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SOME PROBABILISTIC RESULTS IN A BISEXUAL

BRANCHING PROCESS WITH IMMIGRATION

M. Molina I. del Puerto A. Ramos
1

A bisexual branching process with immigration of females and males is
introduced. It is allowed, in each generation, that the mating function and
the probability distributions associated to the offspring and the immigration
may change depending on the number of progenitor couples. Relationships
among the probability generating functions involved in the model and some
transition and stochastic monotony properties are established.

1. Introduction

From the bisexual process investigated in [1], new discrete time two–sex branch-
ing models have been developed. We refer the reader to [4], or [3], for surveys
about these processes. Recently, a general continuous time bisexual process has
been also introduced in [7]. However, in order to describe suitably the probabilis-
tic evolution of populations where females and males coexist and form couples
(female–male mating units), the range of bisexual models investigated is not large
enough. For example, in some populations it is reasonable to assume an individ-
ual’s mating behaviour dependent on the number of their progenitor couples. It
might seem conceivable that by environmental, social, or other factors, the same
number of females and males gives rise to different number of couples in different
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generations. By similar reasons, the offspring law may be also influenced for the
number of couples in the population. In an attempt to improve the probabilistic
modelling in such populations, in this work we introduce and investigate a discrete
time bisexual branching process which considers, in each generation, the possi-
bility of females and males immigration. Moreover, the function governing the
mating and the offspring and immigration distributions may change depending
on the number of couples at the population. The paper is structured as follows:
In Section 2, we introduce the probability model, we provide its mathematical
formal description, its intuitive interpretation and an illustrative example. Also,
we establish and discuss some working assumptions. Section 3 is devoted to deter-
mining transition properties about the Markov chains associated to the process.
In Section 4 we investigate some relationships among the probability generating
functions involved in the model. As a consequence, some recursive expressions
for the main moments are derived. Finally, Section 5 deals with the study of
stochastic monotony properties.

2. The probability model

For N ∈ Z
+, let {(fn,i(N),mn,i(N))}n≥0;i≥1 and {(f I

n+1(N),mI
n+1(N))}n≥0 be

independent sequences. Each one of these sequences is formed by independent,
identically distributed, non–negative and integer–valued random vectors. Let
{LN}N≥0 be a sequence of functions, where each LN : R

+×R
+ → R

+ is assumed
to be monotonic non–decreasing in each argument, integer–valued on the integers,
and such that LN (0, y) = LN (x, 0) = 0, x, y ∈ R

+, where Z
+ and R

+ denote
the non–negative integer and real numbers respectively. Under these conditions
we define, recursively for n ∈ Z

+, the following bisexual branching process with
females and males immigration:

(Fn+1,Mn+1) =

Zn
∑

i=1

(fn,i(Zn),mn,i(Zn)) + (f I
n+1(Zn),mI

n+1(Zn)),

(1) Z0 = N0 ≥ 1, Zn+1 = LZn(Fn+1,Mn+1) .

The process starts with N0 couples and from an intuitive viewpoint, if Zn =
N for some n ≥ 1, then (fn,i(N),mn,i(N)) represents the number of females
and males descending from the ith couple of the nth generation. Obviously
P (fn,i(0) = 0,mn,i(0) = 0) = 1. The vector (f I

n+1(N),mI
n+1(N) denotes the

number of immigrant females and males in the (n + 1)th generation. The proba-
bility laws associated to (f0,1(N),m0,1(N)) and (f I

1 (N),mI
1(N)) will be referred
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as the offspring and the immigration distributions, respectively. It follows that
(Fn+1,Mn+1) is the number of females and males in the (n + 1)th generation,
which form Zn+1 couples according to the mating function LN . It is easy to
verify that {(Zn−1, Fn,Mn)}n≥1 and {Zn}n≥0 are homogeneous Markov chains.
It is worth pointing out that in addition to its theoretical interest, the bisexual
process introduced in this work has several practical implications in population
dynamics. In particular, in phenomena concerning to inhabit or re–inhabit envi-
ronments with animal species which have sexual reproduction, the probabilistic
evolution of the number of females, males, and couples in the population may
be described in term of this model. Indeed, the motivation behind the process
introduced in (1) is the interest in developing mathematical models to describe
such situations.

