


Pliska Stud. Math. Bulgar. 19 (2009), 269–282
STUDIA MATHEMATICA

BULGARICA

SUBOPTIMAL MULTISTAGE NONPARAMETRIC

HYPOTHESES TEST

Fedor Tsitovich

At the paper it is considered a discriminating of nonparametric hypotheses
that are neighborhoods of given distributions. The suboptimal test means
that distributions from the same neighborhoods are indistinguishable. Mul-
tistage hypotheses tests have practical advantages over fully-sequential tests
in many situations. The suboptimal test with a guaranteed decision is gen-
eralized to the multistage case. Using a loss function that is a linear combi-
nation of sampling costs and error probabilities, the suboptimal multistage
test of nonparametric hypotheses is constructed.

1. Introduction

Classical sequential test for simple hypotheses based on likelihood ratio was in-

troduced by Wald [12]. Further the test was generalized on complex hypotheses.

The obtained tests guaranteed that average probability of error was small, but

practically this condition did not ensure lack of errors. Therefore statisticians

developed tests guaranteed smallness of the maximum probability of error. Such

tests were considered in [3], [6] and [4]. An asymptotically optimal sequential test

for nonparametric complex hypotheses with a control and an indifference zone

was obtained in [8].

2000 Mathematics Subject Classification: 62L10, 62L15.
Key words: multistage, sequential methods, hypothesis testing, asymptotic suboptimality,

robustness.



270 Fedor Tsitovich

Classical sequential methods of hypothesis testing rely on assumptions

which are often not met on practice. It is often assumed that data are distributed

by a low from the known set of measures.

The suboptimal procedure for simple hypothesis testing was introduced in

[11]. There was noted a fact that the true low does not usually match with

one of predefined measures exactly. Therefore instead of considering the given

lows we consider small neighborhoods of them. That means that the initial simple

hypotheses transform to complex hypotheses. This allows us to avoid an incorrect

problem decision relating to untruth of the initial problem formulation.

The neighborhood type should be defined according to the experiment char-

acter. At this paper we consider the neighborhoods those can be applied in

situation when sample data contain outliers. The next reason is reducing of cal-

culations in the proofs of the theorems. The main idea of the paper will remain

true if we examine other types of neighborhoods.

If we apply the optimal test to derived complex hypotheses, this will extremely

increase the cost, because neighborhoods are small and an observer must perform

a lot of observations to find out the true low from them. The expansion of

initial hypotheses is made in order to provide proper level of the probability of

error. The observer is interested in the initial simple hypotheses, not in their

complex analogs. This shows why do we adopt the optimal procedure to the

new robust test called suboptimal. The suboptimal procedure converges to the

asymptotically optimal test when the neighborhood size converges to 0. Therefore

we use the term suboptimal.

The majority of the sequential literature involves tests that take data in a

“one at a time” fashion, and their optimality properties are proven under the

assumption that sampling costs are proportional to average sample size. But in

practice it is often much more costly to carry out n single experiments than one

experiment of size n. Hence a criticism of sequential testing – and perhaps a

barrier to more practical applications of it – is that, in real-world situations, it

is often more natural to take data in groups or stages. For example, multistage

tests could allow for cutting down expenses and for time saving in clinical trials.

Schmitz shows in [10] that optimal multistage procedures exists for a large

class of problems. However, these general results do not tell us anything more

specific about the optimal tests and certainly not how to apply them. Truncated

(predetermined number of stages) and group sequential (constant stage size) tests,

of which many have been developed for clinical trials was introduced [9], [5]

and [1]. These authors provided specific tests that successfully address many
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practical issues arising in clinical trials, but were not concerned with optimality

in a general setting. Optimality of multistage tests was considered by Lorden [7]

and Bartroff [2].

Also the multistage suboptimal procedure more simpler then the fully-sequen-

tial suboptimal test. Stopping time function of the sequential test could be rather

complex, thus the multistage tests reduce computation expenditure.

2. Problem formulation

Let (Ω,F ,P) be a probability space and x1, x2, . . . be a sequence of random

variables on (Ω,F ,P) with values from the set X ⊂ R, where R is the set of

real numbers. Further we call x1, x2, . . . data. The data x1, x2, . . . generate the

statistical filter
{

Fn

}

, where Fn := σ(x1, . . . , xn), F0 is the trivial σ-algebra. We

suppose that the data are independent and identical distributed.

