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SOME BOUNDS FOR ALMOST ABSORBING BIRTH AND

DEATH PROCESSES WITH CATASTROPHES

Alexander Zeifman, Alexander Chegodaev, Yakov Satin

We consider nonstationary almost absorbing birth and death processes
(BDPs) with catastrophes. The bounds of the rate of convergence to the
limit regime and the estimates of the limit probabilities are obtained. We
also study the bounds for the mean of the process and consider a queueing
example.

1. Introduction

The simplest queueing models with catastrophes have been studied some years
ago, see the detailed motivation and some results in [1, 4], see also another ap-
proach in [3]. More detailed review and study of the first occurrence of effective
catastrophe for general stationary BDPs one can find in [2]. First results for
concrete nonstationary BDP have been obtained in [8]. On the other hand, esti-
mates for some classes of almost absorbing nonstationary continuous-time Markov
chains (firstly BDPs) have been found in [7]. Here we consider the situation of
almost absorbing BDPs with catastrophes and obtain some interesting bounds
and approximations.

Our approach is based on the notion of logarithmic norm and special trans-
formations of the intensity matrix, see, for instance, [5].
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Let X = X(t), t ≥ 0 be a BDP with catastrophes, and let λn(t), µn(t) and
ξ(t) be birth, death, and catastrophe rates, respectively.

Let pij(s, t) = Pr {X(t) = j |X(s) = i} for i, j ≥ 0, 0 ≤ s ≤ t be the transi-
tion probability functions of the process X = X(t) and pi(t) = Pr {X(t) = i} be
the state probabilities.

The probabilistic dynamics of the process is represented by the forward Kol-
mogorov system of differential equations:

(1.1)



















dp0

dt
= − (λ0(t) + ξ(t)) p0 + µ1(t)p1 + ξ(t),

dpk

dt
= λk−1(t)pk−1 − (λk(t) + µk(t) + ξ(t)) pk + µ(t)k+1pk+1, k ≥ 1.

We denote by p(t) = (p0(t), p1(t), . . . )
T , t > 0 the column vector of state

probabilities and by A(t) = {aij(t), t ≥ 0} the matrix related to (1.1) where

(1.2) aij(t) =



























λi−1 (t) , if j = i − 1

µi+1 (t) , if j = i + 1

− (λi (t) + µi (t) + ξ(t)) , if j = i

0, otherwise.

We shall restrict ourselves to birth and death processes whose rates have the
following form:

(1.3) λn (t) = νnλ (t) , µn (t) = ηnµ (t) , t ≥ 0, n ∈ E,

with the assumptions that the rates are bounded, 0 ≤ ηn ≤ M, 0 ≤ νn ≤ M , see
[6] for details.

Then we can rewrite the system (1.1) in the form

(1.4)
dp

dt
= A (t)p + g(t), t ≥ 0,

as a differential equation in the space of sequences l1, where g(t) = (ξ(t), 0, 0, . . . )T .

Let Ω = {x : x ≥ 0, ‖x‖1 = 1}.
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Throughout the whole paper we assume that λ(t), µ(t) and ξ(t) are locally in-
tegrable for t ≥ 0. Moreover, we suppose (only for simplicity) that these functions
are bounded, namely

(1.5) λ(t) + µ(t) + ξ(t) ≤ L < ∞,

for almost all t ≥ 0.
Then

(1.6) ‖A(t)‖1 = sup
j

∑

i

|aij(t)| ≤ 2ML,

for almost all t ≥ 0.
Hence, the Cauchy problem formed by (1.4) with the initial condition p(0)

has the unique solution

(1.7) p(t) = U(t)p(0) +

t
∫

0

U(t, τ)g(τ) dτ,

where U(t, s) is the Cauchy operator of equation (1.4).
Moreover, if p(s) ∈ Ω then p(t) ∈ Ω for any t ≥ s.

We shall study the following mean values

(1.8) Ep(0)(t) = Ep(0) {X(t)} = E {X(t) |p(0)} ,

and particularly

(1.9) Ek(t) = E {X(t) |X(0) = k} .

Definition 1. Markov chain X(t) has the limiting mean ϕ(t) if

(1.10) lim
t→∞

(ϕ(t) − Ek(t)) = 0

for any k.

The property p(t) ∈ Ω for any t ≥ s allows to put p0(t) = 1 −
∑

i≥1
pi(t) (for

ordinary BDP see this way of study, for instance, in [6]), then we obtain the
following system from (1.4)
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(1.11)

























dp1

dt
dp2

dt
...

dpn

dt
...

























