), ν̃) and√
nmtθ̃t(n)

d→ N(0, 1)/
√

ν̃, where N(0, 1) and ν̃ are independent random vari-
ables and ν̃ is identically distributed as ν.

(ii) If Z0(n)/n
d→ ν then

√
Zt(n)θ̃t(n)

d→ N(0, 1) and
√

Z0(n)mtθ̃t(n)
d→

N(0, 1).

8.2.5. Moment-type estimator of Heyde

Assume now the sample scheme (O4) and let m∗
t (n) = [Zt(n)/Z0(n)]1/t.

Theorem 8.12. Suppose Z0(n)/n
d→ ν, σ2 < ∞ and condition (12) with

n, t → ∞. Then

(i) m∗
t (n)

P→ m;

(ii)
t

n

√
Z0(n)At(m

∗
t (n) − m)

d→ N(0, 1).

Remark 8.5. Note that in Theorem 8.12 we obtain consistency and asymp-
totic normality not only in the supercritical case but also in the critical and sub-
critical cases, while in the classical case the limiting distribution is not normal
even it is only in the supercritical case.

8.2.6. Estimating the unknown age of the process

The problem is how to determine the age of the process when only the size of
the process is observed. In other words, we can observe the size Zt(n), where
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the current moment t is unknown and we would like to estimate it. Define the
following estimators:

t̂(n) = {log(Zt(n)/Z0(n))}/ log m if m 6= 1;(13)

T̂ (n) = (Zt(n) − Z0(n))2/Z0(n)σ2 if m = 1.(14)

Theorem 8.13. Let σ2 < ∞, Z0(n)/n
d→ ν and n, t → ∞.

(i) If (m > 1) ∨ (m < 1, nmt → ∞) then t̂(n) − t
P→ 0;

(ii) If m > 1 then (log m)
√

Z0(n)m(m − 1)/ σ2(t̂(n) − t)
d→ N(0, 1);

(iii) If m < 1 and nmt → ∞ then (log m)
√

Z0(n)mt(t̂(n) − t)
d→ N(0, 1);

(iv) If m = 1 then E{T̂ (n)} = t; if additionally n/t → ∞ then T̂ (n)/t
d→

χ2
1 = [N(0, 1)]2.

8.3. Conditional least square estimators

It is not difficult to obtain that for every k ≥ 1

E{Zk(n)|Zk−1(n)} = mZk−1(n),

E{[Zk(n) − mZk−1(n)]2|Zk−1(n)} = σ2Zk−1(n).(15)

Therefore one can consider

(16) Zk(n) = mZk−1(n) + αk(n)

as a stochastic regression equation with the unknown coefficient m and the
martingale difference error term αk(n). In view of (14) it is most convenient
to represent αk(n) as ǫk(n)

√
Zk−1(n). Now minimizing S2

t,n(m) =
∑t

k=1 ǫ2
k(n)

with respect to m, one will obtain the least squares estimator (l.s.e.) for m :
m̂t(n) =

∑t
k=1 Zk(n)/

∑t
k=1 Zk−1(n), which is just the m.l. Harris estimator,

studied above.

Similarly by (15) one can consider the stochastic regression equation

(17) [Zk(n) − mZk−1(n)]2 = σ2Zk−1(n) + βk(n)

with parameters m and σ2 and the martingale difference error term βk(n).

Let

(18) Yk(n;x) = Zk−1(n)[Zk(n)/Zk−1(n) − x]2I{Zk−1(n)>0}.
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In our case it will be convenient to represent βk(n) as ǫk(n)Zk−1(n). Then by
(17) and (18) one has Yk(n;m) = σ2 + ǫk(n).To obtain the l.s.e. for σ2 one has
to minimize S2

t,n(σ2) =
∑t

k=1 ǫ2
k(n) with respect to σ2. If m is known one obtains

(19) σ̂2
t (n;m) =

1

t

t∑

k=1

Yk(n;m),

and similarly, if m is unknown,

(20) σ̂2
t (n; m̂) =

1

t

t∑

k=1

Yk(n; m̂t(n)).

As one can see by the following theorem, the estimators (19) and (20) are con-
sistent and asymptotically normal.

Theorem 8.14. Assume E{ξ4} < ∞ and condition (12).

(i) If Z0(n)/n
d→ ν then σ2

t (n;m)
P→ σ2 and σ2

t (n;m) ∼ N(σ2, 2σ4/t);

(ii) If Z0(n)/n
P→ ν then σ̂2

t (n; m̂)
P→ σ2 and σ̂2

t (n; m̂) ∼ N(σ2, 2σ4/t).