We discriminate simple hypotheses

(1) Hs
i : f = gi(x), i = 1, . . . ,m,

where gi(x) are known densities under the measure µ. We assume what the obser-

vations may contain outliers. This assumption transforms the simple hypotheses

Hs
i into the composite Hi in the following way.

Let us define the neighborhoods Ogi
:=

{

g : g = gi(x)(1 + h(x))
}

, where the

functions h(x) are such that

sup
x∈X

|h(x)| ≤ ε < 1,(2)

∫

X

g(x) dµ(x) = 1.(3)

The first condition indicates that the neighborhoods of our initial hypotheses are

small. The second condition means that function gi(x) is a density.

Instead of Hs
i we consider the composite hypotheses:

(4) Hi : f ∈ Ogi
, i = 1, . . . ,m.

It is shown at [11] how those hypotheses could be applied to the situation when

the data contain outliers.

We consider tests satisfied to the following requirements (the class of such

procedures is denoted by D(α), α – is the parameter of the class).
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1. The sequence of stages durations N1 > 0, N2 > 0, . . . and the sequence of

stages stopping times τ0 = 0, τi = τi−1 + Ni, i > 0, . . . satisfy to the following

condition: Ni is a Fτi−1
-measurable integer random variable. The interpretation

of the measurability requirement is that by the time τi = N1 + . . . + Ni, the end

of the first i stages, an observer who knows the values x1, . . . , xτi
also knows τi+1,

the size of the next i + 1-st stage.

2. The test stopping time is one of the moments τi, i.e. τ = τi∗ for some

integer i∗, and τ is Markov moment under the filtration
{

Fn

}

. This means that

the procedure stops at one of the stage’s ends.

3. The decision rule δ(·) is Fτ -measurable value, i.e. δ = δ(x1, . . . , xτ ). The

interpretation of this requirement is the same as for the item 1.

4. The probability of error is less than α, i.e. for all i = 1, . . . ,m, j =

1, . . . ,m, i 6= j

(5) sup
P∈Hj

P(δ = i) ≤ α, 0 < α < 1.

A test from D(α) provides small probability of error not only for the measure

defined by the density gi(x). It provides the probability of error less than α for

all distributions from the neighborhoods of the initials lows. It means that the

method gives the robust decision.

Definition 1. If Hi0 is the true hypothesis then the risk function of the pro-

cedure d = 〈τ, δ〉 is

(6) R(d) = sup
f∈Oi0

Ef (Mi∗ + cτ),

where Ef is the expectation by the probability low generated by the density f .

The positive parameters M and c represent cost of a stage and an observation

respectively.

Thus, the risk function represents the maximal possible average cost of the

test if the hypotheses Hi0 is valid.

Definition 2. We denote the dominate term of the risk function as

(7) J(d) = lim
α→0

R(d)

| ln α|

where α → 0.
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The function J(d) is used to compare tests and to define the suboptimal

property.

Definition 3. The test d∗ ∈ D(α) solving the problem (1) is suboptimal, if

(8) lim
ε→0

J(d∗) = lim
ε→0

inf
d∈D(α)

J(d).

Thus if the size ε reduces to 0, we will obtain the asymptotically optimal procedure.

3. Suboptimal procedure

In this section we denoted the sequential suboptimal procedure. Let A(f) be the

alternative set for a density f ∈ Gi, i = 1, . . . ,m, i.e.

A(f) :=

m
⋃

j=1,
j 6=i

Gj .

We introduce the following notations in order to define our suboptimal pro-

cedure d0:

zf,g(x) := ln
f(x)

g(x)
, x ∈ X,

I(f, g) := Efzf,g(x);

Ii := min
gk∈A(gi)

I(gi, gk);

I− := min
i=1,...,m

Ii;

lf (g;n) :=
n

∑

i=1

zf,g(xi);

lg(n) := min
gk∈A(gi)

lgi
(gk;n);

Li(n) := inf
g∈A(gi)

lgi
(g;n)(9)

For our type of the neighborhoods

Li(n) := inf
g∈A(gi)

lgi
(g;n) = li(n) − n ln(1 + ε).

The last equality follows from [11].
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We use the type of the neighborhoods only in calculation of the functionals

Li(n). If we chose other neighborhoods the main idea of the paper would remain

valid and we would only have to estimate a solution of the variation problem (9).

The 1-st stage. The first stage consists of N1 observations,

(10) N1 :=



 min
i,j=1,...,m

i6=j

{

− ln β

I(gi, gj)

}



 + 1, where β :=
α

2 (m − 1)
.