=











−(λ0 + λ1 + µ1 + ξ) (µ2 − λ0) −λ0 −λ0 · · · · · ·
λ1 −(λ2 + µ2 + ξ) µ3 0 0 · · ·
0 λ2 −(λ3 + µ3 + ξ) µ4 0 · · ·
...

...
...

...
...

. . .











×

















p1

p2
...

pn

...

















+

















λ0

0
...
0
...

















or otherwise

(1.12)
dz(t)

dt
= B(t)z(t) + f(t).

This is a linear non-homogeneous differential system the solution of which
can be written as

z(t) = V (t, 0)z(0) +

∫ t

0
V (t, z)f(z) dz,(1.13)

where V (t, z) is the Cauchy operator of (1.12).
Consider the matrix

(1.14) D =











d1 d1 d1 · · ·
0 d2 d2 · · ·
0 0 d3 · · ·
...

...
. . .

. . .











and the spaces of sequences

(1.15) ℓ1D =
{

z = (p1, p2, . . .)
T : ‖z‖1D = ‖Dz‖1 < ∞

}

,
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and

(1.16) B =







z = (p1, p2, . . .)
T : ‖z‖B =

∑

i≥1

di|pi| < ∞







,

where di are some positive numbers.
We have

D−1 =





















d−1
1 −d−1

2 0
. . .

0 d−1
2 −d−1

3 0
. . .

. . . 0
. . . d−1

3

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .





















.

Applying this transformation to the matrix B(t) in (1.12) , we arrive to the matrix
DB(t)D−1

(1.17)

DB(t)D−1 =



















− (λ0 + µ1 + ξ) d1 · d
−1
2 · µ1 0 . . .

d2 · d
−1
1 · λ1 − (λ1 + µ2 + ξ) d2 · d

−1
3 · µ2 0

0 d3 · d
−1
2 · λ2

. . .
. . .

. . .
... 0

. . .
. . .

. . .

. . .
. . .

. . .
. . .



















Now we can study BDP with catastrophes using the logarithmic norm and
related bounds.

2. Bounds

Put

(2.18) αk = λk(t) + µk+1(t) −
dk+2

dk+1
λk+1(t) −

dk

dk+1
µk(t), k ≥ 0,

and

(2.19) β(t) = inf
k≥0

αk(t)

Let

(2.20)

∫ ∞

0
β(t) dt = +∞
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and

(2.21) λ0(t) ≤ εβ(t), t ≥ 0.

Theorem 1. Let a process with rates λk(t), µk(t), and ξ(t) be given. Let {di}
be a nondecreasing sequence of positive numbers such that d1 = 1, and (2.21),
(2.20) be fulfilled. Let ε be sufficiently small. Then (for any ξ(t)) X(t) is weakly
ergodic, and the following inequalities hold:

(2.22) ‖p∗(t) − p∗∗(t)‖B ≤ 2e
−

tR
s

β(τ) dτ

‖p∗(s) − p∗∗(s)‖1D,

for any s, t, 0 ≤ s ≤ t, and for any acceptable initial conditions p∗(s), p∗∗(s);

(2.23)
∑

i≥1

di|pi(t) − πi(t)| ≤ 4e−
R

t

0
β(τ)dτ

∑

i≥1

gi|pi(0) − πi(0)|,

for any p(0),
and

(2.24) lim inf
t→∞

p0(t) ≥ 1 − 2ε,

where gk =
∑k

i=1 di

P r o o f. We have now the following bound of the logarithmic norm γ(B(t))
in l1D:

(2.25) γ(B(t))1D = sup
k≥0

(−λk(t) − µk+1(t) − ξ(t) +
dk+2

dk+1
λk+1(t)

+
dk

dk+1
µk(t)) ≤ −β(t),

(2.26) ‖U(t, s)‖1D ≤ e−
R

t

s
β(τ)dτ

for any ξ(t).
Consider B and l1D norms of a vector z = (z1, z2, . . . )

T , then

‖z‖B =
∑

i≥1

dizi = d1





∣

∣

∣

∣

∣

∣

∑

i≥1

zi +
∑

i≥2

−zi

∣

∣

∣

∣

∣

∣



+ d2





∣

∣

∣

∣

∣

∣

∑

i≥2

zi +
∑

i≥3

−zi

∣

∣

∣

∣

∣

∣



+ . . .

