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THE NUMBER OF PARTS OF GIVEN MULTIPLICITY IN A

RANDOM INTEGER PARTITION

Emil Kamenov
1

Let Xm,n denote the number of parts of multiplicity m in a random partition
of the positive integer n. We study the asymptotic behaviour of the variance
of Xm,n as n → ∞ and fixed m.

1. Introduction

Let n be a positive integer. By a partition ω of n we mean a representation

ω : n =
∑

j

jµω(j),

where µω(j), j = 1, 2, . . . are nonnegative integers. µω(j) is called the multiplicity
of part j.

The generating function g(x) of the number of all partitions of n, usually
denoted by p(n), is determined by Euler(see [1, Chap.1]):

g(x) = 1 +

∞
∑

n=1

p(n)xn =

∞
∏

j=1

1

1 − xj
.(1)
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We shall introduce the uniform probability measure P on the set of all par-
titions of n, assuming that the probability 1/p(n) is assigned to each partition.
Thus, each characteristic of the parts can be regarded as random variable.

Let Xm,n(ω) be the number of parts of multiplicity m in a partition ω of the
positive integer n, i.e. Xm,n(ω) = |{j : µω(j) = m}|. Corteel, Pittel, Savage,
Wilf [2] found the generating function H(x, y) of Xm,n(ω):

H(x, y) =
∑

n,j≥0

xnyjp(n)P (Xm,n = j) = g(x)

∞
∏

k=1

[

1 + (y − 1)xmk(1 − xk)
]

.(2)

They use this generating function and found the following identity:

E(Xm,n) =
∑

j≥0

p(n − jm) − p(n − (m + 1)j)

p(n)
.

Then, they applied the asymptotic formula [3] for p(n) and showed that for each
fixed m the average number of parts of multiplicity m of a partition of n is

E(Xm,n) ∼
√

6n

π

1

m(m + 1)
= µn(m), n → ∞.(3)

Our main goal in this paper is to continue their research determining the
asymptotic of the variance of Xm,n. We apply the saddle point method.

The paper is organized as follows. In section 2 are given three lemmas related
to the partition generating function and the number of integer partitions. Section
3 contains the theorem for the variance of Xm,n and its proof.

2. Preliminary asymptotic

We need some auxiliary facts related to the asymptotic behaviour of generating
function g(x) and the numbers of partitions p(n). The results are given in the
next three lemmas.

Lemma 1. [4]. If rn satisfy

rn = 1 − π√
6n

+
π2

12n
+ O(n−3/2).(4)

and
b(r) =

π

3(1 − r)3
, 0 < r < 1,(5)
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then, as n → ∞, the partition generating function determined by (2) satisfies

g(rneiθ)e−iθn = g(rn) exp

(−θ2b(rn)

2

)

[1 + O(1/ log n)] ,

uniformly for |θ| ≤ δn, where

δn =
n−2/3

log n
.(6)

Lemma 2. [5]. If rn and δn satisfy (4) and (6) , respectively, then there exist
two constants c > 0 and n(c) > 0 such that

|g(rneiθ)| ≤ g(rn) exp

(

−cn1/6

log2 n

)

uniformly for δn ≤ |θ| ≤ π and n ≤ n(c).

We shall also essentially use the asymptotic for of the numbers p(n). It is
given by Hardy and Ramanujan’s formula [3], however, we need this result in a
slightly different form as it is given in [5].

Lemma 3. We have

p(n) ∼ g(rn)r−n
n

√

2πb(rn)

as n → ∞, where rn satisfies the equation

rn g′(rn)

g(rn)
= n(7)

for sufficiently large n and b(r) is defined by (5).

3. Variance of Xm,n

Theorem 1. Let Xm,n is the number of parts of multiplicity m in a random
integer partition. Then, for every fixed m,

Var(Xm,n) ∼
√

6n

π

4m + 1

2m(2m + 1)(m + 1)
,

as n → ∞.
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P r o o f. First, we point out that when taking logarithms we will consider the
main branch of the logarithmic function assuming that log z < 0 for 0 < z < 1.
It is easy to see that (2) yields

d

dy
log H(x, y) =

d
dyH(x, y)

H(x, y)
=

∞
∑

k=1

xmk(1 − xk)

1 + (y − 1)xmk(1 − xk)
.