It is obvious that N1 is not a random variable so it is a F0-measurable. It

represents a mandatory number of observations.

After N1 observations we test the condition of stopping

(11) ∃i0 : Li0(τ1) ≥ − ln β.

If the condition (11) is valid then the procedure stops and the hypothesis Hi0 is

accepted otherwise we go to the next stage.

The 2-nd stage. Using the data observed at the first stage we calculate the

maximum likelihood estimation of densities gi(x), i = 1, . . . ,m:

(12) î = arg max
i=1,...,m

N1
∑

j=1

ln gi(xj).

The second stage consists of N2 observations, where

(13) N2 := (1 + ∆) max
j=1,...,m

{

− ln β

I(gî, gj)

}

+ 1 − N1,

where ∆ := ∆(ε) is a positive number.

Based on N1 observations of the first stage and N2 observations of the second

stage we test the condition of stopping

(14) Lî(τ2) ≥ − ln β.

If this condition (14) is valid then the procedure stops and the hypothesis Hî is

accepted otherwise we go to the next stage.

The 3-rd stage. We use N3 observations, where

(15) N3 = 2

[

max
i,j=1,...,m

{

− ln β

I(gi, gj)

}]

+ 1,
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and test the condition

(16) ∃i0 : Li0(N3) ≥ − ln β,

where Li0 bases on the data of this stage only. If the condition (16) is valid then

the procedure stops and the hypothesis Hi0 is accepted otherwise we make the

next iteration of the third stage.

N3 is not a random variable. A number of observation at this stage is super-

fluous, but the test stops after the second stage with probability near to 1 and

therefore the third stage duration does not affect on asymptotical properties of

the test.

4. Results

Theorem 1. If α is sufficiently small and

∆ > max
i=1,...,m

εIi + ln(1 + ε)

(1 − ε)Ii − ln(1 + ε)
,(17)

then the procedure d0 ∈ D(α).

Theorem 1 shows that introduced above test provides predefined small error

probabilities not only for the initial simple hypotheses but for the composite

extensions of them. Thus the procedure d0 is robust.

Theorem 2. If Egi

∣

∣

∣

∣

ln
g1(x)

g2(x)

∣

∣

∣

∣

2

≤ Ci < ∞ and

∆ > max
i=1,...,m

εIi + ln(1 + ε)

(1 − ε)Ii − ln(1 + ε)
,

then described procedure d0 is suboptimal.

Remark 3. The condition Egi

∣

∣

∣

∣

ln
gi(x)

gj(x)

∣

∣

∣

∣

2

≤ Ci < ∞ can be weaken as at

[11], but this will complicate the remainder term of the risk function when α → 0.

5. Proof of theorem 1

It is obvious, that the procedure d0 satisfies for the conditions 1–3, therefore

we verify only the condition 4. Assume that f ∈ Gi0 . Let A1 represents the

event, that the procedure stops after the first stage, A2 represents the event,
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that the procedure stops after the second stage, Bi represents the event, that the

procedure stops after the i-th iteration of the third stage, Ci represents the event,

that the procedure stops after the first stage and the hypothesis Hi is accepted,

Di represents the event, that the procedure stops after the second stage and the

hypothesis Hi is accepted and Ei represents the event, that the procedure stops

after the third stage and hypothesis Hi is accepted. Let us note that for the event

Ei we do not indicate number of the third stage iteration because according to

the test definition all iteration of the third stage are independent and therefore

the distributions of these events are identical. From the procedure d0 definition

follows that

Pf (δ 6= i0) ≤
∑

i6=i0

Pf (Ci) +
∑

i6=i0

Pf (Di) + (1 − Pf (Bc
1))

−1
∑

i6=i0

Pf (Ei),(18)

where Bc
1 — the contrary event for B1. The last summand follows from the fact

that all iterations of the thirst stage are independent and identically distributed.

The probabilities Pf (Ci), Pf (Di) and Pf (Ei) are estimated in the similar way,

therefore we estimate only Pf (Ci).

Pf (Ci) = Pf (Li(N1) ≥ − ln β) = Ef (I (Li(N1) ≥ − ln β)) ≤

≤ Egi
(exp (−Li(N1))I (Li(N1) ≥ | ln β|)) ≤

≤ Egi
(βI (Li(N1) ≥ | ln β|)) ≤ β.