Remark 2.1. Notice that the process (1) includes several models studied
in the bisexual branching process literature; see for example [1], [2], [5], [6], or
[8].

Example 2.1. Given that Zn = z, let us consider a process (1) with off-
spring law the trinomial distribution M(3; p1(z), p2(z)), where

p1(z) = 0.35(z + 1)(z + 4)−1 and p2(z) = 0.35(z + 1)(z + 6)−1, z = 1, 2, . . .

and immigration law, the product of two independent Poisson distributions with
means λf (z) and λm(z) given by:

λf (z) = 2.4(z + 1)(z + 10)−1 and λm(z) = 2.5(z + 1)(z + 10)−1, z ∈ Z
+.

As mating function we have considered:

(2) Lz(x, y) = min{x, b3yz(1 + z)−1c}, z ∈ Z
+ ,

where bzc denotes the integer part of z. Assuming that the process starts with
Z0 = 8 couples, we have simulated 50 generations (see Figures 1 and 2).
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Figure 1. Evolution of the number of couples.
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Figure 2. Evolution of the number of females and males (on the left) and immigrant

females and males (on the right).

With the objective to derive probabilistic results about (1) we introduce the
following working assumptions on the sequence of mating functions and the off-
spring and immigration distributions.

(A1): {LN}N≥0 is such that each LN is a superadditive function, namely, for
xi, yi ∈ R

+, i = 1, 2, LN (x1 + x2, y1 + y2) ≥ LN (x1, y1) + LN (x2, y2).

(A2): For x, y ∈ R
+ fixed, {LN (x, y)}N≥0 is non–decreasing.

(A3): {f0,1(N)}N≥0, {m0,1(N)}N≥0, {f I
1 (N)}N≥0 and {mI

1(N)}N≥0 are non–
decreasing sequences.
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Remark 2.2. Assumption (A1) expresses the following intuitive behaviour:
x1 + x2 females and y1 + y2 males coexisting together will form a number of cou-
ples greater than or equal to the total number of couples produced from x1 females
and y1 males, and from x2 females and y2 males, living separately. Superad-
ditivity is not a serious restriction, most of the mating functions considered in
the bisexual branching process theory are superadditive. Assumption (A2) repre-
sents the usual fact in many biological situations which the number of matings
in certain generation depends on the number of couples in the previous one in
such a way that the mating is promoted when the number of progenitor cou-
ples grows. Some sequences {LN}N≥0 verifying assumptions (A1) and (A2) are
for example: (a) LN (x, y) = xmin{N, y}; (b) LN (x, y) = min{x,Ny}; or (c)
LN (x, y) = min{x, y} if N ≤ k0 or xmin{N, y} if N > k0 (restricted to non–
negative integers) where k0 is a fixed positive integer. Finally, assumption (A3)
consider reproduction and immigration conducts such that the offspring per cou-
ple and the females and males immigration are encouraged when the number of
couples grows.

3. Transition properties

Next, we study some transition properties about the Markov chains {Zn}n≥0

and {(Zn−1, Fn,Mn))}n≥1. By simplicity, for N,h, j, k, l ∈ Z
+, we will de-

note by ph,j(N) = P (f0,1(N) = h,m0,1(N) = j) and qk,l(N) = P (f I
1 (N) =

k,mI
1(N) = l) the offspring and immigration distributions respectively. We as-

sume that qk,l(0) > 0 for some (k, l) 6= (0, 0) and that, given h, j, k, l ∈ Z
+,

if for some N1, N2 ∈ Z
+, ph,j(N1) > 0 and qk,l(N2) > 0 then, ph,j(N

′
1) > 0

and qk,l(N
′
2) > 0, N ′

i > Ni, i = 1, 2. Also, let us write by S and T the
state spaces of {Zn}n≥0 and {(Zn−1, Fn,Mn))}n≥1 respectively, and for k ∈ Z

+,
Sk = {j ∈ S : P (Zn+m = j | Zn = k) > 0 for some m ≥ 1}.

