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SOME BOUNDS FOR ALMOST ABSORBING BIRTH AND
DEATH PROCESSES WITH CATASTROPHES

Alexander Zeifman, Alexander Chegodaev, Yakov Satin

We consider nonstationary almost absorbing birth and death processes
(BDPs) with catastrophes. The bounds of the rate of convergence to the
limit regime and the estimates of the limit probabilities are obtained. We
also study the bounds for the mean of the process and consider a queueing
example.

1. Introduction

The simplest queueing models with catastrophes have been studied some years
ago, see the detailed motivation and some results in [1, 4], see also another ap-
proach in [3]. More detailed review and study of the first occurrence of effective
catastrophe for general stationary BDPs one can find in [2]. First results for
concrete nonstationary BDP have been obtained in [8]. On the other hand, esti-
mates for some classes of almost absorbing nonstationary continuous-time Markov
chains (firstly BDPs) have been found in [7]. Here we consider the situation of
almost absorbing BDPs with catastrophes and obtain some interesting bounds
and approximations.

Our approach is based on the notion of logarithmic norm and special trans-
formations of the intensity matrix, see, for instance, [5].
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Let X = X (t), t > 0 be a BDP with catastrophes, and let A, (t), p,(t) and
&(t) be birth, death, and catastrophe rates, respectively.

Let pi;(s,t) = Pr{X(t) =j|X(s) =i} for i, > 0, 0 < s < t be the transi-
tion probability functions of the process X = X (t) and p;(t) = Pr{X(t) =i} be
the state probabilities.

The probabilistic dynamics of the process is represented by the forward Kol-
mogorov system of differential equations:

%?:‘W%@V+ﬂﬂnm+uﬂﬂm+f@%
(1.1)
%%:AhﬂwMFr_Q“ﬂ+uaﬂ+€wn%+M@MHMﬁhkZL

We denote by p(t) = (po(t),p1(t),...)", t > 0 the column vector of state
probabilities and by A(t) = {a;;(t), t > 0} the matrix related to (1.1) where

i1 (1), if j=1-1

fisn (1), it j=i+1
(1.2) aij(t) = w0 L

=i (@) +pi () +E€@), if j=i

0, otherwise.

We shall restrict ourselves to birth and death processes whose rates have the
following form:

(1'3) An (t) = UpA (t) y Hn (t) = Tint (t) , 120, nek,

with the assumptions that the rates are bounded, 0 <7, < M, 0 <y, < M, see
[6] for details.

Then we can rewrite the system (1.1) in the form

dp _

(1.4) =

At)p+sg(t), t=>0,

as a differential equation in the space of sequences I;, where g(t) = (£(t),0,0,...)".

Let Q@ ={x: x>0, [|x]; =1}.
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Throughout the whole paper we assume that A(¢), u(t) and £(¢) are locally in-
tegrable for t > 0. Moreover, we suppose (only for simplicity) that these functions
are bounded, namely

(1.5) At) + p(t) +£€(t) < L < oo,
for almost all ¢ > 0.
Then
(16) [A@] = sup 3 lass (6] < 2ML,
Iy

for almost all ¢ > 0.
Hence, the Cauchy problem formed by (1.4) with the initial condition p(0)
has the unique solution

t
(17) p(t) = Up(0) + [ Ut )g(r) dr
0
where U(t, s) is the Cauchy operator of equation (1.4).
Moreover, if p(s) € Q then p(t) € Q for any ¢ > s.

We shall study the following mean values

(1.8) Epo)(t) = Epo) {X ()} = E{X(?) [p(0) },
and particularly
(1.9) Ex(t) = E{X(t)|X(0) = k}.
Definition 1. Markov chain X (t) has the limiting mean ¢(t) if

(1.10) lim (p(t) — Ey(t)) =0

t—o00

for any k.

The property p(t) € Q for any ¢t > s allows to put po(t) =1 — > pi(t) (for
i1
ordinary BDP see this way of study, for instance, in [6]), then we obtain the
following system from (1.4)
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dpy
dt
dp2
dt
(1.11) :
dpn
dt

—(Ao+ A+ +§) (2 — Ao) -0 —Xo
A1 —(Aa+p2 +§) 3 0 0
- 0 A2 —(A34+puz+8&) pa O

p1 Ao

P2 0
X : + :

Dn 0

or otherwise

(1.12) djlff) — B(t)a(t) + £(1).

This is a linear non-homogeneous differential system the solution of which
can be written as

(1.13) z(t) = / V(t,z)

where V (¢, z) is the Cauchy operator of (1.12).
Consider the matrix

dy dy dy
0 dy do
(1.14) D=| g o 4

and the spaces of sequences

(115) lip = {Z = (pl,pg, .. .)T : HZH1D = HDZH1 < OO},
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and

(1.16) B = Z:(plvp%---)T:HZHB:Zdi’pi’ <00y,
i>1

where d; are some positive numbers.
We have
it —dyt 0
0 dyt —d3' 0

Applying this transformation to the matrix B(t) in (1.12) , we arrive to the matrix
DB(t)D~!