Remark 8.6. The case Z0(n) ≡ 1 a.s. and m > 1 was investigated by Heyde
[234] and Dion [222]. Dion proved that on the explosion set σ2

t (m̂t) is consistent
and asymptotically normal estimator for σ2. Heyde obtained similar results for
σ2

t (m̃t), where m̃t is the Lotka-Nagaev estimator.

8.4. Censored estimators

Consider (Zt(n), Zt+1(n), . . . , Zt+T (n)) for some t and T, which can be interpreted
as a left censored sample. For m we will use the estimator:

(21) m̂t,T (n) =

t+T∑

i=t+1

Zi(n)/

t+T−1∑

i=t

Zi(n).

For σ2 we will define the estimators

(22) σ2
t,T (n;m) =

1

T

t+T∑

k=t+1

Yk(n;m),

if m is known and

(23) σ̂2
t,T (n; m̂) =

1

T

t+T∑

k=t+1

Yk(n; m̂t(n)),

if m is unknown.
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Note that for t = 0 the estimator(22) is equivalent to (19) and (23) to (20).

Theorem 8.15. Assume condition (12), σ2 < ∞ and Z0(n)/n
d→ ν. If n, t →

∞ then uniformly in 1 ≤ T ≤ ∞ it follows:

(i) m̂t,T (n)
P→ m and E{m̂t,T (n)} → m;

(ii)
√

Zt(n) + · · · + Zt+T−1(n)(m̂t,T (n) − m)/σ
d→ N(0, 1).

Theorem 8.16. Assume condition (12), E{ξ4} < ∞ and Z0(n)/n
P→ ν. If

n, T → ∞ then uniformly in 1 ≤ t ≤ ∞ it follows:

(i) σ2
t,T (n;m)

P→ σ2, E{σ2
t,T (n;m)} → σ2 and

√
2T/σ2(σ2

t,T (n;m)−σ2)
d→

N(0, 1).

(ii) σ̂2
t,T (n; m̂)

P→ σ2, E{σ̂2
t,T (n; m̂)} → σ2 and

√
2T/σ2(σ̂2

t,T (n; m̂)−σ2)
d→

N(0, 1).

Theorem 8.17. Let m > 1 and σ2 < ∞. Then under the condition of non-
extinction one has:

(i) If t → ∞ then uniformly by, 1 ≤ T ≤ ∞, the estimator m̂t,T is consistent,

asymptotically unbiased and asymptotically normal: m̂t,T
P→ m, E m̂t,T → m

and
√

Zt + · · · + Zt+T−1(m̂t,T − m)/σ
d→ N(0, 1);

(ii) If E{ξ4} < ∞ and t, T → ∞ then σ2
t,T (m) and σ2

t,T (m̂) are consistent

and asymptotically normal estimators for σ2 : σ2
t,T (m)

P→ σ2, σ̂2
t,T (m̂)

P→ σ2 and

σ2
t,T (m) ∼ N(0, 2σ4/T ), σ̂2

t,T (m̂) ∼ N(0, 2σ4/T ).

Remark 8.7. The proofs of Theorems 8.5, 8.6, 8.8–8.11 are given in Dion
and N. Yanev [113]. In general they use random summation methods and a
generalization of the Gnedenko-Fahim’s transfer limit theorem. Theorems 8.7,8.12
and 8.13 are proved in Dion and N. Yanev [107], and Theorems 8.14–8.17 — in
Dion and N. Yanev [101].

8.5. BGW branching processes with immigration (BGWI)

Traditionally, the branching processes with or without immigration have been
treated separately. In this section we will show that the estimation theory de-
veloped in the previous section can be transferred to processes with immigration
designing a suitable sampling scheme.

It is well known that the BGW process with immigration can be defined as
follows:

(24) Y0 = 0, Yt+1 =

Yt∑

i=1

ξi(t + 1) + It+1, t = 0, 1, 2, . . . ,
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where the offsprings {ξi(t)} and the immigration component {It} are independent.
We will suppose that r.v. {ξi(t)} are i.i.d. and have the same individual charac-
teristics as in Section 8.1. One assumes usually that {It} are also non-negative
integer valued i.i.d. r.v. with λ = E{It}, b2 = V ar{It}.

Remark 8.8. The first branching process with immigration was investigated
by Sevastyanov [262] in the continuous time Markov case. The discrete time
model (24) was introduced by Heathcote [237].

