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A NOTE ON BAYESIAN ESTIMATION FOR THE

NEGATIVE-BINOMIAL MODEL

Y. L. Lio

The Negative Binomial model, which is generated by a simple mixture
model, has been widely applied in the social, health and economic market
prediction. The most commonly used methods were the maximum likelihood
estimate (MLE) and the moment method estimate (MME). Bradlow et al.
(2002) proposed a Bayesian inference with beta-prime and Pearson Type VI
as priors for the negative binomial distribution. It is due to the complicated
posterior densities of interest not amenable to closed-form integration. A
polynomial type expansion for the gamma function had been used to de-
rive approximations for posterior densities by Bradlow et al. (2002). In this
note, different parameters of interest are used to re-parameterize the model.
Beta and gamma priors are introduced for the parameters and a sampling
procedure is proposed to evaluate the Bayes estimates of the parameters.
Through the computer simulation, the Bayesian estimates for the parame-
ters of interest are studied via mean squared error and variance. Finally, the
proposed Bayesian estimate is applied to model two real data sets.

1. Introduction

The negative-binomial model is generated in the following manner. Consider a
population in which the count data, Xi, for each individual member has a Poisson
process with the rate parameter λ. Thus given, λ, Xi has the probability function
as follows:
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(1.1) p(x|λ) =
λxe−λ

x!
, x = 0, 1, 2, . . .

Suppose that λ varies across the population and has a gamma with shape para-
meter γ > 0 and scale parameter α > 0:

(1.2) f(λ|γ, α) =
αγλγ−1e−αλ

Γ(γ)
, λ > 0,

where Γ(γ) is the gamma function. Since λ is not observable, the marginal
distribution for X has the following simple mixture probability function:

(1.3) PrNB(x|γ, α) =

∫

f(λ|γ, α)p(x|λ)dλ.

Therefore, the negative binomial model can be rewritten as,

(1.4) PrNB(x|γ, α) =
Γ(γ + x)

x!Γ(γ)
αγ(1 + α)γ+x, x = 0, 1, 2, . . .

The first application of a negative binomial model was presented by Greenwood
and Yule (1920) to model accident statistics. Since then, the negative binomial
model has been applied to model phenomena as diverse as the purchasing of
consumer packaged goods (Ehrenberg, 1959), salesperson productivity (Carroll
et al., 1986), library circulation (Burrell, 1990), and in the Biological sciences

(Breslow 1984, Margolin et al. 1981). Letting µ =
γ

α
, the Negative-binomial can

be re-parameterized as:

(1.5) PrNB(x|µ, γ) =
Γ(γ + x)

x!Γ(γ)

(

1 +
µ

γ

)

−γ (

µ

γ + µ

)x

, x = 0, 1, 2, . . .

Here, µ = E(X) and var(X) = µ +
µ2

γ
. Anscombe (1950) observed that the

maximum likelihood estimate (MLE) of γ does not have a distribution, since there
is a finite probability of observing a data set from which the MLE of γ may not
be calculated. (This occurs when the sample mean exceeds the sample variance.)
Letting β = 1/γ, the Negative-binomial probability function PrNB = (x|µ, γ)
can be re-parameterized as follows:

(1.6) PrNB(x|µ, γ) =
Γ(β−1 + x)

x!Γ(β−1)
(1 + βµ)−1/β

(

βµ

1 + βµ

)x

, x = 0, 1, 2, . . .

Clark and Perry (1989) adapted the extended quasi-likelihood for the Negative-
binomial distribution given by McCullagh and Nelder (1983), proposed the max-
imum quasi-likelihood estimate (MQLE) for β and found that many simulation
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cases had negative MQLEs and negative moment method estimates (MME).
Piegorsch (1990) studied MLE for β and compared MLE with MQLEs of Clark
and Perry (1989). Again, Piegorsch (1990) showed that many simulation cases
had negative MLE values for β. Bradlow et al. (2002) introduced a beta-prime
prior on α and a Pearson type VI prior on γ in the Negative-binomial (1.4).
Approximating the ratio of two gamma functions using a polynomial expansion
in the posterior, Bradlow et al. (2002) arrived at closed-form expressions for the
moments of both the marginal posterior densities and the predictive distribution.
However, the closed-form expressions involve an infinite series of complicated
terms which cannot be programmed easily. Bradlow et al. (2002) used finite-
term approximations to the infinite series for the simulation studies. Letting
p = α/(α + 1), equation (1.4) can be re-parameterized as:

(1.7) PrNB(x|γ, p) =
Γ(γ + x)

x!Γ(γ)
(p)γ(1 − p)x, x = 0, 1, 2, . . .

where 0 < p < 1 and γ > 0.
In this note, the Beta prior and the Gamma prior are introduced for p and γ,

respectively. The Bayes estimations for the parameters will be studied. Section 2
describes the models in a Bayesian framework with input data. Section 3 presents
and discusses the results of the simulation. Examples of fitting the model to
two real data sets are presented in Section 4, and Section 5 contains concluding
remarks.

2. Formulas for estimations and predictions

Let a sample of size N be selected from the model given in (1.7). Then the
data will consist of the number of occurrences, k, for each of the N units. The
data can be summarized as nk, k = 0, 1, 2, . . . , r, where nk is the number of units
with k occurrences, r is the largest possible occurrence for each sample and
N =

∑r
k=0

nk. Hence, the likelihood function is given as:

(2.1) L(γ, p) =
r

∏

k=0

PrNB(k|γ, p)nk .

Assume that γ and p are independent a priori and have a Gamma distribution
with shape parameter δ2, scale parameter δ1 and a beta distribution with shape
parameters α1 and α2, respectively. Then the joint prior distribution of γ and p
is expressed as:

(2.2) g(γ, p) ∝ pα1−1(1 − α)α2−1γδ2−1e−δ1γ , 0 < p < 1, 0 < γ.
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Combining the likelihood function (2.1) with the joint prior g(γ, p) (2.2), the
joint posterior distribution of γ and p, given data nk, k = 0, 1, 2, . . . , r, can be
presented as follows:

(2.3) Pr(γ, p|r, nk) =

r
∏

k=0

[

Γ(γ + k)

k!Γ(γ)
(p)γ(1 − p)k

]nk

g(γ, p)/Φ(r, nk),

0 < p < 1, 0 < γ,

where

(2.4) Φ(r, nk) =

∫∫

L(γ, p|r, nk)g(γ, p)dpdγ.

Pr(γ, p|r, nk) can also be rewritten as:

Pr(γ, p|r, nk) ∝

r
∏

k=1

[

(γ + k − 1)N−

P
k−1

i=0
ni(1 − p)knk

]

(p)Nγ+α1−1(1 − p)α2−1

δδ2
1

γδ2−1e−δ1γ , 0 < p < 1, 0 < γ.(2.5)

The equation (2.5) can be represented as follows:

Pr(γ, p|r, nk) ∝ f1(γ, p, nk)(p)α1−1(1 − p)α2−1δδ2
1

γδ2−1e−δ1γ , 0 < p < 1, 0 < γ.

Let K(r, nk) =
∫∫

f1(γ, p, nk)(p)α1−1(1−p)α2−1δδ2
1

γδ2−1e−δ1γdpdγ. The marginal
posterior distribution of γ could be obtained as Pr(γ|r, nk) =

∫

Pr(γ, p|r, nk)dp
and the marginal posterior distribution of p could be obtained as Pr(p|r, nk) =
∫

Pr(γ, p|r, nk)dγ. Since the marginal posterior distributions for γ and for p are
not amenable to closed-form integration, the moments of the marginal posterior
can be computed in the following ways:

E(γl) =

∫∫

γlPr(γ, p|r, nk)dpdγ

∝

∫∫

γlf1(γ, p, nk)(p)α1−1(1 − p)α2−1δδ2
1

γδ2−1e−δ1γdpdγ(2.6)

and

E(pl) =

∫∫

plPr(γ, p|r, nk)dpdγ

∝

∫∫

plf1(γ, p, nk)(p)α1−1(1 − p)α2−1δδ2
1

γδ2−1e−δ1γdpdγ.(2.7)
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When l = 1, (2.6) and (2.7) are the Bayesian estimates of γ and p, respectively
(under quadratic loss).

