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OPTIMUM CHEMICAL BALANCE WEIGHING DESIGN

UNDER CERTAIN CONDITION

Bronis law Ceranka, Ma lgorzata Graczyk

The problem of estimation of unknown weights of p objects is considered.
The experiment is carried out according to the standard Gauss-Markoff
model of the chemical balance weighing design. Existence conditions of
the optimum design are given. New construction method of the optimum
design based on the set of the incidence matrices of the ternary balanced
block designs is presented.

1. Introduction

The chemical balance weighing design is determined by the model

y = Xw + e,

where

(1) y is an n × 1 random observed vector of the recorded results of weights,

(2) the design matrix X ∈ Φn×p,m (−1, 0, 1), where Φn×p,m (−1, 0, 1) denotes
the class of n × p matrices of the chemical balance weighing design with
elements equal to −1, 0 or 1,

(3) m = max{m1,m2, . . . ,mp}, mj is the number of elements equal to −1 and
1 in jth column of X, j = 1, 2, . . . , p,
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(4) w is a p × 1 vector representing unknown weights of objects,

(5) e is n × 1 random vector of errors,

(6) E (e) = 0n and Var (e) = σ2In, where 0n is an n× 1 null vector, In denotes
n × n identity matrix.

The squares estimator of the vector w representing unknown weights of objects is
equal to ŵ = (X′X)−1

X′y assuming that X is of full column rank. The variance
matrix of ŵ is given by Var (ŵ) = σ2 (X′X)−1 .

The problems concerned on determining of unknown measurements of objects in
the model of the chemical balance weighing design were considered in Banerjee
(1975), Raghavarao (1971), Shah and Sinha (1989). Hotelling (1944) has shown
that for a chemical balance weighing design the minimum attainable variance
for each of the estimated weights is σ2/n. He proved the theorem that each
of the variance of the estimated weights attains the lower bound if and only if
X′X = nIp. For this case several construction methods of the design matrix of the
chemical balance weighing design are available in the literature (See Kageyama,
Saha (1983), Swamy (1982), Ceranka and Katulska (1999)). The design for which
the variance of each of the estimated weights attains its minimum is called by
Hotelling optimal. In the case given by Hotelling elements of the design matrix
X may be equal to −1 and 1, only. In this paper we generalize the optimality
given by Hotelling. Sometimes, it is not possible to take into account all possible
combinations of objects in each measurement operation. Hence in the design
matrix X there are elements equal to 0. The aim of the paper is to present the
lower bound of the variance of estimators of unknown weights of objects assuming
that in X are elements equal to −1, 0 or 1 and to give certain ways of construction
of the optimal design matrix.

2. Variance limit of estimated weights

For the design matrix X ∈ Φn×p,m (−1, 0, 1) Ceranka and Graczyk (2001) have
obtained the following results.

Theorem 2.1. In the nonsingular chemical balance weighing design X ∈
Φn×p,m (−1, 0, 1) the variance of the estimated measurements of objects is

(1) Var (ŵj) ≥
σ2

m
, j = 1, 2, . . . , p.
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Definition 2.1. Any nonsingular chemical balance weighing design is opti-
mal if the variance of each of the estimators attains the lower bound given in
(1).

Theorem 2.2. Any nonsingular chemical balance weighing design with the
design matrix X ∈ Φn×p,m (−1, 0, 1) is optimal if and only if

(2) X′X = mIp.

In next sections we give the construction method of the design matrix of the
optimum chemical balance weighing design. It is based on the incidence matrices
of the ternary balanced block designs.

3. Ternary balanced block designs

In this section we remind the definition of the ternary balanced block design given
in Billington (1984).

A ternary balanced block design is defined as the design in which

(1) we place v treatments in b blocks, each of the size k,

(2) each treatment occurs r times altogether and 0, 1 or 2 times in each block,

(3) each of the distinct pairs of elements appears λ times,

(4) each treatment occurs once in ρ1 blocks and twice in ρ2 blocks, where ρ1

and ρ2 are constants for the design,

(5) N is the incidence matrix of the ternary balanced block design,

(6) the parameters are connected by the following equalities

vr = bk,

r = ρ1 + 2ρ2,

λ(v − 1) = ρ1(k − 1) + 2ρ2(k − 2) = r(k − 1) − 2ρ2,

NN′ = (ρ1 + 4ρ2 − λ)Iv + λ1v1
′

v = (r + 2ρ2 − λ)Iv + λ1v1
′

v.
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4. The design matrix

Let us consider the set of the incidence matrices Nh of the ternary balanced block
designs with the parameters v, bh, rh, kh, λh, ρ1h, ρ2h, h = 1, 2, 3. We form the
design matrix X as

(3) X =





N′

1
− 1b11

′

v

N′

2
− 1b21

′

v

N′

3
− 1b31

′

v



 .