Similarly as in (16), it is not difficult to obtain from (24) that for every k ≥ 1

(25) E{Yk|Yk−1} = mYk−1 + λ.

From(25) it follows that one can consider Yk = mYk−1 + λ + αk as a stochastic
regression equation with the unknown parameters m and λ and a martingale
difference error term αk. Now minimizing S2

t (m,λ) =
∑t

k=1 α2
k with respect to

m and λ, one can obtain the conditional l.s.e.

m̂t = {
t∑

k=1

Yk

t−1∑

k=0

Yk − t

t∑

k=1

YkYk−1}/{(
t−1∑

k=0

Yk)
2 − t

t−1∑

k=0

Y 2
k },(26)

λ̂t = {
t−1∑

k=0

Yk

t∑

k=1

YkYk−1 −
t∑

k=1

Yk

t−1∑

k=0

Y 2
k }/{(

t−1∑

k=0

Yk)
2 − t

t−1∑

k=0

Y 2
k }.(27)

The estimators (26) and (27) were introduced and investigated in the sub-
critical case by Heyde and Seneta [232], [231]. Note that the subcritical case was
studied also by Quine [257].

Theorem 8.18. Let σ2 < ∞ and b2 < ∞. If m < 1 then m̂t and λ̂t are
strongly consistent and asymptotically normal estimators for m and λ.

The estimation of the variances σ2 and b2 was first discussed and investigated
by N. Yanev and Tchoukova-Dantcheva [14], [60]. Since E{U2

k |Yk−1} = σ2Yk−1 +
b2, where Uk = Yk −mYk−1 + λ, then one can consider U2

k = σ2Yk−1 + b2 + βk as
a stochastic regression equation with unknown parameters m,λ, σ2 and b2 and a
martingale difference error term βk.

Now assuming that m and λ are known and minimizing S2
t (σ2, b2) =

∑t
k=1 β2

k

with respect to σ2 and b2, one can obtain the conditional l.s.e.

(28) σ2
t = σ2

t (m,λ) =

t∑

k=1

U2
k (Yk − Y t)/

t∑

k=1

(Yk − Y t)
2,
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(29) b
2
t = b2

t (m,λ) =

t∑

k=1

U2
k (Y 2

k − YkY t)/t

t∑

k=1

(Yk − Y t)
2,

where Y t =
1

t

t∑
k=1

Yk.

If the means m and λ are unknown then one has to consider the estimators

(30) σ̂2
t = σ2

t (m̂t, λ̂t), b̂2
t = b2

t (m̂t, λ̂t),

which are obtained by (28) and (29) replacing Uk with Ûk = Yk − m̂tYk−1 + λ̂t.

Theorem 8.19. Let E{ξ4} < ∞ and E{I4
t } < ∞. If m < 1 then the estima-

tors (28)–(30) are consistent and asymptotically normal for σ2 and b2.

Now we will follow the papers of Dion and N. Yanev [107], [113] where it is
shown how to transfer the asymptotic results of the BGW process with a random
number of ancestors (BGWR) to the BGW process with immigration (BGWI).

Consider the branching tree underlining the process {Yt} and let Zt(n) be
the number of individuals, among generations t + 1, . . . , t + n, whose ancestors
immigrated exactly t generations ago. For example, this type of data may be
available in the genealogy or in the cell biology. Obviously, Z0(n) =

∑n
k=1 Ik is the

total number of immigrants in the first n generations, Z1(n) is the total number
of their offsprings and so on. Therefore {Zt(n)} is a BGWR process investigated
in Section 8.2. In fact, Zt(n) is the cardinality of a particular “diagonal stopping
line” over the sampling tree of the BGWI process, while Yt is the cardinality
of a “horizontal stopping line” (one can see in Chauvin [214] for the notion of
stopping line). This duality is very important and can be exploited to transfer
some results and properties from branching processes of one type to the other.

Actually, to estimate the offspring characteristics in a branching process with
immigration one has to consider the proposed “diagonal” sampling scheme. It
means to have the observations (Z0(n), Z1(n), Z2(n), . . . , Zt(n)) (or even part of
them). Then one has to apply the results of Section 8.2. and to estimate m
and σ2.