≤ d1

∣

∣

∣

∣

∣

∣

∑

i≥1

zi

∣

∣

∣

∣

∣

∣

+ 2d2

∣

∣

∣

∣

∣

∣

∑

i≥2

zi

∣

∣

∣

∣

∣

∣

+ · · · ≤ 2‖z‖1D ,(2.27)
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and we obtain weak ergodicity of BDP X(t) for any ξ(t) and inequalities (2.22),
(2.23).

Then for any p(0) in l1D norm we have

‖z(t)‖ ≤ ‖U(t, 0)‖‖z(0)‖ +

∫ t

0
‖U(t, τ)‖‖f(τ)‖dτ ≤ e−

R
t

0
β(τ)dτ ‖z(0)‖

+

∫ t

0
e−

R
t

τ
β(s)ds|λ0(τ)|dτ ≤ e−

R
t

0
β(τ)dτ‖z(0)‖ + ε,(2.28)

hence we have

(2.29) lim sup
t→∞

‖π(t)‖1D ≤ ε,

and (2.24). �

Corollary 1. For any k ≥ 1

(2.30)
∑

i≥1

di|p0i(t) − pki(t)| ≤ 2e−
R

t

0
β(τ)dτ

k
∑

i=1

di

Corollary 2. Let, in addition, the numbers di grow sufficiently fast so that

inf
k≥1

dk

k
= ω > 0. Then X(t) has the limiting mean, say φ∗(t), and the following

bounds hold:

(2.31) |φ∗(t) − Ek(t)| ≤
2

ω
e
−

tR
0

β(τ) dτ

‖p∗(0) − ek‖1D,

(2.32) lim sup
t→∞

Ep(0)(t) ≤
2ε

ω
.

Remark 1. We can choose the limiting mean with concrete special properties
(for instance, constant or periodic) under the respective special assumptions.

Theorem 2. Let under assumptions of the previous Corollary all intensi-
ties be 1-periodic. Then there exists 1-periodic limit regime, say π(t) = (π0(t),
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π1(t), . . . )
T , and the respective limiting mean φ(t). Moreover, the following

bounds hold:

(2.33) ‖p(t) − π(t)‖B ≤ 2e
−

tR
0

β(τ) dτ

‖p(0) − π(0)‖1D ,

(2.34) |φ(t) − Ek(t)| ≤
2

ω
e
−

tR
0

β(τ) dτ

‖π(0) − ek‖1D.

Unfortunately, our bounds (2.33) and (2.34) have the essential defect, namely,
we have no real information about ‖p(0)−π(0)‖1D . Let X(0) = ek, then we have
‖ek‖1D =

∑k
i=1 di for k ≥ 1 and ‖e0‖1D = 0. On the other hand, we can obtain

the bound for ‖π(0)‖1D using the approach of [6]. Let instead of (2.21):

(2.35) |λ0(t)| ≤ ε, t ≥ 0.

We have

(2.36) sup
|t−s|≤1

t
∫

s

α(τ) dτ = K < ∞,

and

lim sup
t→∞

‖π(t)‖1D ≤

∥

∥

∥

∥

∫ t

0
V (t, τ)f(τ)dτ

∥

∥

∥

∥

1D

≤ ε

∫ t

0
e−

R
t

τ
β(u) dudτ

≤ eKε

∫ t

0
e−β∗(t−τ)dτ ≤

eKε

β∗
,(2.37)

where β∗ =
∫ 1
0 β(u) du.

Now, ‖π(0)‖1D ≤ lim supt→∞ ‖π(t)‖1D by 1-periodicity of π(t). Hence we
obtain the following bound:

(2.38) ‖π(0) − ek‖1D ≤ lim sup
t→∞

‖π(t)‖1D + ‖ek‖1D,

and

Corollary 3. Let under assumptions of the previous Corollary X(t) = k.
Then the following bounds hold:
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(2.39) ‖p(t) − π(t)‖B ≤ 2e
−

tR
0

β(τ) dτ
(

k
∑

i=1

di +
eKε

β∗

)

,

and

(2.40) |φ(t) − Ek(t)| ≤
2

ω
e
−

tR
0

β(τ) dτ
(

k
∑

i=1

di +
eKε

β∗

)

.

3. Approximations

Consider now the family of truncated processes Xn(t) on the state space En =
{0, 1, . . . , n} with the same intensities for k ≤ n and intensity matrices An(t).

Let {hk} be a sequence of positive numbers, 1 = h1 ≤ h2 ≤ . . . , and

(3.41) wn = sup
k≥n

hk

dk

.

We will denote by ‖z‖Bd
and by ‖z‖Bh

the norms in the spaces B for the sequence

{dk} and {hk} respectively.