Here I(A) is the indicated function of the event A. The proof uses the measure

transfer from the measure generated by the density f(x) to measure generated by

the density gi and the fact that f ∈ A(gi0), i 6= i0. Using analogous inequalities

for Pf (Di) and Pf (Ei) we obtain from (18)

Pf (δ 6= i0) ≤ (m − 1)β + (m − 1)β+

+ (1 − Pf (Bc
1))

−1(m − 1)β =
(

2 + (1 − Pf (Bc
1))

−1
)

(m − 1)β.

By the definition (10) we derive

Pf (δ 6= i0) ≤

(

2 + (1 − Pf (Bc
1))

−1
)

4
α.

It follows from the proof of theorem 2 that Pf (Bc
1) → 0 when α → 0, thus

the inequality (5) holds for sufficiently small α, that satisfies to Pf (Bc
1) ≤

1

2
.
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6. Proof of theorem 2

Using notations from the proof of theorem 1 we obtain

(19) Ef (cτ + Mi∗) = c[N1 + Pf (Ac
1)Ef (N2) + Pf (Ac

2)(1 − Pf (Bc
1))

−1N3]+

+ M(1 + Pf (Ac
1) + Pf (Ac

2)(1 − Pf (Bc
1))

−1)

and by the definition (13)

(20) Ef (N2) ≤ 1 − N1 + Pf (δ = i0) (1 + ∆)
− ln β

Ii0

+

+ Pf (δ 6= i0) (1 + ∆)
− ln β

I−
.

Further we will use obvious estimates Pf (Ac
1) ≤ 1, Pf (δ = i0) ≤ 1. To estimate

probability of other events we have to use more accurate estimates. It is followed

out of the properties of the maximum likelihood estimate that

Pf (δ 6= i0) ≤ exp(−γN1)(21)

for certain γ > 0 and k1, γ1 do not depend on α and the distribution generated

by f from Gi0 .

It is followed out of form of the statistics (9), that problem of the complex hy-

potheses discrimination, actually, reduces to the analogous problem of the simple

hypotheses discrimination. Therefore we can use estimates derived in [8].

The condition
EfLi0(N2)

− ln β
− 1 > k2 > 0, where k2 does not depend on α

and distribution generated by f(x) from Gi0 , is provided by the selection of the

parameter ∆ (17). Therefore

Pf (Ac
2) ≤ k3α

γ3 ,(22)

for γ1 > 0, k3 and γ3 do not depend on α and the distribution generated by f(x)

from Gi0 .

Similarly

Pf (Bc
1) ≤ k4α

γ4 ,(23)

where γ4 > 0, and k4, γ4 do not depend on α and the distribution generated by

f(x) from Gi0 .
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Substituting (21) to (20) we derive

(24) Ef (N2) ≤ (1 + ∆)
− lnβ

Ii0

+ k1α
γ1 (1 + ∆)

− ln β

I−
.

It is followed from (16), (22), (23) and (24) that

(25) Ef (τ) ≤

≤ (1 + ∆)
− ln β

Ii0

+ k1α
γ1 (1 + ∆)

− ln β

I−
+

k3α
γ3

1 − k4αγ4
2
− ln β

I−
+ 3 ≤

≤ (1 + ∆)
− ln β

Ii0

+ 3 + k5α
γ5 (1 + ∆)

− ln β

I−
,

where k5 > 0 does not depend on α and the distribution generated by f(x) from

Gi0 , γ5 = min(γ1, γ3). Because of the definition î and (22), (23) we obtain

(26) Ef (i∗) ≤ 2 +
k3α

γ3

1 − k4αγ4

[

2
− ln β

I−

]

≤ 2 + k6α
γ2 ,

where k6 does not depend on α and the distribution generated by f(x) from Gi0 .

Substituting (25) and (26) into (19) we derive

(27) RHi0
(d0) ≤ M (2 + γ(α)) + c

(

(1 + ∆)
− lnβ

Ii0

+ K1

)

,

where Ki does not depend on α and distribution generated by f(x) from Gi0 . It

is followed out of this inequality that the test d0 is suboptimal.