Let Yi be the count variable for individual i in a non-overlapping time period,
which is equal to the length of the time period for the count variable, Xi. For
the Bayesian prediction in the negative binomial model, mean, E(Yi|x), and
variance,V ar(Yi|x), of the predictive distribution are emphasized in this note.
Given γ and p, the mean and variance of Yi, conditional on xi, are E(Yi|γ, xi) =
(γ + xi)(1 − p) and V ar(Yi|γ, xi) = (γ + xi)((1 − p) + (1 − p)2). Hence,

E(Yi|xi) =

∫∫

(γ + xi)(1 − p)Pr(γ, p|r, nk)dpdγ(2.8)

∝

∫∫

(γ + xi)(1 − p)f1(γ, p, nk)(p)α1−1(1 − p)α2−1δδ2
1

γδ2−1e−δ1γdpdγ

and

V ar(Yi|xi) =

∫∫

(γ + xi)((1 − p) + (1 − p)2)Pr(γ, p|r, nk)dpdγ(2.9)

∝

∫∫

(γ + xi)((1 − p) + (1 − p)2)f1(γ, p, nk)(p)α1−1

(1 − p)α2−1δδ2
1

γδ2−1e−δ1γdpdγ.

It should be mentioned that the proportionality for (2.6), (2.7), (2.8) and (2.9)
is the reciprocal of K(r, nk). Since the closed forms for all of the above moments
of posteriors are not available, an importance simulation procedure which will be
described in the Section 3 is applied to implement the Bayesian estimations.

3. Simulation studies

As the closed forms for the posterior lth moments of γ and p and the conditional
mean and variance of Yi are not available given x, an importance sampling method
can be used to estimate those parameters. The importance sampling process for
Bayesian estimations is described in the following steps.

1. Randomly generate observations, pi, of size n from a Beta distribution with
parameters α1 and α2, and randomly generate observations, γj , of size m
from a Gamma distribution with scale parameter δ1 and shape parameter
δ2.

2. Calculate K̂(r, nk) =
∑ ∑

f1(γj , pi, nk) as the estimate of K(r, nk) and
ρl(r, nk) =

∑∑

γl
jf1(γj , pi, nk) and θl(r, nk) =

∑∑

pl
if1(γj , pi, nk).
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3. E(γl) is estimated by ρl(r, nk)/K̂(r, nk) and E(pl) is estimated by

θl(r, nk)/K̂(r, nk).

Similarly, E(Yi|x) can be estimated by
∑∑

(γj +x)(1− p)f1(γj , pi, nk)/K̂(r, nk)
and V ar(Yi|x) can be estimated by

∑∑

(γj +x)((1− p)+ (1− p)2)f1(γj , pi, nk)/

K̂(r, nk). The main purpose of this section is to estimate the parameters, γ and p,
for each of the nine models by using a computing simulation process. These nine
models represent quite distinct negative-binomial models which have γ selected
from 1.00, 2.00 and 4.82 and p selected from 0.25, 0.50 and 0.75. Assume that
the prior for p is non-informative prior which has α1 = 1 and α2 = 1 and the
prior of γ is the Gamma distribution which has δ1 selected from 0.5, 1.0 or
2.0 and δ2 selected from 0.5, 1.0, 2.0 or 4.5. Given a Negative-binomial model
mentioned in this section, 1000 samples of size 100 are generated. For each
random sample of size 100, we have r, nk, k = 0, 1, 2, . . . , r and 100 =

∑r
k=0

nk.
A Bayes’ estimate, γ̂, for γ and a Bayes’ estimate, p̂, for p are calculated via
Steps 1-3 of the simulation procedure using a sample of size 100 from a non-
informative Beta distribution of p and a sample of size 1000 from one of the
Gamma prior distributions. Then the mean squared error (MSE), the variance
(VAR) and the mean absolute deviation (MAD) for the Bayes’ estimator of γ
and the mean squared error (MSE), the variance (VAR) and the mean absolute
deviation (MAD) for the Bayes’ estimator of p are calculated from the 1000 Bayes’
estimates of γ and the 1000 Bayes’ estimates of p, respectively. The simulation
was conducted in the R language (R Development Core Team, 2006), which is
a non-commercial, open source software package for statistical computing and
graphics that was originally developed by Ihaka and Gentleman (1996). This
can be obtained at no cost from http://www.r-project.org. Tables 1, 2 and
3 show the parts of simulation results. In general, the MSEs, Mads and VARs
for the Bayes’ estimates of p are consistently small and are less sensitive to the
priors than the MSEs, MADs and VARs for the Bayes’ estimates of γ. When
misinformed prior are given for γ such as a Gamma prior of δ1 = 1.5 and δ2 = 4.5
in Table 1 or a Gamma prior of δ1 = 1 and δ2 = 1 in Table 3 the resulting
Bayes’ estimator of γ has largest MSEs, VARs and MADs among all the Bayes’
estimators of γ.