Each column of design matrix X contains
3
∑

h=1

ρ2h elements equal to 1,

3
∑

h=1

(bh − ρ1h − ρ2h) elements equal to −1 and
3
∑

i=h

ρ1h elements equal to 0. That

means each object is weighed m =
3
∑

h=1

(bh − ρ1h) times in n =
3
∑

h=1

bh measure-

ment operations.

Lemma 4.1. Any chemical balance weighing design with the design matrix
X ∈ Φn×p,m (−1, 0, 1) given in (3) is nonsingular if and only if v 6= kh for at
least one h, h = 1, 2, 3.

P r o o f. For the design matrix X ∈ Φn×p,m (−1, 0, 1) of the form (3) we
have

(4) X′X =

(

3
∑

h=1

(rh − λh + 2ρ2h)

)

Iv +

(

3
∑

h=1

(bh + λh − 2rh)

)

1v1
′

v.

Hence det(X′X) =

(

3
∑

h=1

(rh − λh + 2ρ2h)

)v−1

·

(

3
∑

h=1

rh

kh

(v − kh)2
)

. Because

3
∑

h=1

(rh − λh + 2ρ2h) > 0 then det(X′X) = 0 if and only if v = kh for each

h, h = 1, 2, 3. Thus the lemma is proved. �

Theorem 4.1. Nonsingular chemical balance weighing design with the design
matrix X ∈ Φn×p,m (−1, 0, 1) given in (3) is optimal if and only if

(5)

3
∑

h=1

(bh + λh − 2rh) = 0.
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P r o o f. Nonsingular chemical balance weighing design with the matrix
X ∈ Φn×p,m (−1, 0, 1) of (3) is optimal if and only if condition (2) is fulfilled.
Thus we compare the elements of both matrices. The diagonal elements of X′X

are
∑

3

i=1
(bh − rh + 2ρ2h) . Taking into account relations between parameters of

the ternary balanced block designs we get
∑

3

i=1
(bh − ρ1h) = m. The offdiagonal

elements of X′X are
∑

3

i=1
(bh + λh − 2rh) . Thus the theorem follows.

Now, we give the series of the parameters of the ternary balanced block
designs. Based on the incidence matrices of these designs we, as the next step,
form the design matrix X ∈ Φn×p,m (−1, 0, 1) in (3) of the optimum chemical
balance weighing design. �

Corollary 4.1. If the parameters of the ternary balanced block design are
equal to

(i) v = 5, b1 = 20, r1 = 12, k1 = 3, λ1 = ρ11 = ρ21 = 4 and v = 5, b2 =
10, r2 = 12, k2 = 6, λ2 = 13, ρ12 = ρ22 = 4 and v = 5, b3 = 15, r3 =
21, k3 = 7, λ3 = 28, ρ13 = ρ23 = 7,

(ii) v = k1 = 9, b1 = r1 = u + 8, λ1 = u + 7, ρ11 = u, ρ21 = 4 and v = 9, b2 =
6s, r2 = 4s, k2 = 6, λ2 = 2s + 1, ρ12 = 8, ρ22 = 2(s − 2) and v = 9, b3 =
9s, r3 = 11s, k3 = 11, λ3 = 13s, ρ13 = 5s, ρ23 = 3s, s = 3, 4, . . . , u =
1, 2, . . . ,

(iii) v = k1 = 9, b1 = r1 = u + 17, λ1 = u + 15, ρ11 = u + 1, ρ21 = 8 and v =
9, b2 = 3(s + 4), r2 = 2(s + 4), k2 = 6, λ2 = s + 5, ρ12 = 8, ρ22 =
s and v = 9, b3 = 3(s + 4), r3 = 4(s + 4), k3 = 12, λ3 = 5s + 21, ρ13 =
8, ρ23 = 2(s + 2), u, s = 1, 2, . . . ,