Proposition 1. Assume (A3) and that LN is increasing in any of its argu-
ments, N ∈ Z

+. If there exists h, j > 0 such that ph,j(1) > 0 and k, l ∈ Z
+ such

that qk,l(0)L0(k, l) > 0 then, for any (N, f,m) ∈ T , there exists (N ∗, f∗,m∗) ∈ T

with LN∗(f∗,m∗) ≥ LN (f,m) such that (0, k, l) leads to (N ∗, f∗,m∗).

P r o o f. Since L0(k, l) > 0 one deduces that k, l > 0. Let us define the
sequences {(mn, hn, jn)}n≥0 and {κn}n≥0 as follows:

(m0, h0, j0) = (0, k, l), κ0 = Lm0(h0, j0) = L0(k, l) ≥ 1

(mn+1, hn+1, jn+1) = κn(0, h, j) + (κn, k, l) , κn+1 = Lκn(hn+1, jn+1), n ∈ Z
+.
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The sequence {κn}n≥0 is increasing. Indeed, by using the induction procedure
and considering (A3)

κ1 = Lκ0(h1, j1) = Lκ0(κ0h + k, κ0j + l) > Lκ0(k, l) ≥ L0(k, l) = κ0.

Suppose that κn > κn−1, then using again (A3)

κn+1 = Lκn(κnh + k, κnj + l) > Lκn(κn−1h + k, κn−1j + l)

≥ Lκn−1(κn−1h + k, κn−1j + l) = κn.

In consequence, {κn}n≥0 tends to infinity and, given (N, f,m) ∈ T , there
exists n such that κn ≥ LN (f,m). To complete the proof it is sufficient to prove
that (0, k, l) leads to (mn, hn, jn) for any n. Now,

P ((Zn−1, Fn,Mn) = (mn, hn, jn) | (Z0, F1,M1) = (0, k, l))

≥
n−1
∏

i=1

P ((Zi, Fi+1,Mi+1)=(mi+1, hi+1, ji+1) |(Zi−1, Fi,Mi)=(mi, hi, ji))

≥
n−1
∏

i=1

(ph,j(κi))
κiqk,l(κi) > 0.

�

Proposition 2. Assume conditions in Proposition 1 Then, given N ∈ S,
there exists N ∗ > N , N∗ ∈ S such that N ∗ ∈ Sκ0 where κ0 = L0(k, l).

P r o o f. Consider the sequences {(mn, hn, jn)}n≥0 and {κn}n≥0 defined in
Proposition 1 I was proved that lim

n↗∞
κn = ∞. Consequently, given N ∈ S,

there exists n such that κn = Lκn−1(hn, jn) > N . It is sufficient to verify that
κ0 = L0(k, l) leads to κn for any n. In fact

P (Zδ+n = κn | Zδ = κ0) ≥
n
∏

i=1

(ph,j(κi−1))
κi−1qk,l(κi−1) > 0.

�

Proposition 3. Assume conditions in Proposition 1 If p0,0(1) > 0, then any
state (N, f,m) ∈ T such that LN (f,m) ≥ 1 leads to the state (N ∗, k, l) in one
step, where N ∗ = LN (f,m).
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P r o o f. The result follows from the fact that

P ((Zn, Fn+1,Mn+1) = (N∗, k, l) | (Zn−1, Fn,Mn) = (N, f,m))

= P

(

N∗

∑

i=1

fn,i(N
∗) + f I

n+1(N
∗) = k,

N∗

∑

i=1

mn,i(N
∗) + mI

n+1(N
∗) = l

)

≥ qk,l(N
∗)(p0,0(N

∗))N
∗

> 0.