Then

d

dy
H(x, y)

∣

∣

∣

∣

y=1

= H(x, 1)
∞
∑

k=1

xmk(1 − xk) = g(x)
∞
∑

k=1

xmk(1 − xk).

Therefore, again by (2)

∑

n≥0

xnp(n)E(Xm,n) = g(x)
∞
∑

k=1

xmk(1 − xk).

In the same way one can calculate

∂2

∂y2
H(x, y)

∣

∣

∣

∣

y=1

= g(x)







[ ∞
∑

k=1

xmk(1 − xk)

]2

−
∞
∑

k=1

[

xmk(1 − xk)
]2







.

For the sake of convenience we denote the function in the curly brackets with
F (x):

F (x) =

[ ∞
∑

k=1

xmk(1 − xk)

]2

−
∞
∑

k=1

[

xmk(1 − xk)
]2

(8)

=

[

xm

1 − xm
− xm+1

1 − xm+1

]2

− x2m

1 − x2m
+

2x2m+1

1 − x2m+1
− x2m+2

1 − x2m+2
.

Therefore (2) again implies that

∑

n≥0

xnp(n)E[Xm,n(Xm,n − 1)] = g(x)F (x).(9)

We apply Cauchy’s coefficient formula to (9) on the circle x = rneiθ with rn

determined by (4). Thus we obtain

E[Xm,n(Xm,n − 1)] =
r−n
n

2π p(n)

∫ π

−π
g(rneiθ)F (rneiθ)e−iθndθ = I1 + I2.(10)
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We break integral into two parts as follows:

I1 =
r−n
n

2π p(n)

∫ δn

−δn

g(rneiθ)F (rneiθ)e−iθndθ,(11)

I2 =
r−n
n

2π p(n)

∫

δn≤|θ|≤π
g(rneiθ)F (rneiθ)e−iθndθ.(12)

The asymptotic analysis of these integrals follows in the next two subsections.

3.1. An asymptotic estimate for I1(n)

First, we will show that rn defined by (4) satisfies condition (7). From (1) it
follows that

r g′(r)
g(r)

= r
∂

∂r
log g(r) =

∞
∑

j=1

j rj

1 − rj
.(13)

We interpret this sum by a Riemann’s one with the step size yn = − log rn

∞
∑

j=1

j rj

1 − rj
∼ 1

y2
n

∫ ∞

0

y

ey − 1
dy.(14)

Next, we use a well-known properties of Riemann zeta function (see e.g. [6,
1.7.8(II)])

∫ ∞

0

y

ey − 1
dy = ζ(2) Γ(2) =

π2

6
.(15)

Combining (13), (14), (15) and (4), we find that

rn g′(rn)

g(rn)
∼ π2

6 log2 rn

=
1

n−1 + O(n−3/2)
,

which completes the proof of (7).
We apply lemmas 1 and 3 to (11) and find that

I1 ∼ b1/2(rn)√
2π

∫ δn

−δn

e−
θ2b(rn)

2 F (rneiθ)dθ.(16)

Next, we expand F (rneiθ) around the point rn by Taylor’s formula:

F (rneiθ) = F (rn) + rn(eiθ − 1)F ′(rn) + O
(

|θ2|F ′′(rn)
)

(17)

= F (rn)

[

1 + O

(

|θ| F ′(rn)

F (rn)

)]

.
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We will first estimate the error term in (17). From definition (4) of rn it follows
that

rm
n

1 − rm
n

=
(1 + O(n−1/2))m

1 −
(

1 − π√
6n

+ O(n−1)
)m =

1 + O(n−1/2)
πm√
6n

+ O(n−1)
∼

√
6n

π
.(18)

We use this asymptotic equivalence and equation (8) to estimate F (rn) as follows:

F (rn) =
6n

π2

(

1

m
− 1

m + 1

)2

−
√

6n

π

(

1

2m
− 2

2m + 1
+

1

2m + 2

)

(19)

∼ 6n

π2

1

m2(m + 1)2
−

√
6n

π

1

2m(2m + 1)(m + 1)
.