(iv) v = k1 = 11, b1 = r1 = u + 21, λ1 = u + 19, ρ11 = u + 1, ρ21 = 10 and v =
b2 = 11, r2 = k2 = 7, λ2 = 4, ρ12 = 5, ρ22 = 1 and v = b3 = 11, r3 = k3 =
15, λ3 = 20, ρ13 = ρ23 = 5, u = 1, 2, . . . ,

(v) v = b1 = r1 = k1 = 11, λ1 = 10, ρ11 = 1, ρ21 = 5 and v = b2 = 11, r2 =
k2 = 7, λ2 = 4, ρ12 = 5, ρ22 = 1 and v = 11, b3 = 44, r3 = 48, k3 =
12, λ3 = 52, ρ13 = 40, ρ23 = 4,

(vi) v = k1 = 12, b1 = r1 = u + 22, λ1 = u + 20, ρ11 = u, ρ21 = 11 and v =
12, b2 = 3(2s+5), r2 = 2(2s+5), k2 = 8, λ2 = 2(s+3), ρ12 = 6−2s, ρ22 =
3s + 2 and v = 12, b3 = 3(2s + 5), r3 = 4(2s + 5), k3 = 16, λ3 =
2(5s + 13), ρ13 = 6 − 2s, ρ23 = 5s + 7, s = 0, 1, 2, u = 1, 2, . . . ,
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(vii) v = 12, b1 = 18, r1 = 15, k1 = 10, λ1 = 11, ρ11 = 1, ρ21 = 7 and v =
12, b2 = 15, r2 = 10, k2 = 8, λ2 = 6, ρ12 = 6, ρ22 = 2 and v = 12, b3 =
48, r3 = 56, k3 = 14, λ3 = 52, ρ13 = 48, ρ23 = 4,

(viii) v = k1 = 12, b1 = r1 = 46, λ1 = 44, ρ11 = 24, ρ21 = 11 and v = 12, b2 =
3(2s + 5), r2 = 2(2s + 5), k2 = 8, λ2 = 2(s + 3), ρ12 = 6 − 2s, ρ22 =
3s + 2 and v = 12, b3 = 3(2s + 5), r3 = 4(2s + 5), k3 = 16, λ3 =
2(5s + 13), ρ13 = 6 − 2s, ρ23 = 5s + 7, s = 0, 1, 2,

(ix) v = k1 = 15, b1 = r1 = u + 29, λ1 = u + 27, ρ11 = u + 1, ρ21 = 14 and v =
15, b2 = 3(s + 4), r2 = 2(s + 4), k2 = 10, λ2 = s + 5, ρ12 = 6 − 2s, ρ22 =
2s+1 and v = 15, b3 = 3(s+4), r3 = 4(s+4), k3 = 20, λ3 = 5s+21, ρ13 =
6 − 2s, ρ23 = 3s + 5, s = 1, 2, u = 1, 2, . . . ,

then X ∈ Φn×p,m (−1, 0, 1) in (3) is the design matrix of the optimum chemical
balance weighing design.

Corollary 4.2. If the parameters of the first ternary balanced block design
are equal to

(i) v = k1 = 5, b1 = r1 = 10, λ1 = 8, ρ11 = 2, ρ21 = 4,

(ii) v = k1 = 5, b1 = r1 = 14, λ1 = 12, ρ11 = 6, ρ21 = 4 or

(iii) v = k1 = 5, b1 = r1 = 22, λ1 = 20, ρ11 = 14, ρ21 = 4

and the parameters of second and third ternary balanced block designs are equal
to v = 5, b2 = 5(s + 2), r2 = 3(s + 2), k2 = 3, λ2 = s + 3, ρ12 = s + 6, ρ22 =
s and v = 5, b3 = 5(s+2), r3 = 7(s+2), k3 = 7, λ3 = 3s+7, ρ13 = s+6, ρ23 =
3s + 4, s = 1, 2, . . . , respectively, then X ∈ Φn×p,m (−1, 0, 1) in the form (3)
is the design matrix of the optimum chemical balance weighing design.