Assume that it is also possible to observe Zj(n, k) = {the number of individu-
als in the first (j +n) generations of the process (1) having exactly k offsprings in
the next generation and whose ancestors immigrated exactly j generations ago}.
Then Ut(n, k) =

∑t−1
j=0 Zj(n, k) is the total number of the individuals in the first

(n + t) generations of the process (1) having k offsprings in the next generation
and whose ancestors immigrated up to t generations ago. Now we can calculate
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Ut(n)=
∞∑

k=0

Ut(n, k)=
t−1∑
i=0

Zi(n), which is the total number of the individuals of the

first (n+t) generations of process (1) whose ancestors immigrated up to t genera-
tions ago. Therefore one can obtain the estimator pk(t, n) = Ut(n, k)/Ut(n) of the
offspring probability pk, k = 0, 1, 2, . . . ., and one can apply Theorems 8.8 and 8.9.

Note that in the case (24) the r.v. {It} are i.i.d. Therefore by the LLN

Z0(n)/n=
1

n

n∑
k=1

Ik
a.s.→λ. In this way applying the results of Section 8.2. we obtain

strongly consistent and asymptotically normal estimators for offspring character-
istics.

Remark that for the estimation theory of Section 8.2. we need only that

Z0(n)/n =
1

n

n∑
k=1

Ik → ν (in probability on even in distribution for some cases),

where ν is a positive random variable. Note that this is a very serious general-
ization of the model (24).

Suppose now that {It} are i.i.d. in (24). In this case the following estimators
for λ are proposed:

(31) λ̃t(n) = Zt(n)/nmt, λ̂t(n) = Zt(n)/n[m̂t(n)]t,

where m̂t(n) is the Harris estimator studied in Section 8.2.

Theorem 8.20. Assume that σ2 < ∞ and the condition (12) holds. Then

as n, t → ∞ : λ̃t(n)
P→ λ, λ̂t(n)

P→ λ.

Remark 8.9. The theorem is still valid if {It} is a stationary ergodic process

for which
1

n

n∑
k=1

Ik converges in probability to some positive constant λ.

Theorem 8.21. Assume σ2 < ∞, b2 < ∞ and n, t → ∞.

(i) If m < 1 and nmt → ∞ then
√

nmt(λ̃t(n) − λ)
d→ N(0, λ),√

nmt(λ̂t(n) − λ)
d→ N(0, λ);

(ii) If m = 1 and n/t → ∞ then
√

n/t(λ̃t(n) − λ)
d→ N(0, λσ2),√

n/t(λ̂t(n) − λ)
d→ N(0, b2);

(iii) If m > 1 then
√

n(λ̃t(n) − λ)
d→ N(0, λσ2/m(m − 1) + b2),

√
n(λ̂t(n) − λ)

d→ N(0, λσ2/m(m − 1) + b2).

Robust modifications of the estimators (31) are investigated and compared
also with λ̂t and λ̃t in Atanasov et al. [174].

Note that Wei and Winnicki [270] showed that in the supercritical case the
immigration mean λ does not admit a consistent estimator on the basis of {Yt}
alone (see Theorem 8.20, (ii)).
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8.6. Conclusion remarks and comments

Assuming that offspring probabilities in (1) depend on an unknown parameter,
the parametric estimation theory is developed in many papers. Some of the
results for the classical BGW process are given in the book of Guttorp [219]
(see also the references therein). Parametric estimation for BGWR processes is
developed in Stoimenova and N. Yanev [154].

The Bayes statistical methods are considered in the book of Guttorp [219]
(see also the references therein) and results for the classical BGW process are
presented. Tsokos and G. Yanev [121] obtained some new results in this direction.
Johnson et al. [241] developed a nonparametric Bayesian estimation in the case
of age-dependent branching processes (note that the process is non-Markov with
a continuous time).

Sequential estimation in BGWI processes is proposed by Sriram et al. [261]
and Qi and Reeves [256].

Jacob and Lalam [242], [243] and Lalam et al. [247] developed an estimation
theory for size-dependent branching processes. Jacob et al. [160] proposed a
statistical inference for some classes of regenerative branching processes.

Robust estimation for BGW process is considered in Sriram and Vidyashankar
[260]. Robust methods in BGWR processes are developed by Stoimenova et al.
[149], [150], Stoimenova [155] and Atanasov et al. [174]. A software system
for simulation and estimation of branching processes with random migration is
considered and discussed in Nitcheva and N. Yanev [126]. A new version and
further development of this system in MATLAB environment is developed by
Atanasov and Stoimenova.

Finally we would like to point out that a lot of branching models are studied
by the probabilistic point of view, where the statistical results are only a few
(or even absent), which means that there are a lot of possibilities for further
statistical investigations. For more details see N. Yanev [187].