4. Examples

In this section, two real data sets, shown in the most left two columns of Tables
4 and 5, are used to demonstrate the model fitting via Bayes’ procedure. Table 4
presents the counts of red miles on apple leaves published in Table 1 of Bliss and
Fisher (1953) and Table 5 shows the consumer purchase data from a continuous
purchase diary panel reported by Paull (1978). Again, the non-informative Beta
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Table 1: Comparison of Estimation with different priors using simulated data with n =
100

Estimator γ = 1.0 p = 0.75 γ = 1.0 p = 0.50 γ = 1.0 p = 0.25
Gamma Prior: δ1 = 1 δ2 = 1

MSE 0.179557 0.004448 0.087331 0.003853 0.02607 0.001077
MAD 0.323705 0.052176 0.223079 0.050689 0.12336 0.025848
VAR 0.152805 0.004233 0.074866 0.003701 0.02460 0.001036

Gamma Prior: δ1 = 1.5 δ2 = 4.5
MSE 1.323391 0.008262 0.251243 0.007492 0.040073 0.001500
MAD 1.016934 0.081787 0.382288 0.070267 0.151633 0.030315
VAR 0.311923 0.002722 0.128836 0.004265 0.028215 0.001138

Gamma Prior: δ1 = 2 δ2 = 2
MSE 0.09494 0.003617 0.070360 0.003453 0.025040 0.001059
MAD 0.24297 0.046509 0.202435 0.047655 0.120301 0.025470
VAR 0.08758 0.003314 0.061450 0.003345 0.023756 0.001023

Gamma Prior: δ1 = 0.5 δ2 = 0.5
MSE 0.320178 0.0050550 0.109089 0.004256 0.026132 0.001082
MAD 0.416518 0.0561287 0.238814 0.052389 0.122382 0.025677
VAR 0.250235 0.0049468 0.092561 0.004049 0.024670 0.001042

Table 2: Comparison of Estimation with different priors using simulated data with n =
100

Estimator γ = 2.0 p = 0.75 γ = 2.0 p = 0.50 γ = 2.0 p = 0.25
Gamma Prior: δ1 = 1 δ2 = 1

MSE 0.276458 0.004240 0.420968 0.004721 0.155142 0.001463
MAD 0.435936 0.050983 0.495805 0.055685 0.300584 0.029966
VAR 0.272459 0.003023 0.318147 0.003844 0.152815 0.001460

Gamma Prior: δ1 = 1.5 δ2 = 4.5
MSE 0.649105 0.002659 1.014109 0.009184 0.234313 0.002043
MAD 0.671170 0.041486 0.831086 0.082107 0.368583 0.035343
VAR 0.316033 0.002447 0.388099 0.003580 0.175435 0.001647

Gamma Prior: δ1 = 1.0 δ2 = 2
MSE 0.336196 0.004375 0.714790 0.006681 0.175175 0.001606
MAD 0.467596 0.050117 0.654885 0.067385 0.318833 0.030862
VAR 0.325430 0.003603 0.407898 0.004053 0.157175 0.001508

Gamma Prior: δ1 = 0.5 δ2 = 0.5
MSE 0.439792 0.007603 0.850066 0.007009 0.214090 0.001868
MAD 0.538471 0.067097 0.687934 0.067822 0.347927 0.033497
VAR 0.439387 0.005147 0.550115 0.004899 0.198489 0.001782
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Table 3: Comparison of Estimation with different priors using simulated data with n =
100

Estimator γ = 4.82 p = 0.75 γ = 4.82 p = 0.50 γ = 4.82 p = 0.25
Gamma Prior: δ1 = 1 δ2 = 1