Corollary 4.3. If the parameters of the first ternary balanced block design
are equal to v = k1 = 5, b1 = r1 = u + 4, λ1 = u + 3, ρ11 = u, ρ21 = 2 and the
parameters of the second and third ternary balanced block designs are equal to

(i) v = 5, b2 = 5(s + 2), r2 = 3(s + 2), k2 = 3, λ2 = s + 3, ρ12 = s + 6, ρ22 =
s and v = 5, b3 = 5(s + 2), r3 = 7(s + 2), k3 = 6, λ3 = 9(s + 2), ρ13 =
s + 2, ρ23 = 3(s + 2),
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(ii) v = 5, b2 = 20, r2 = 12, k2 = 3, λ2 = 6, ρ12 = 8, ρ22 = 2 and v = 5, b3 =
20, r3 = 28, k3 = 7, λ3 = 36, ρ13 = 4, ρ23 = 12,

where u, s = 1, 2, . . . , then X ∈ Φn×p,m (−1, 0, 1) in the form (3) is the design
matrix of the optimum chemical balance weighing design.

Corollary 4.4. If the parameters of the first ternary balanced block design
are equal to v = k1 = 5, b1 = r1 = u + 9, λ1 = u + 7, ρ11 = u + 1, ρ21 = 4 and
the parameters of the second and third ternary balanced block designs are equal to

(i) v = 5, b2 = 5s, r2 = 3s, k2 = 3, λ2 = s+2, ρ12 = s+8, ρ22 = s−4 and v =
5, b3 = 5s, r3 = 7s, k3 = 7, λ3 = 9s, ρ13 = s, ρ23 = 3s, s = 5, 6, . . . ,

(ii) v = 5, b2 = 5(s + 2), r2 = 3(s + 2), k2 = 3, λ2 = s + 3, ρ12 = s + 6, ρ22 =
s and v = 5, b3 = 5(s + 2), r3 = 7(s + 2), k3 = 7, λ3 = 9s + 19, ρ13 =
s + 6, ρ23 = 3s + 4, s = 1, 2, . . . , or

(iii) v = 5, b2 = 5(s+4), r2 = 3(s+4), k2 = 3, λ2 = s+6, ρ12 = s+12, ρ22 =
s and v = 5, b3 = 5(s + 4), r3 = 7(s + 4), k3 = 7, λ3 = 9(s + 4), ρ13 =
s + 4, ρ23 = 3(s + 4), s = 1, 2, . . . ,

where u = 1, 2, . . . , then X ∈ Φn×p,m (−1, 0, 1) in the form (3) is the design
matrix of the optimum chemical balance weighing design.

Corollary 4.5. If the parameters of the first ternary balanced block design
are equal to v = k1 = 6, b1 = r1 = u + 10, λ1 = u + 8, ρ11 = u, ρ21 = 5 and the
parameters of the second and third ternary balanced block designs are equal to

(i) v = 6, b2 = 4s, r2 = 2s, k2 = 3, λ2 = 2, ρ12 = 2(5 − s), ρ22 =
2s − 5 and v = 6, b3 = 6s, r3 = 8s, k3 = 8, λ3 = 10s, ρ13 = 2s, ρ23 =
3s, s = 3, 4,

(ii) v = 6, b2 = 16, r2 = 8, k2 = 3, λ2 = 2, ρ12 = 2, ρ22 = 3 and v = 6, b3 =
24, r3 = 32, k3 = 8, λ3 = 40, ρ13 = 8, ρ23 = 12,

where u = 1, 2, . . . , then X ∈ Φn×p,m (−1, 0, 1) in the form (3) is the design
matrix of the optimum chemical balance weighing design.

Corollary 4.6. If the parameters of the first ternary balanced block design
are equal to
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(i) v = k1 = 9, b1 = r1 = 18, λ1 = 16, ρ11 = 2, ρ21 = 8,

(ii) v = k1 = 9, b1 = r1 = 30, λ1 = 28, ρ11 = 14, ρ21 = 8 or

(iii) v = k1 = 9, b1 = r1 = 38, λ1 = 36, ρ11 = 22, ρ21 = 8

and the parameters of second and third ternary balanced block designs are equal
to v = 9, b2 = 3(s + 4), r2 = 2(s + 4), k2 = 6, λ2 = s + 5, ρ12 = 8, ρ22 =
s and v = 9, b3 = 3(s + 4), r3 = 2(s + 4), k3 = 12, λ3 = s + 5, ρ13 = 8, ρ23 =
s, s = 1, 2, . . . , then X ∈ Φn×p,m (−1, 0, 1) in the form (3) is the design matrix
of the optimum chemical balance weighing design.