9. Applications of branching processes

9.1. Biological applications

In the papers [17], [28], [30], [51] the authors investigated biological systems with
initiated cell proliferation. They apply the classical branching processes and
they also define and study some new models. So, in the paper of Yakovlev and
N. Yanev [17] it is assumed that the evolution of the cell follows the classical
Bellman-Harris branching process. Together with the total number of cells in the
given generation the following characteristics are of interest for biologists

(i) µn(t) = the number of cells in the n generation alive at time t;
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(ii) un(t) = the number of cells in the first n − 1 generations, which are still
alive at time t;

(iii) Nk(t, x) = the number of cells in the kth generation which are younger
than x at moment t;

(iv) µi(t) = (µi
1(t), . . . , µ

i
m(t)), where µi

j(t) is the number of cells of type Tj

born up to the moment t by an initial cell of type Ti.
These results are used in the paper [30] in the investigations of some char-

acteristics of the mitotic cycle of the cells. First of all, the authors studied the
number of cells which synthesize DNA (S-phase) under certain proliferating agent.
The processes of main interest are

NC
S (t) = the number of cells which went into the S−phase up to time t;

NS(t) = the number of cells which are in S−phase at time t.
The last two processes correspond to the continuous and impulsive labels with

radioactive ancestors.
The problem for the distribution of the labels was solved completely in the

paper of Yakovlev and N. Yanev [51] in the case of impulsive labels at t = 0 and
initial Poisson distribution Po(θ) of the labels among cells. The authors proved
that the states of the system can be described by a Bellman-Harris branching
process with infinitely many types of particles

Z̃ = (Z0(t), Z1(t), . . . , Zj(t), . . .),

where Zj(t) is the number of cells with label j at time t. For the distribution

Πj(t) =
E{Zj(t)}

E

{(
∞∑

k=0

Zk(t)

)}

they obtained (in case of synchronized population) that

Πj(t) =

[
θj

j!

∞∑

k=0

(p21−j)ke−θ/2k

(Ḡ ∗ G∗k)(t)

] /[
∞∑

k=0

(2p)k(Ḡ ∗ G∗k)(t)

]
,

where G(t) is the c.d.f. of the mitotic cycle.
These investigations are continued in the papers [64] and [72]. A comprehen-

sive presentation of biological applications of branching processes by that time
can be found in the book of Yakovlev and N. Yanev [81].

Recently, in a series of publications [161], [166], [167], [175], [176], [183],
[184] and [185], some new applications of branching processes for modeling of cell
proliferation kinetics of normal and cancer cells were developed.
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First of all, some generalizations in the case of continuous labels are given in
[166] and [175]. Note that processes with continuous labels are first considered
by Kolmogorov.

On the other hand, some new models of renewing cell populations (in vivo)
using age-dependent branching processes with non-homogeneous Poisson immi-
gration are proposed in [167]. A model of leukemia cell kinetics with a stem cell
immigration component is studied in [161].

Age-dependent branching processes with randomly chosen paths of evolution
are proposed in [183] as models of progenitor cell populations (in vitro) with
estimating of the offspring distributions using real data as well as bootstrap
methods.

An interesting and important problem arising from cell proliferation kinetics
is the definition and the limiting behavior of age and residual lifetime distributions
for branching processes considered in [176].

The relative frequencies of distinct types of cells in multitype branching
processes with a large number of ancestors are investigated in [184] and [185].
The reported limiting results are of advantage in cell kinetics studies where the
relative frequencies but not the absolute cell counts are accessible to measure-
ment. In [184] some relevant statistical applications are discussed in the context
of asymptotic maximum likelihood inference for multitype branching processes.
In [185] the asymptotic behavior of multitype Markov branching processes with
discrete or continuous time is investigated in the positive regular and nonsingu-
lar case when both the initial number of ancestors and the time tend to infinity.
Some limiting distributions are obtained as well as multivariate asymptotic nor-
mality is proved. The results from [184] and [185] have a specific applications in
cell proliferation kinetics.

Finally it is worth to point out that new problems in the theory of branching
processes appeared as a result of cell proliferation modeling.