�

4. Probability generating functions and moments

In this section we determine some relationships among the probability generating
functions associated to the variables involved in the model (1). As consequence,
we derive some recursive expressions for the main moments. For n,N ∈ Z

+ and
s, t ∈ [0, 1] let us denote by

hn+1(s, t) = E[sFn+1tMn+1 ], ϕN (s, t) = E[sf0,1(N)tm0,1(N)] (ϕ0(s, t) = 1)

and ϕI
N (s, t) = E[sfI

1 (N)tm
I
1(N)].

Proposition 4. For n ∈ Z
+ and s, t ∈ [0, 1]

hn+1(s, t) = E
[

(ϕZn(s, t))Zn ϕI
Zn

(s, t)
]

.

P r o o f.

hn+1(s, t) = E
[

sFn+1tMn+1
]

E
[

E[sFn+1tMn+1 | Zn]
]

=

∞
∑

N=0

E



s

N�
i=1

fn,i(N)+fI
N+1(N)

t

N�
i=1

mn,i(N)+mI
N+1(N)



P (Zn = N)

=
∞
∑

N=0

(

E
[

sf0,1(N)tm0,1(N)
])N

E
[

sfI
1 (N)tm

I
1(N)

]

P (Zn = N)

= E
[

(ϕZn(s, t))ZnϕI
Zn

(s, t)
]

, n ∈ Z
+.

�

Let us write, for N,n ∈ Z
+

µ(N) = E [(f0,1(N),m0,1(N))], Σ(N) = Cov[(f0,1(N),m0,1(N))],

µI(N) = E
[

(f I
1 (N),mI

1(N))
]

, ΣI(N) = Cov[(f I
1 (N),mI

1(N))],



232 M. Molina, I. del Puerto and A. Ramos

µn+1 = E [(Fn+1,Mn+1)], Σn+1 = Cov[(Fn+1,Mn+1)].

As a direct consequence of Proposition 4, one deduces for n ∈ Z
+

µn+1 = E
[

Znµ(Zn) + µI(Zn)
]

and

Σn+1 = E
[

ZnΣ(Zn) + V ar
[

Znµ(Zn)tµ(Zn)
]

+ E[ΣI(Zn)]
]

.

Let us consider, for N,n ∈ Z
+ and s, t ∈ [0, 1], the probability generating

functions φN (s) = E[sL0,1(N)], φI
N (s) = E[sLI

1(N)], gn(s) = E[sZn ] and g∗n(s, t) =
E[sZ∗

ntZn ] where L0,1(N) = LN (f0,1(N),m0,1(N)), LI
1(N) = LN (f I

1 (N),mI
1(N))

and Z∗
n =

n
∑

k=0

Zk. Clearly g0(s) = sN0 and g∗0(s, t) = (st)N0 , s, t ∈ [0, 1].

Proposition 5. Assume (A1). Then, for s, t ∈ [0, 1] and n ∈ Z
+,

(i) gn+1(s) ≤ E
[

(φZn(s))Zn φI
Zn

(s)
]

,

(ii) g∗n+1(s, t) ≤ E
[

sZ∗

n(φZn(st))ZnφI
Zn

(st)
]

.

P r o o f. Taking into account (A1) one has for n ∈ Z
+ and s ∈ [0, 1]

gn+1(s) =

∞
∑

N=0

E






s
LN

�
N�

i=1
fn,i(N)+fI

n+1(N),
N�

i=1
mn,i(N)+mI

n+1(N) � 



P (Zn = N)

≤
∞
∑

N=0

E
[

s
� N

i=1 Ln,i(N)+LI
n+1(N)

]

P (Zn = N)

=
∞
∑

N=0

(φN (s))N φI
N (s)P (Zn = N) = E

[

(φZn(s))ZnφI
Zn

(s)
]

and therefore (i) holds.
Using again (A1), one deduces for n ∈ Z

+ and s, t ∈ [0, 1]

E
[

(st)Zn+1 | Zn

]

≤ (φZn(st))Zn φI
Zn

(st) a.s.

