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THE NUMBER OF PARTS OF GIVEN MULTIPLICITY IN A
RANDOM INTEGER PARTITION

Emil Kamenov !

Let X, » denote the number of parts of multiplicity m in a random partition
of the positive integer n. We study the asymptotic behaviour of the variance
of X,,.n as n — oo and fixed m.

1. Introduction
Let n be a positive integer. By a partition w of n we mean a representation

win=3jui),
J

where p,(7),7 = 1,2, ... are nonnegative integers. p,(7) is called the multiplicity
of part j.

The generating function g(x) of the number of all partitions of n, usually
denoted by p(n), is determined by Euler(see [1, Chap.1]):

(1) o) =1+ Y pma" = [ 1=
n=1

=1
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We shall introduce the uniform probability measure P on the set of all par-
titions of n, assuming that the probability 1/p(n) is assigned to each partition.
Thus, each characteristic of the parts can be regarded as random variable.

Let X, »(w) be the number of parts of multiplicity m in a partition w of the
positive integer n, i.e. X, n(w) = [{j : pw(j) = m}|. Corteel, Pittel, Savage,
Wilf [2] found the generating function H(z,y) of X, ,(w):

()H(z,y) = Y "yp(0)P(X = J) = g(2) [T [1+ (5 = Va1 = 2b)]
n,j20 k=1

They use this generating function and found the following identity:

E(X,.,) = ZO p(n —jm) —pp(% —(m+1)5)

Then, they applied the asymptotic formula [3] for p(n) and showed that for each
fixed m the average number of parts of multiplicity m of a partition of n is

(3) E(Xmn) ~ @m = pin(m), n— oo.

Our main goal in this paper is to continue their research determining the
asymptotic of the variance of X, ,. We apply the saddle point method.

The paper is organized as follows. In section 2 are given three lemmas related
to the partition generating function and the number of integer partitions. Section
3 contains the theorem for the variance of X, ,, and its proof.

2. Preliminary asymptotic

We need some auxiliary facts related to the asymptotic behaviour of generating
function g(x) and the numbers of partitions p(n). The results are given in the
next three lemmas.

Lemma 1. [4]. If r, satisfy
2

T T _
(4) rnzl—ﬁ+m+0(n 3/2).

and .
(5) b(’f’):m, 0<r<l,
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then, as n — oo, the partition generating function determined by (2) satisfies

i) = gty exp (570 ) 14 001 tog )],
uniformly for |0| < 6, where
n—2/3
(6) n= logn

Lemma 2. [5]. Ifr,, and d,, satisfy (4) and (6) , respectively, then there exist
two constants ¢ > 0 and n(c) > 0 such that

) _m1/6
l9(rne®)| < glrm) exp (—C’Z )
logn

uniformly for 6, < 10| <7 and n < n(c).

We shall also essentially use the asymptotic for of the numbers p(n). It is
given by Hardy and Ramanujan’s formula [3], however, we need this result in a
slightly different form as it is given in [5].

Lemma 3. We have
—nNn

g(rn)rn

P~

as n — 0o, where r, satisfies the equation

T'n g/(rn)
@) 9(rn)

for sufficiently large n and b(r) is defined by (5).

3. Variance of X, ,

Theorem 1. Let X,,,, is the number of parts of multiplicity m in a random
integer partition. Then, for every fized m,

Von dm +1
m 2m(2m+1)(m+1)’

Var(Xp, n) ~

as n — oQ.
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Proof. First, we point out that when taking logarithms we will consider the
main branch of the logarithmic function assuming that logz < 0 for 0 < z < 1.
It is easy to see that (2) yields

d 00
d e k(1 —2h)
— log H(x, y .
dy og H(z,y) = ; 14 (y — D)a™ (1 — zF)
Then
d oo o0
H(wy)|  =H1) > a1 —ab) = g(2) ) a1 -2t
y y=1 k=1 k=1

Therefore, again by (2)

[o.¢]
Z z"p(n)E(Xpmn Z T L
n>0 k=1
In the same way one can calculate

= g(x) [i 2"k (1 — xk)] - i [:z:mk(l - xk)r
k=1

k=1

2

a—yQH(CU,y)

y=1

For the sake of convenience we denote the function in the curly brackets with
F(z):

(8) Fz) = [ixmk(l ] i[ (1— 2 r
k=1

k=1

Sl —g2m T g2ml ] p2mA2”

2
™M xm—l—l me 2 x2m+1 x2m+2
T l1—am 1 —gmtl

Therefore (2) again implies that

(9) anp(n)E[Xm,n(Xm,n —1)] = g(z)F(z).

n>0

We apply Cauchy’s coefficient formula to (9) on the circle z = r,e? with r,
determined by (4). Thus we obtain

—n
T?’L

(10) BlXmn(Xmn = 1] = 57005

/ g(rneie)F(rneie)e_w”dG =1 + Is.
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We break integral into two parts as follows:

—n 57L
r . . .
11 I = n . 10 F o 0\ _—ifn
(11) 1 27 p(7) /—5n g(rpe)F(rpe*)e dé,
T -
12 =2 / rne ) (r,e?)e md0.
(12) 27 2 p(n) <o)< glrme ) E(rne®)e

161

The asymptotic analysis of these integrals follows in the next two subsections.

3.1. An asymptotic estimate for I;(n)

First, we will show that 7, defined by (4) satisfies condition (7). From (1) it

follows that

(13 190 D g gy = 30 7
=r—logyg(r) = .
g(r) or 89 = 1—rd
We interpret this sum by a Riemann’s one with the step size y, = —logr,

J
(14) I —/
; 11—7'1 ey—l

J]=

Next, we use a well-known properties of Riemann zeta function (see e.g.