9.2. Applications in economy

The ”call” option on the given underlying stock is the right to buy a share of the
stock at a certain fixed price K (the ”strike price”) at a certain fixed time T in the
future (the ”maturity date”). Let us denote by S(t), t ≥ 0 the price of a share of
the underlying stock at time t. The buyer is paying today (at t < T ) some money
(present value of the option C(T ; t)) in return for the right to force the seller to
sell him a share of the stock, if the buyer wants it, at the strike price K on the
maturity date T. Clearly, if S(T ) > K, then the buyer of the option will exercise



38 Kosto V. Mitov, Nikolay M. Yanev

his right at time T , buying the stock for K and selling it for S(T ), gaining a net
profit S(T ) − K. If S(T ) ≤ K, then it is not profitable to buy the stock at price
K, so the option is not exercised, and the gain at time T is 0. In summary, for
the call option, the gain at maturity date is (S(T ) − K)+ = max(S(T ) − K, 0).

The main problem in the option pricing is to determine the ”fair” present
value of the option. Apparently, it should depend at least on the value S(t) of
the underlying stock, the time T − t to maturity, and the strike price K.

Thus, the problem for finding security prices processes which agree well with
the market data is the central problem for both practitioners and scientists. Since
1973 the most widely used model is the Black-Scholes [210] model. It assumes
that S(t) is a geometric Brownian motion, which implies that

(i) trading takes place continuously in time;

(ii) the price dynamics of the stock have a continuous sample path with
probability one;

(iii) the distribution of log-returns is normal with constant volatility.

Many empirical investigations during the last thirty years do not agree with
these assumptions (see e.g. [248]).

A possible way for relaxing the assumption that stock prices follow a geomet-
ric Brownian motion is to specify an alternative stochastic process for the price
(pure jump models; jump diffusion models; models with stable distributions of
the returns) see e.g. [213]).

At 1996 T. Epps [225] introduced a randomly indexed branching process for
modeling of daily stock prices. The model is constructed by Galton-Watson
branching processes subordinated with the Poisson process. It has the following
attractive features (see [225]):

(i) The extra randomness introduced by the subordination produces in the
increments and in the returns the same high proportion of outliers observed in
high-frequency stock data; but, unlike the other tick-tailed models of stock returns
this one capture the discreteness of prices.

(ii) The model predicts an inverse relation between variance of returns and
the initial price which is well documented empirically.

(iii) The possibility of extinction of the stock price process and the distri-
bution of the extinction time have natural interpretation as bankruptcy of the
corresponding firm and can be applied in investigations of bankruptcy risk.

Further investigations on the model are done under the following assumptions:

(i) The offspring of a particle in the branching process has the two parameter
geometric distribution.

(ii) The subordinator is a Poisson process.
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A formula for pricing of European vanilla call option is derived in [173]. In
the paper [192] a formula for price of European barrier call option is proved.

The process introduced by Epps was generalized from theoretical point of
view in the papers [165] and [193].

Here we have to mention an earlier paper of Stojkov and Dimitrov [27] where
the authors apply the Galton-Watson branching processes to the so called multi-
plicative effect in the economy.

Some applications of branching processes in economy and demography are
proposed by Gavazki [96], [124], [134], [142], [148], [169], [180].

10. Concluding remarks

Note that the book of Obreshkov on Probability Theory (1963) is the first Bulgar-
ian publication where Markov branching processes are considered in Ch. 11 (pp.
226-234). Starting from the first two articles published by Yanev in 1972, the
publications of the Bulgarian mathematicians in the field of Branching Processes
and their applications increased up to 190 during the last 37 years (given year
by year in the References). After that the Bulgarian dissertations on Branching
Processes and Applications are presented – among them 11 for the first scientific
degree “PhD” and 2 for the second degree “Doctor of Mathematical Sciences”.
It is interesting to point out that the main contributions of the papers are in the
following areas: Controlled Branching Processes (Regulation) – 35, Regenerative
Branching Processes – 39, Statistical Inference for Branching Processes – 31, Ap-
plications of Branching Processes – 29, Diffusion Branching Processes – 10. A lot
of these papers are published in the most prestigious international journals and
in four books.
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22 (1986), 233–236.

[215] K. S. Crump, R. B. Howe. Nonparametric estimation of the age of a
Galton-Watson branching processes. Biometrika 59 (1972), 533–538.

[216] C. Duby, A. Rouault. Estimation simultanée de l’espérance et de la
variance pour un processus de Galton-Watson. C. R. Acad. Sci. AB290,
No 7 (1980), A339–A341.

[217] C. Duby, A. Rouault. Estimation non-paramétrique de l’espérance et de
la variance de la loi de reproduction d’un processus de ramification. Ann.
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