MSE 3.033319 0.013333 0.790359 0.002682 0.645612 0.001087
MAD 1.625727 0.105445 0.730432 0.041957 0.649552 0.026600
VAR 0.395297 0.002221 0.667995 0.002198 0.584681 0.000947

Gamma Prior: δ1 = 1.5 δ2 = 4.5
MSE 1.622687 0.006589 0.598370 0.001863 0.560104 0.000942
MAD 1.122014 0.069939 0.625610 0.035148 0.597425 0.024507
VAR 0.421808 0.001764 0.591799 0.001825 0.550842 0.000909

Gamma Prior: δ1 = 1 δ2 = 2
MSE 2.193756 0.009467 0.796009 0.002343 0.651842 0.001071
MAD 1.318259 0.085680 0.718760 0.039652 0.643820 0.026129
VAR 0.503779 0.002187 0.790702 0.002284 0.640656 0.001031

Gamma Prior: δ1 = 0.5 δ2 = 0.5
MSE 1.966285 0.008827 1.454981 0.003169 0.847494 0.001264
MAD 1.195164 0.078841 0.939309 0.045719 0.710896 0.028211
VAR 0.907115 0.002997 1.344393 0.003093 0.843361 0.001264

prior for p is used with Gamma prior 1 (δ1 = 1.0 and δ2 = 1.0), Gamma prior 2
(δ1 = 1.5 and δ2 = 4.5) and Gamma prior 3 (δ1 = 1.0 and δ2 = 2.0), respectively.
The Negative-binomial fittings are presented in the three right columns (NBD1,
NBD2 and NBD3, for Gamma priors 1, 2 and 3, respectively) of Tables 4 and
5. Using data from Table 4, the Bayes’ estimates of (γ, p) are (1.066, 0.4747) for
using Gamma prior 1, (1.368, 0.5371) for using Gamma prior 2 and (1.137, 0.4886)
for using Gamma prior 3. The data set of Table 5 produces the Bayes’ estimates
of (γ, p) of (1.665, 0.6802) for Gamma prior 1, (1.637, 0.6736) for Gamma prior 2
and (1.616, 0.6731) for Gamma prior 3. The Chi-square test for the goodness of fit
for these two data sets has the p-value reported in Tables 4 and 5. For each model
fitting we see no evidence to reject the null hypothesis at the 0.05 significance
level. Those results show that the impact from different gamma priors is not
significantly different, since the sample sizes for both data sets are large.

5. Concluding Remark

Bayesian method for the Negative-binomial model provides a viable alternative to
the maximum likelihood approach. Unlike the maximum likelihood estimates and
the moment method estimates, the Bayes’ estimate always produces values in the
feasible regions of parameters. By using the proposed sampling procedure, the
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Table 4: Frequency Distribution of Counts of Red Mites

Observed Oberved NBD1 fitted NBD2 fitted NBD3 fitted
Xi Frequency Percentage Percentage Percentage Percentage
0 70 46.67 45.19 42.73 44.28
1 38 25.33 25.31 27.06 25.76
2 17 11.33 13.73 14.83 14.08
3 10 6.67 7.37 7.71 7.53
4 9 6.00 3.94 3.90 3.98
5 3 2.00 2.10 1.94 2.09
6 2 1.33 1.11 0.95 1.10
7 1 0.67 0.59 0.46 0.57
8 0 0.00 0.31 0.22 0.30
9 0 0.00 0.17 0.11 0.15

Goodness
of fit test:

p-Value 0.4747 0.5371 0.4886

Table 5: Frequency Distribution of Consumer Purchase Data

Observed Oberved NBD1 fitted NBD2 fitted NBD3 fitted
Xi Frequency Percentage Percentage Percentage Percentage
0 382 53.80 52.64 52.38 52.74
1 193 27.19 28.03 27.98 27.86
2 81 11.41 11.94 12.04 11.91
3 37 5.21 4.67 4.76 4.70
4 11 1.55 1.74 1.80 1.77
5 5 0.70 0.63 0.66 0.65
6 0 0.00 0.22 0.24 0.23
7 1 0.14 0.08 0.09 0.08
8 0 0.00 0.02 0.03 0.03
9 0 0.00 0.01 0.01 0.01

Goodness
of fit test:

p-Value 0.6802 0.6736 0.6731

Bayesian approach for the Negative-binomial model can be gainfully implemented
in real life applications.
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