1.7.8(I1)))

(15 [ atyw=core ="

Combining (13), (14), (15) and (4), we find that
rag'(ra) 1

g(rn) 6 log?r, n~l+0(n-3/2)

which completes the proof of (7).
We apply lemmas 1 and 3 to (11) and find that

b1/2 (T‘n) /577' 02b(rn) 0
16 L ~———= e~z F(rp,e)do.
(16) e (e

Next, we expand F (rnew) around the point r, by Taylor’s formula:

(17)  F(rpe) = F(rn) + ro(e” — 1)F'(r,) + O (10*1F" (ry))

— F(r) {1 +0 <|e I;((::;)] .
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We will first estimate the error term in (17). From definition (4) of r,, it follows
that

(18) o (1+O(n_1/2))m B 1+O(n_1/2) Vén
= 11— +omh)" HOeN

We use this asymptotic equivalence and equation (8) to estimate F(r,,) as follows:

(19) F(rn)zﬁ_”<l_ ! >2_\/@<1 2, 1 )

T \2m 2m+1  2m+2
on 1 vV on 1

- w2 m2(m + 1) 7 2m(2m+1)(m+1)

Next, we use (8) and (18) again to calculate F'(ry,):

rm pmtl mrm—1 (m+ 1)rm
20 F/ — 2 n _ n n _ n
( ) (Tn) |:1 . rnm 1— Tnm+1:| |:(1 _ T;Ln)2 (1 _ Tg@+1)2:|
2myr2m=1 2(2m 4 D)r2m  (2m 4 2)r2m+!

(1 _ T??Lm)Q (1 _ T%m—&-l)Q (1 _ T%m+2)2

3/2 1 2 1
N0 e S RS U S (S R TS S DR
3 m m+1 ™2 \2m 2m+1 2m+2

From (19), (20) and (6) it follows that

/(p n3/2
(21) 0 (|9| - ”)) e (|6n| 7) — O(n~1/%).

(Tn)

Substituting (17) and (21) in (16) we obtain

1/2 on 240 b/ 2 (rp) 2
(22) 1 ~ L) E ) / o~ 2L g Frn) / e 5 dt.

V2T —6n V2T J5,012(ry)

In last integral we changed the variable of integration into ¢ = 0 b/2 (rp).Finally,
(4) and (5) imply that

2 (6n)3/2 72
b(Tn) = 3 = _
3 \/% . % +O(TZ—3/2)} 37‘(’3 [l—i—O(n 1/2)]
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If we combine this equation with the definition of d,, given by (6), we find that
(24) 6 b2 (1) ~ dn'/12 /logn, d=(2/n)"?61/4,

To complete the asymptotic analysis of I; we apply a well known property of
Gaussian density to (22). So we get

(25) Iy ~ F(ry).

3.2. An asymptotic estimate for I3(n)
Now we will show that the integral I, is negligible. It is easy to see that

m rm 1

r, €
- = < <
1—r;{bewm’ V1I—=2rmcos +r2m = V1 —2rm 4 p2m T 1™

r

‘ m ,ifm

(26) = ! S S

1— (1—\/—_+O( )m Jee + 07

From (8) and (26) it follows that
(27) )F(rnew)] < [0 (nl/Q) +0 <n1/2>r +0 <n1/2> = O(n).

We apply lemmas 2 and 3 and inequality (27) to (12). Then, for n > n(c), we
have

2(ry) 0\ —ifn
|Iz(n)| ~ ;_; e f(; <|o|<x 9 g(rne®)F(rpe?)e " d@’

01/2(rn) xp S .
= \/; i Jsustoizn [F (ra€®)e™0"| d6
(28) < 51/2(rn) exp {%;;6} O(n)V2m.
If we combine (23) and (28), we find that
—cnl/6 5/9
(29) [I(n)| < exp — ¢ O (n / ) = o(1),
log“n

as n — oQ.
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3.3. Formula about variance of X, ,,
Equations (10), (25) and (29) imply that

E[Xn(Xmn —1)] ~ F(ry).
Substituting this, (19) and (3) in the well known formula
Var(Xpn) = E[Xmn(Xmn — 1] + E(Xmn) — [EXmn)]

after simple manipulations we obtain

Ven (1 L
Var(Xynn) ~ - (m(m +1)  2m(2m+1)(m + 1)) 7

which completes the proof. O

REFERENCES

[1] G.E.ANDREWS The Theory of Partitions, Encyclopedia Math. Appl. 2

Addison-Wesley, 1976.

[2] S.CORTEEL, B.P1TTEL, C.D.SAVAGE, H.S.WILF On the multiplicity of
parts in a random partition, Random Structures and Algorithms 14 (1999),

185-197.

[3] J.H. HARDY AND S. RAMANUJAN Asymptotic formula in combinatory anal-

ysis, Proc. London. Math. Soc. 17(2) (1918), 75-115.

[4] L. MUTAFCHIEV A limit theorem concerning the likely shape of the Ferrers
diagram, Discr. Math. Appl. 9 (1999), 79-100; Correction, ibid. 9 (1999),

685-686.

[5] L. MUTAFCHIEV On the maximal multiplicity of parts in a random integer

partition, The Ramanujan Journal 9 (2005), 305-316.

[6] E. C. TiITcHMARSH The theory of functions. Oxford Uni. Press, 1939.

Emil Kamenov

Faculty of Mathematics and Informatics
Sofia University

5, J. Bouchier

Sofia, Bulgaria

e-mail: kamenov@fmi.uni-sofia.bg