Hence, denoting by Fn = σ(Z0, . . . , Zn), one obtains

g∗n+1(s, t) = E
[

sZ∗

n+1tZn+1

]

E
[

E
[

sZ∗

n(st)Zn+1

∣

∣

∣
Fn

] ]

= E
[

sZ∗

nE[ (st)Zn+1
∣

∣ Zn]
]

≤ E
[

sZ∗

n (φZn(st))Zn φI
Zn

(st)
]

.
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which completes the proof. �

Note that, from Proposition 5, one derives for n ∈ Z
+

(3) E[Zn+1] ≥ E
[

Znλ(Zn) + λI(Zn)
]

,

(4) E[Z∗
n+1] ≥

n+1
∑

k=0

E
[

Zkλ(Zk) + λI(Zk)
]

,

where λ(N) = E[L0,1(N)] and λI(N) = E[LI
1(N)], N ∈ Z

+.

Proposition 6. Assume (A1), L0,1(N) ≥ L0,1(1) and LI
1(N) ≥ LI

1(0), N =
1, 2, . . . Then, for s, t ∈ [0, 1] and n ∈ Z

+

(i) gn+1(s) ≤ gn(φ1(s))φ
I
0(s),

(ii) g∗n+1(s, t) ≤ g∗n(s, φ1(st))φ
I
0(st).

P r o o f. In order to verify (i), notice that, from the hypotheses, one deduces
that φN (s) ≤ φ1(s) and φI

N (s) ≤ φI
0(s), s ∈ [0, 1]. Hence, taking into account

Proposition 5 (i) and the fact that φ0(s) = 1, one obtains for n ∈ Z
+ and

s, t ∈ [0, 1]

gn+1(s) ≤

∞
∑

N=0

(φN (s))NφI
N (s)P (Zn = N)

=

∞
∑

N=1

(φN (s))NφI
N (s)P (Zn = N) + φI

0(s)P (Zn = 0)

≤ φI
0(s)

∞
∑

N=0

(φ1(s))
NP (Zn = N)φI

0(s)gn(φ1(s)).

(ii) is proved in a similar manner using the fact that

g∗n+1(s, t) ≤
∞
∑

N=0

s(Z∗

n−1+N)(φN (st))NφI
N (st)P (Zn = N).

�

As a consequence of Proposition 6, (3) and (4), it is matter of straightforward
calculation to deduce the following inequalities:
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E [Zn+1] ≥ (N0 + λI(0)(n + 1))1{λ(1)=1} + Bn(λ(1))1{λ(1)6=1}

with Bn(a) = (1 − a)−1
[

an+1(N0(1 − a) − λI(0)) + λI(0)
]

and

E
[

Z∗
n+1

]

≥ ((n + 2)[N0 + λI(0)(n + 1)2−1])1{λ(1)=1} + Cn(λ(1))1{λ(1)6=1}

with

Cn(a) = (1 − a)−2
[

(1 − an+2)(N0(1 − a) − λI(0)) + λI(0)(1 − a)(n + 2)
]

,

where 1A denotes the indicator function of A.

5. Stochastic monotony

We now provide some results about the stochastic monotony of the sequences
{Zn}n≥0, {Fn}n≥1, and {Mn}n≥1. The first result establishes that {Zn}n≥0 is a
stochastically monotone sequence.

Proposition 7. Assume (A2) and (A3). Then, given N1, N2 ∈ Z
+ with

N1 < N2,

P (Zn+1 ≤ y | Zn = N2) ≤ P (Zn+1 ≤ y | Zn = N1) , y ∈ R, n ∈ Z
+ .