Next, we use (8) and (18) again to calculate F ′(rn):

F ′(rn) = 2

[

rm
n

1 − rm
n

− rm+1
n

1 − rm+1
n

] [

mrm−1
n

(1 − rm
n )2

− (m + 1)rm
n

(1 − rm+1
n )2

]

(20)

− 2mr2m−1
n

(1 − r2m
n )2

+
2 (2m + 1)r2m

n

(1 − r2m+1
n )2

− (2m + 2)r2m+1
n

(1 − r2m+2
n )2

∼ 2
(6n)3/2

π3

(

1

m
− 1

m + 1

)2

− 6n

π2

(

1

2m
− 2

2m + 1
+

1

2m + 2

)

= O(n3/2).

From (19), (20) and (6) it follows that

O

(

|θ| F ′(rn)

F (rn)

)

= O

(

|δn|
n3/2

n

)

= O(n−1/6).(21)

Substituting (17) and (21) in (16) we obtain

I1 ∼ b1/2(rn)F (rn)√
2π

∫ δn

−δn

e−
θ2b(rn)

2 dθ =
F (rn)√

2π

∫ δnb1/2(rn)

−δnb1/2(rn)
e−

t2

2 dt.(22)

In last integral we changed the variable of integration into t = θ b1/2(rn).Finally,
(4) and (5) imply that

b(rn) =
π2

3
[

π√
6n

− π2

12 n + O(n−3/2)
]3 =

(6n)3/2 π2

3π3
[

1 + O(n−1/2)
]

=
(6n)3/2

3π

[

1 + O(n−1/2)
]

=
2
√

6

π
n3/2 + O(n).(23)



The Number of Parts of Given Multiplicity in a Random Partition 163

If we combine this equation with the definition of δn given by (6), we find that

δn b1/2(rn) ∼ dn1/12/ log n, d = (2/π)1/261/4.(24)

To complete the asymptotic analysis of I1 we apply a well known property of
Gaussian density to (22). So we get

I1 ∼ F (rn).(25)

3.2. An asymptotic estimate for I2(n)

Now we will show that the integral I2 is negligible. It is easy to see that

∣

∣

∣

∣

rm
n eiθm

1 − rm
n eiθm

∣

∣

∣

∣

=
rm

√
1 − 2 rm cos θ + r2m

≤ rm

√
1 − 2 rm + r2m

≤ 1

1 − rm

=
1

1 −
(

1 − π√
6n

+ O(n−1
)m =

1
m π√

6n
+ O(n−1)

= O
(

n1/2
)

.(26)

From (8) and (26) it follows that

∣

∣

∣
F (rneiθ)

∣

∣

∣
≤
[

O
(

n1/2
)

+ O
(

n1/2
)]2

+ O
(

n1/2
)

= O(n).(27)

We apply lemmas 2 and 3 and inequality (27) to (12). Then, for n ≥ n(c), we
have

|I2(n)| ∼
∣

∣

∣

b1/2(rn)√
2 π g(rn)

∫

δn≤|θ|≤π g(rneiθ)F (rneiθ)e−iθndθ
∣

∣

∣

≤
b1/2(rn) exp

�
−cn1/6

log2 n �√
2 π

∫

δn≤|θ|≤π

∣

∣F (rneiθ)e−iθn
∣

∣ dθ

≤ b1/2(rn) exp
{

−cn1/6

log2 n

}

O(n)
√

2π.(28)

If we combine (23) and (28), we find that

|I2(n)| ≤ exp

{

−cn1/6

log2 n

}

O
(

n5/2
)

= o(1),(29)

as n → ∞.
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3.3. Formula about variance of Xm,n

Equations (10), (25) and (29) imply that

E[Xm,n(Xm,n − 1)] ∼ F (rn).

Substituting this, (19) and (3) in the well known formula

Var(Xm,n) = E[Xm,n(Xm,n − 1)] + E(Xm,n) − [E(Xm,n)]2

after simple manipulations we obtain

Var(Xm,n) ∼
√

6n

π

(

1

m(m + 1)
− 1

2m(2m + 1)(m + 1)

)

,

which completes the proof. �
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