Corollary 4.7. If the parameters of the first ternary balanced block design
are equal to

(i) v = k1 = 11, b1 = r1 = 22, λ1 = 20, ρ11 = 2, ρ21 = 10,

(ii) v = k1 = 11, b1 = r1 = 38, λ1 = 36, ρ11 = 18, ρ21 = 10 or

(iii) v = k1 = 11, b1 = r1 = 46, λ1 = 44, ρ11 = 26, ρ21 = 10

and the parameters of second and third ternary balanced block designs are equal
to v = 11, b2 = 11, r2 = 7, k2 = 7, λ2 = 4, ρ12 = 5, ρ22 = 1 and v = 11, b3 =
11, r3 = 15, k3 = 15, λ3 = 20, ρ13 = ρ23 = 5, then X ∈ Φn×p,m (−1, 0, 1) in the
form (3) is the design matrix of the optimum chemical balance weighing design.

Corollary 4.8. If the parameters of the first and second ternary balanced
block designs are equal to v = k1 = 11, b1 = r1 = u + 10, λ1 = u + 9, ρ11 =
u, ρ21 = 5 and v = b2 = 11, r2 = k2 = 7, λ2 = 4, ρ12 = 5, ρ22 = 1 and the
parameters of third ternary balanced block design are equal to

(i) v = 11, b3 = 22, r3 = 26, k3 = 13, λ3 = 30 ρ13 = 14, ρ23 = 6, or

(ii) v = 11, b3 = 44, r3 = 48, k3 = 12, λ3 = 52 ρ13 = 40, ρ23 = 4

then X ∈ Φn×p,m (−1, 0, 1) in the form (3) is the design matrix of the optimum
chemical balance weighing design.
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Corollary 4.9. If the parameters of the first ternary balanced block design
are equal to

(i) v = k1 = 15, b1 = r1 = 30, λ1 = 28, ρ11 = 2, ρ21 = 14,

(ii) v = k1 = 15, b1 = r1 = 54, λ1 = 52, ρ11 = 26, ρ21 = 14 or

(iii) v = k1 = 15, b1 = r1 = 62, λ1 = 60, ρ11 = 34, ρ21 = 14

and the parameters of second and third ternary balanced block designs are equal
to v = 15, b2 = 3(s + 4), r2 = 2(s + 4), k2 = 10, λ2 = s + 5, ρ12 = 6− 2s, ρ22 =
2s + 1 and v = 15, b3 = 3(s + 4), r3 = 4(s + 4), k3 = 20, λ3 = 2s + 9, ρ13 =
6 − 2s, ρ23 = 3s + 5, s = 1, 2, then X ∈ Φn×p,m (−1, 0, 1) in the form (3) is
the design matrix of the optimum chemical balance weighing design.

Corollary 4.10. If the parameters of the first and second ternary balanced
block designs are equal to v = k1 = 15, b1 = r1 = u + 14, λ1 = u + 13, ρ11 =
u, ρ21 = 7 and v = 15, b2 = 18, r2 = 12, k2 = 10, λ2 = 7, ρ12 = 2, ρ22 = 5 and
the parameters of third ternary balanced block design are equal to

(i) v = 15, b3 = 30, r3 = 36, k3 = 18, λ3 = 42, ρ13 = ρ23 = 12 or

(ii) v = 15, b3 = 45, r3 = 51, k3 = 17, λ3 = 57, ρ13 = 33, ρ23 = 9

where u = 1, 2, . . . , then X ∈ Φn×p,m (−1, 0, 1) in the form (3) is the design
matrix of the optimum chemical balance weighing design.