(1.17)
—Mot+m+E  di-dy'om 0
dy-di' N —(MHpe+E) dy-dstops 0
DB()D~! = 0 ds - dy' - Ao ' '
: 0

Now we can study BDP with catastrophes using the logarithmic norm and
related bounds.

2. Bounds
Put
_ di+2 dy;
(2.18) o = )\k(t) + ,uk+1(t) - —Ak+1(t) - —/Lk(t), k>0,
dg+1 di41
and
2.1 = inf
(2.19) B(t) lgzloak(t)
Let
(2.20) B(t) dt = +o0
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and
(2.21) Xo(t) <ep(t), t=>0.

Theorem 1. Let a process with rates A (t), uk(t), and £(t) be given. Let {d;}
be a nondecreasing sequence of positive numbers such that dy = 1, and (2.21),
(2.20) be fulfilled. Let e be sufficiently small. Then (for any &(t)) X (t) is weakly
ergodic, and the following inequalities hold:

t

(2.22) Ip*(t) =P ()l < 2¢ = Ip*(s) = p™(s)llip,
for any s,t, 0 < s <t, and for any acceptable initial conditions p*(s), p**(s);
(2.23) > dilpi(t) — mi(t)] < de” Js 8() 97 gilpi(0) — mi(0)),

i>1 1>1
for any p(0),
and
(2.24) liminf po(t) > 1 — 2e,

t—o0

where g = Zle d;

Proof. We have now the following bound of the logarithmic norm ~(B(t))
in lip:

(225) A(BO)1p = sup(~Aelt) — s (1) — £0) + P20 (1)
k>0 k+1

(2.26) Ut 8)|l1p < e~ s A

for any £(t).
Consider B and l1p norms of a vector z = (z1, 29, . .. )T, then

”ZHB:ZdiZi:dl Z%%—Z—zi + do Zgi+z_zi + ...

i>1 i>1 i>2 i>2 i>3

(2.27) <dp | Yzl +2ds |y 2|+ < 2llz]ip,

i>1 i>2
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and we obtain weak ergodicity of BDP X (¢) for any £(t) and inequalities (2.22),
(2.23).
Then for any p(0) in {;p norm we have

l2(t)]| < 11U (2,0)|||12(0)]| + /0 N0 AEE) dr < i 5O (o)
(2.28) + /O = IO (1) dr < e A 5(0) | + ¢,
hence we have
(2.29) limsup [r(t) 1 < <.

and (2.24). O

Corollary 1. For any k > 1

k
(2.30) > dilpoi(t) — pri()] < 267 Ho AN g,

i>1 i=1

Corollary 2. Let, in addition, the numbers d; grow sufficiently fast so that

d
ér>1f1 f =w > 0. Then X(t) has the limiting mean, say ¢*(t), and the following

bounds hold:

. 2 7fﬂ(‘l‘) dr .

(2.31) |67(t) — Ep(t)] < —e © 1p*(0) — exllip,
. 2e
(2.32) h?ligp By (t) < -

Remark 1. We can choose the limiting mean with concrete special properties
(for instance, constant or periodic) under the respective special assumptions.

Theorem 2. Let under assumptions of the previous Corollary all intensi-
ties be 1-periodic. Then there exists 1-periodic limit regime, say w(t) = (mo(t),
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m1(t),...)T, and the respective limiting mean ¢(t). Moreover, the following
bounds hold:
t

(2.33) Ip) —=(®)s <2¢ 2 Ip(0) - 7(0) 1.

2 T
(2.34) [6(t) = Bx(t)] < —e 17(0) = ex[lip-

Unfortunately, our bounds (2.33) and (2.34) have the essential defect, namely,
we have no real information about ||p(0) —7(0)|[1p. Let X(0) = ey, then we have
lex|lip = 3%, d; for k > 1 and ||eq|/ip = 0. On the other hand, we can obtain
the bound for ||7(0)||1p using the approach of [6]. Let instead of (2.21):

(2.35) Ao(t)] <e, t>0.
We have
¢
(2.36) sup /a(T) dr = K < o0,
[t—s|<1 )
and

limsup ||7(¢)|l1p < H/ot V(t, 7)f(T)dr

t—o0

t
Se/ eff:ﬂ(“)d“dT
1D 0

t K
(2.37) < eKe/ e PN dr < eﬁf,
0

where 3* = fol B(u) du.
Now, ||[7(0)|lip < limsup, . ||7(¢)|[ip by l-periodicity of w(¢). Hence we
obtain the following bound:

(2.38) I7(0) — exllip < limsup [[7(t)|lip + [lex/lip,

t—o00

and

Corollary 3. Let under assumptions of the previous Corollary X(t) = k.
Then the following bounds hold:
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~ [ Byar (& K
(2.39) [p(t) — ()l < 2e ] (Z di + 2) ,

=1 B*
and
2 —fﬁ(T)dT i ele
(2.40) [6(t) = Br(t)] < ~e (Z} d; + ﬂ—> :

3. Approximations
Consider now the family of truncated processes X, (t) on the state space E, =

{0,1,...,n} with the same intensities for ¥ < n and intensity matrices A, (t).
Let {hi} be a sequence of positive numbers, 1 = h; < hg <..., and
h
(3.41) Wy, = sup —~.
k>n Ak

We will denote by ||z||5, and by ||z||s, the norms in the spaces B for the sequence
{di} and {hy} respectively.
The following statement can be proved by the way of [8].