P r o o f. Taking into account (A2), (A3) and the fact that the mating
functions are non–decreasing in each argument, one has

P (Zn+1 > y | Zn = N2)

= P

(

LN2

(

N2
∑

i=1

fn,i(N2) + f I
n+1(N2),

N2
∑

i=1

mn,i(N2) + mI
n+1(N2)

)

> y

)

≥ P

(

LN1

(

N2
∑

i=1

fn,i(N2) + f I
n+1(N2),

N2
∑

i=1

mn,i(N2) + mI
n+1(N2)

)

> y

)

≥ P

(

LN1

(

N1
∑

i=1

fn,i(N1) + f I
n+1(N1),

N1
∑

i=1

mn,i(N1) + mI
n+1(N1)

)

> y

)

= P (Zn+1 > y | Zn = N1).

�

Let
{

{(F
(i)
n ,M

(i)
n )}n≥1

}

i≥1
and

{

{Z
(i)
n }n≥0

}

i≥1
independent versions of

{(Fn,Mn)}n≥1 and {Zn}n≥0 respectively with Z
(i)
0 = 1, i = 1, 2, . . ..
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Proposition 8. Assume (A1)–(A3). If f I
1 (
∑l

j=1 Nj) ≥
∑l

j=1 f I
1 (Nj) and

mI
1(
∑l

j=1 Nj) ≥
∑l

j=1 mI
1(Nj), Nj ∈ Z

+, l = 1, 2, . . . then, for n, k ∈ Z
+ and

y ∈ R,

(i) P (Zk+n+1 ≤ y) ≤ P

(

Zk
∑

i=1

Z
(i)
n+1 ≤ y

)

,

(ii) P (Fk+n+1 ≤ y) ≤ P

(

Zk
∑

i=1

F
(i)
n+1 ≤ y

)

,

(iii) P (Mk+n+1 ≤ y) ≤ P

(

Zk
∑

i=1

M
(i)
n+1 ≤ y

)

.

P r o o f. First, we prove that for n, k,N ∈ Z
+ and y ∈ R

(5) P (Zk+n+1 ≤ y | Zn+k = N) ≤ P

(

Zk
∑

i=1

Z
(i)
n+1 ≤ y

∣

∣

∣

∣

∣

Zk
∑

i=1

Z(i)
n = N

)

.

Now, by using the simplified notation F
(i)
n (N) =

N
∑

j=1
f

(i)
n,j(N) + f

(i) I
n+1 (N) and

M
(i)
n (N) =

N
∑

j=1
m

(i)
n,j(N) + m

(i) I
n+1 (N), one deduces

P

(

Zk
∑

i=1

Z
(i)
n+1 ≤ y

∣

∣

∣

∣

∣

Zk
∑

i=1

Z(i)
n = N

)

= P

(

Zk
∑

i=1

(

L
Z

(i)
n

(

F (i)
n (Z(i)

n ),M (i)
n (Z(i)

n )
))

≤ y

∣

∣

∣

∣

∣

Zk
∑

i=1

Z(i)
n = N

)

≥ P

(

Zk
∑

i=1

(

L � Zk
i=1 Z

(i)
n

(

F (i)
n (Z(i)

n ),M (i)
n (Z(i)

n )
))

≤ y

∣

∣

∣

∣

∣

Zk
∑

i=1

Z(i)
n = N

)

≥ P (Zk+n+1 ≤ y | Zn+k = N).