The following statement can be proved by the way of [8].

Theorem 3. Let the assumptions of Theorem 2 be fulfilled, and let in addi-
tion, limn→∞ wn = 0. Let X(0) = Xn(0) = 0. Then

(3.42) ‖p(t) − pn(t)‖Bh
≤

6LMwneKεt

β∗

for any t ≥ 0 and any n.

Remark 2. Probably the most interesting bounds are obtained if hk = 1 or
hk = k for all k. In the first case we can compute limit 1-periodic sojourn
probabilities, and in the second one we can find the limiting mean.

Corollary 4. Let the assumptions of Theorem 3 be fulfilled. Let X(0) =
Xn(0) = 0. Then

(3.43) ‖π(t) − pn(t)‖1 ≤ 2e
−

tR
0

β(τ) dτ eKε

β∗
+

6LMw1
neKεt

β∗
,
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and

(3.44) |φ(t) − E0,n(t)| ≤
2

ω
e
−

tR
0

β(τ) dτ eKε

β∗
+

6LMw2
neKεt

β∗
,

for any t ≥ 0, n, where w1
n = sup

k≥n

1

dk

, w2
n = sup

k≥n

k

dk

and E0,n = Ek(t) =

E {Xn(t) |Xn(0) = 0}.

We can obtain the essential bounds for the limit characteristics (limit 1-
periodic sojourn probabilities, and the limiting mean) of the considered process.
Namely, let intensities (λ(t), µ(t) and ξ(t)) be 1-periodic. Then under assump-
tions of previous Corollary there exists 1-periodic limit regime π(t) = (π0(t),
π1(t), . . . )

T and we have the method of computing of limit 1-periodic sojourn
probabilities Jk(t) (this is probability that the length of the queue at the mo-
ment t does not exceed k) by the following way.

Let now δ be an arbitrary positive number.
1. Choose integer m such that the first expression in the right-hand side of

(3.44) less than δ/3 for any t ≥ m.

2. Find n such that the second expression in the right-hand side of (3.44)
less than δ/3 for any t ≤ m + 1.

3. Then the solution of the Cauchy problem for the truncated Kolmogorov
system with initial condition e0 on the interval [m;m + 1] (with error δ/3) gives
us the limit 1-periodic regime π(t) = (π0(t), π1(t), . . . )

T with the error δ.

4. Finally, the limiting behaviour of Jk(t) = Pr{X(t) ≤ k} can be computed

as
k
∑

i=0
πi(t) with the same error δ.

The limiting mean can be found be the same way.

4. Example

Computing of the limiting mean φ(t) and the sojourn probabilities Jk(t) for some
k-s. Particularly, J0(t) is the probability that the queue is empty at the moment t.

Consider queue-length process for the M(t)/M(t)/100 queue with catastro-
phes and intensities λ(t) = 0.1+0.1 sin 2πt, µ(t) = 2+cos 2πt, ξ(t) = 2+sin 4πt.

Using the way of Section 3, put d = 2 and dk = dk. Then we have ε = 0.2,

L = 6.2, M = 100, w1
n = 2−n, w2

n =
n

2n
, furthermore , β(t) = µ(t)−(d−1)λ(t) =

1.9 + cos 2πt − 0.1 sin 2πt, K ≤ 3, and β∗ = 1.9.
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Figure 1: The limiting mean

Figure 2: The sojourn probability Pr (X(t)) = 0
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Figure 3: The sojourn probability Pr (X(t)) ≤ 1

Figure 4: The sojourn probability Pr (X(t)) ≤ 2
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Figure 5: The sojourn probability Pr (X(t)) ≤ 3

Estimates of Section 2 (2.24) and (2.32) give us the following (sufficiently
rough) bounds: lim inf

t→∞
p0(t) ≥ 0.72, and lim sup

t→∞
Ep(0)(t) ≤ 0.14.

On the other hand, we can obtain essentially more sharp bounds. Let δ =
10−6. Then it is sufficient to choose m = 12 and n = 50. Then we obtain the
limiting mean φ(t) and all sojourn probabilities Jk(t) with error δ = 10−6 as the
respective characteristics of the solution with initial condition e0 of the Cauchy
problem for the respective truncated Kolmogorov system on the interval [m,m+
1]. Now, figures 1 – 5 shows us the approximations of the limit characteristics
φ(t), and J0(t) − J3(t) respectively. Moreover, Jk(t) ≈ 1 for k ≥ 4.
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grant.
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