Theorem 3. Let the assumptions of Theorem 2 be fulfilled, and let in addi-
tion, lim, oo wy, = 0. Let X(0) = X,,(0) = 0. Then

LMuw,eXet
(3.42) Ip(t) = Pu(D)s, < =gt

for any t > 0 and any n.

Remark 2. Probably the most interesting bounds are obtained if hy = 1 or
hi = k for all k. In the first case we can compute limit 1-periodic sojourn
probabilities, and in the second one we can find the limiting mean.

Corollary 4. Let the assumptions of Theorem 3 be fulfilled. Let X(0) =
X,(0) =0. Then

t
—[BMdreKe  6LMuwleKet
(3.43) [7(t) = Pn(t)]1 < 2e © 65*6 * ;}:6 =
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and
t
2 —[B(rdrele  6LMuw?eXet
(3.44) [6(t) = Eon(t) < —e 0 T a—
1 1 2 k
for any t > 0, n, where w, = 21>1p d—k, wh = zgp—k and Ey, = Ei(t) =
>n >n

E{Xn(t) ’Xn(o) = 0}'

We can obtain the essential bounds for the limit characteristics (limit 1-
periodic sojourn probabilities, and the limiting mean) of the considered process.
Namely, let intensities (A(¢), u(t) and &(t)) be 1-periodic. Then under assump-
tions of previous Corollary there exists 1-periodic limit regime 7 (t) = (m(¢),
m1(t),...)T and we have the method of computing of limit I-periodic sojourn
probabilities Ji(t) (this is probability that the length of the queue at the mo-
ment ¢ does not exceed k) by the following way.

Let now § be an arbitrary positive number.
1. Choose integer m such that the first expression in the right-hand side of
(3.44) less than §/3 for any t > m.

2. Find n such that the second expression in the right-hand side of (3.44)
less than 6/3 for any ¢t < m + 1.

3. Then the solution of the Cauchy problem for the truncated Kolmogorov
system with initial condition ey on the interval [m;m + 1] (with error §/3) gives
us the limit 1-periodic regime 7(t) = (mo(t), 71 (t), ... )" with the error 6.

4. Finally, the limiting behaviour of Ji(t) = Pr{X(¢) < k} can be computed

k
as Y m;(t) with the same error §.
i=0

The limiting mean can be found be the same way.

4. Example

Computing of the limiting mean ¢(¢) and the sojourn probabilities Ji(t) for some
k-s. Particularly, Jy(t) is the probability that the queue is empty at the moment ¢.
Consider queue-length process for the M (t)/M(t)/100 queue with catastro-
phes and intensities A\(¢) = 0.1+ 0.1sin 27t, p(t) = 2+ cos 2nt, £(t) = 2+ sin 4nt.
Using the way of Section 3, put d = 2 and dj, = d*. Then we have ¢ = 0.2,
L=62 M=100, w. =27" w2 = 2%, furthermore , B(t) = u(t) — (d—1)A(t) =

n

1.9 4+ cos 27t — 0.1sin 27, K < 3, and §* = 1.9.
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Figure 1: The limiting mean
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Figure 2: The sojourn probability Pr (X (t)) =0
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Figure 3: The sojourn probability Pr (X (¢)) <1
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Figure 4: The sojourn probability Pr (X (t)) < 2
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1
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0.93333356 \
0.933333525 \ /
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0,933333755 \

093333372

0.933333685

0.93333365

Figure 5: The sojourn probability Pr (X (¢)) < 3

Estimates of Section 2 (2.24) and (2.32) give us the following (sufficiently
rough) bounds: litrgci)gfpo(t) > 0.72, and h?iilolp Ep0)(t) <0.14.

On the other hand, we can obtain essentially more sharp bounds. Let § =
107%. Then it is sufficient to choose m = 12 and n = 50. Then we obtain the
limiting mean ¢(t) and all sojourn probabilities Jj(t) with error § = 1076 as the
respective characteristics of the solution with initial condition eg of the Cauchy
problem for the respective truncated Kolmogorov system on the interval [m,m +
1]. Now, figures 1 — 5 shows us the approximations of the limit characteristics
o(t), and Jy(t) — Js(t) respectively. Moreover, Ji(t) ~ 1 for k > 4.
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