We now prove (i) by induction on n. Note that, for n = 0, using that Z
(i)
0 = 1

one obtains that P (Zk ≤ y) = P (
∑Zk

i=1 Z
(i)
0 ≤ y). Suppose that P (Zn+k ≤ y) ≤

P (
∑Zk

i=1 Z
(i)
n ≤ y). Then, takin into account that {P (Zn+k+1 ≤ y | Zn+k =
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N)}N≥0 is non–increasing, the induction hypothesis, (5), and Lemma A1 (see
Appendix), one obtains

P (Zn+k+1 ≤ y) =

∞
∑

N=0

P (Zn+k+1 ≤ y | Zn+k = N)P (Zn+k = N)

≤

∞
∑

N=0

P (Zn+k+1 ≤ y | Zn+k = N)P

(

Zk
∑

i=1

Z(i)
n = N

)

≤

∞
∑

N=0

P

(

Zk
∑

i=1

Z
(i)
n+1≤y

∣

∣

∣

∣

∣

Zk
∑

i=1

Z(i)
n =N

)

P

(

Zk
∑

i=1

Z(i)
n =N

)

= P

(

Zk
∑

i=1

Z
(i)
n+1 ≤ y

)

.

To prove (ii), note that for n, k,N ∈ Z
+ and y ∈ R,

(6) P (Fk+n+1 ≤ y| Zn+k = N) ≤ P

(

Zk
∑

i=1

F
(i)
n+1 ≤ y

∣

∣

∣

∣

∣

Zk
∑

i=1

Z(i)
n = N

)

.

In fact, from the requirements in Proposition,

P

(

Zk
∑

i=1

F
(i)
n+1 ≤ y

∣

∣

∣

∣

∣

Zk
∑

i=1

Z(i)
n = N

)

≥ P





Zk
∑

i=1

Z
(i)
n
∑

j=1

fn,j(Z
(i)
n ) + f I

n+1(

Zk
∑

i=1

Z(i)
n ) ≤ y

∣

∣

∣

∣

∣

∣

Zk
∑

i=1

Z(i)
n = N





= P

(

N
∑

i=1

fn,i(Z
(1)
n ) + f I

n+1(N) ≤ y

)

≥ P

(

N
∑

i=1

fn,i(N) + f I
n+1(N) ≤ y

)

= P

(

N
∑

i=1

fk+n,i(N) + f I
k+n+1(N) ≤ y

)

= P (Fk+n+1 ≤ y | Zn+k = N).

Now, considering (i), the fact that the sequence {P (Fk+n+1 ≤ y | Zn+k = N)}N≥0

is non–increasing, Lemma A1, and (6),
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P (Fk+n+1 ≤ y) =

∞
∑

N=0

P (Fk+n+1 ≤ y | Zn+k = N)P (Zn+k = N)

≤
∞
∑

N=0

P (Fk+n+1 ≤ y | Zn+k = N)P (

Zk
∑

i=1

Z(i)
n = N)

≤

∞
∑

N=0

P

(

Zk
∑

i=1

F
(i)
n+1≤ y

∣

∣

∣

∣

∣

Zk
∑

i=1

Z(i)
n =N

)

P

(

Zk
∑

i=1

Z(i)
n =N

)

= P

(

Zk
∑

i=1

F
(i)
n+1 ≤ y

)

.

Considering a similar reasoning is proved (iii). �

Appendix

Lemma A1. Let (x1, . . . , xn), (y1, . . . , yn), (u1, . . . , un) ∈ R
n such that

k
∑

i=1
xi ≤

k
∑

i=1
yi, k = 1, . . . , n and u1 ≥ . . . ≥ un ≥ 0. Then

n
∑

i=1
uixi ≤

n
∑

i=1
uiyi.

P r o o f. Let ti =
i
∑

j=1
xj and si =

i
∑

j=1
yj, i = 1, . . . , n. It is clear that

ti ≤ si, i = 1, . . . , n. It is sufficient to verify that

n−1
∑

i=1

(ui − ui+1)ti + untn ≤
n−1
∑

i=1

(ui − ui+1)si + unsn.

Now, this inequality holds because ui − ui+1 ≥ 0, i = 1, . . . , n and un ≥ 0. �
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