7. Numerical simulation

We investigate the following example to illustrate the theoretical results derived

above. Let X = [0, 1], g1(x) = 1, and

g2(x) =

{

a, if x ∈ [0, 0, 5],
2 − a, if x ∈ (0, 5, 1],

where 0 < a < 1 is a parameter. We consider new observations y1, y2, . . . those

are calculated based on x1, x2, . . . by the formulas

yi =

{

xi(1 + z), if x ∈ [0; 0, 5]
yi = 1 − (1 − xi)(1 − z), if x ∈ (0, 5; 1]

,

where z = ε.
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The low of the observations y1, y2, . . . belongs to ε-neighborhood of the low

of the observations x1, x2, . . . The distribution of the y1, y2, . . . satisfies for the

condition (2).

The following statistics are used in the suboptimal procedure for guaranteed

decision of the hypotheses (4) discriminating

L1(n) = −

n
∑

i=1

ln g2(yi) − n ln(1 + ε),(28)

L2(n) =
n

∑

i=1

ln g2(yi) − n ln(1 + ε).(29)

If we discriminate the simple hypotheses (1) then the statistics

M1(n) =

n
∑

i=1

− ln g2(yi),(30)

M2(n) =
n

∑

i=1

ln g2(yi)(31)

are used. The difference between suboptimal and classical statistics consists in

the additional term − ln(1 + ε) for every observation.

The first stage duration is calculated as the average minimum number of

observations needed to be performed on order to the classic optimal procedure

could provide guaranteed decision:

N1 :=



 min
i,j=1,...,m

i6=j

{

− ln β

I(gi, gj)

}



 + 1.

Duration of the second stage N2 is calculated according to the following for-

mula

(32) N2 :=

[

(1 + ∆) max
j=1,...,m

{

− lnβ

I(gî, gj)

}

+ σ
√

− log(β)

]

+ 1 − N1,

σ has to be sufficiently large in order to make the probability Pf (Di) small in the

numerical simulation for given α.

The third stage duration consists of

N3 = 2

[

max
i,j=1,...,m

{

− ln β

I(gi, gj)

}]

+ 1
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observations.

We compare sequential optimal procedure, the sequential suboptimal proce-

dure [11] and the multistage suboptimal procedure introduced above.

Definition 4. Using notations from Section 3 we define the sequential sub-

optimal procedure. After each observation the following condition of stopping has

to be tested

(33) ∃i0 : Li0(τ) ≥ − ln β.

If the condition (33) is valid then the the procedure stops and the hypothesis Hi0

is accepted otherwise other one observation has be done.

Based on 10000 numerical experiments we calculate the estimation of the

probability of error (P(δ = 2) where P is generated by the density g1(x)) and

the procedure durations (E(τ)). Parameter a is equal to 0.2 and the (Kullback-

Leibler) divergence from the measure generated by g1(x) to the measure generated

by g2(x) is qual to 0.51. The following notations are used: p1 is the probability

of error decision by the sequential optimal procedure, p2 is the probability of

error decision by the sequential suboptimal procedure, p3 is the probability of

error decision by the multistage suboptimal procedure,τ1 is the sequential optimal

procedure duration, τ2 — the sequential suboptimal procedure duration and τ3

— the multistage suboptimal procedure duration.

Numerical simulation results are given in the table mentioned below:

Table 1: Numerical results

α ε τ1 τ2 τ3 p1 p2 p3

0.01 0.05 13.11 14.54 16.73 0.0056 0.0034 0.0047

0.001 0.05 18.12 20.14 25.70 0.001 0.0001 0.0003

0.01 0.1 14.4 18.38 22.18 0.01 0.0029 0.0035

0.001 0.1 20.16 25.93 34.42 0.0016 0.0001 0.0001

0.01 0.15 15.86 26.51 32.36 0.0178 0.0023 0.0033

0.001 0.15 22.52 36.74 50.92 0.0032 0.0001 0.0001

The numerical results illustrate that the optimal procedure is the fastest but

it hits the stated error probability when the true distribution differs from the

theoretical ( if ε = 0.1 then p1 > α for α = 0.001 and if ε = 0.15 then p1 > 3α if
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α = 0.01). Otherwise the sequential suboptimal test and the multistage subop-

timal test provide the stated probability of error decisions even if ε = 0.15. The

second conclusion is than duration of the sequential suboptimal procedure does

not strongly distinguish from duration of the multistage suboptimal procedure.

8. Conclusion

Suboptimal tests have a practical advantage over complex optimal multistage

procedures like at [2] because often preferences of the optimal test are lost when

the hypothesis testing problem definition has an inherent inaccuracy.

Properties of the multistage suboptimal procedure d0 are similar to properties

of the fully-sequential suboptimal procedure from [11], but multistage tests have

advantages in a practice.
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