5. Example

In the experiment we want to determine unknown measurements of p = 5 objects
in n = 40 measurement operations. We assume that in each weighing each object
occurs at most m = 24 times. We consider the ternary balanced block designs
(See Theorem 4.3 (i)) with the parameters v = k1 = 5, b1 = r1 = 10, λ1 =
8, ρ11 = 2, ρ21 = 4, v = 5, b2 = 15, r2 = 9, k2 = 3, λ2 = 4, ρ12 = 7, ρ22 =
1, v = 5, b3 = 15, r3 = 21, k3 = 7, λ3 = 10, ρ13 = ρ23 = 7 and with the
incidence matrices
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N1 =



















2 0 0 2 1 2 0 0 2 1

1 2 0 0 2 1 2 0 0 2

2 1 2 0 0 2 1 2 0 0

0 2 1 2 0 0 2 1 2 0

0 0 2 1 2 0 0 2 1 2



















,

N2 =



















2 0 0 0 1 1 1 1 1 1 1 0 0 0 0

1 2 0 0 0 1 1 0 0 0 0 1 1 1 1

0 1 2 0 0 0 0 1 1 1 1 1 1 0 0

0 0 1 2 0 1 1 1 1 0 0 0 0 1 1

0 0 0 1 2 0 0 0 0 1 1 1 1 1 1



















,

N3 =



















0 2 2 2 1 1 1 1 1 1 1 2 2 2 2

1 0 2 2 2 1 1 2 2 2 2 1 1 1 1

2 1 0 2 2 2 2 1 1 1 1 1 1 2 2

2 2 1 0 2 1 1 1 1 2 2 2 2 1 1

2 2 2 1 0 2 2 2 2 1 1 1 1 1 1



















.

Based on these matrices we form the design matrix X ∈ Φn×p,m (−1, 0, 1) in (3)
as X = [A1 A2 A3]

′ , where

A′

1
=



















1 −1 −1 1 0 1 −1 −1 1 0

0 1 −1 −1 1 0 1 −1 −1 1

1 0 1 −1 −1 1 0 1 −1 −1

−1 1 0 1 −1 −1 1 0 1 −1

−1 −1 1 0 1 −1 −1 1 0 1



















,
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A′

2
=



















1 −1 −1 −1 0 0 0 0 0 0 0 −1 −1 −1 −1

0 1 −1 −1 −1 0 0 −1 −1 −1 −1 0 0 0 0

−1 0 1 −1 −1 −1 −1 0 0 0 0 0 0 −1 −1

−1 −1 0 1 −1 0 0 0 0 −1 −1 −1 −1 0 0

−1 −1 −1 0 1 −1 −1 −1 −1 0 0 0 0 0 0



















,

A′

3
=



















−1 1 1 1 0 0 0 0 0 0 0 1 1 1 1

0 −1 1 1 1 0 0 1 1 1 1 0 0 0 0

1 0 −1 1 1 1 1 0 0 0 0 0 0 1 1

1 1 0 −1 1 0 0 0 0 1 1 1 1 0 0

1 1 1 0 −1 1 1 1 1 0 0 0 0 0 0



















.

For unknown measurements of objects Var (ŵj) =
σ2

24
.

REFERE NC ES

[1] K. S. Banerjee. Weighing Designs for Chemistry, Medicine, Economics,
Operations Research, Statistics, Marcel Dekker Inc., New York, 1975.

[2] E. J. Billington. Balanced n-array designs: a combinatorial survey and
some new results. Ars Combin. 17 (1984), 37–72.

[3] B. Ceranka, M. Graczyk. Optimum chemical balnce weighing designs
under the restriction on weighings. Discussioned Mathematicae – Probability
and Statistics 21 (2001), No 2, 111–120.

[4] B. Ceranka, K. Katulska. Chemical balnce weighing designs under the
restriction on the number of objects placed on the pans. Tatra Mt. Math.
Publ. 17 (1999), 141–148.

[5] H. Hotelling. Some improvements in weighing designs and other experi-
mental techniques. Ann. Math. Stat. 15 (1944), 297–315.



318 Bronis law Ceranka, Ma lgorzata Graczyk

[6] S. Kageyama, G. M. Saha. Note on the construction of optimum chemical
balance weighing designs. Ann. Inst. Statist. Math. 35A (1984), 447–
452.

[7] M. N. Swamy. Use of balanced bipartite weighing designs as chemical bal-
ance designs. Comm. Statist. Theory Methods 11 (1982), 769–785.

[8] D. Raghavarao. Constructions and combinatorial problems in designs of
experiments. John Wiley Inc., New York, 1971.

[9] K. R. Shah, B. K. Sinha. Theory of optimal designs. Springer-Verlag,
Berlin, 1989.

Bronis law Ceranka, Ma lgorzata Graczyk

Poznan University of Life Science

Faculty of Agronomy

Dept. of Math. Stat.

ul. Wojska Polskiego 28

60-637 Poznań, Poland
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