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In this article, we propose a novel candidate-gene association test that
utilizes a set of tightly linked single nucleotide polymorphisms (SNPs). This
is a powerful likelihood ratio test based on Gibbs random field model. We
use simulation studies to evaluate the type I error rate of our proposed test,
and compare its power with that of other candidate-gene association tests.
The simulation results show that our proposed test has correct type I error
rate, and is more powerful than the other tests in most cases considered in
our simulation studies.

1. Introduction

There are about 30,000 genes in the human genome. With the recent report of
the sequence that constitutes our genome and improving biological technology,
we are now in a position to begin detecting the genes that predispose humans to
complex diseases: cancer, diabetes, hypertension, obesity, etc. This represents a
formidable challenge for modern science.

The search for genetic factors that influence the human diseases is based on
studying the observed correlations between genetic polymorphisms (markers) and
disease. The statistical methods for disease gene mapping are usually divided
into two broad categories: linkage analysis methods and association methods
(population- and family-based).
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These methods all are based on one biological phenomenon: recombination
(crossing-over). It is exploited for determining of the closeness (genetic distance)
between two loci. Loci which are close to each other will rarely be separated
by a recombination; they are in linkage. In family pedigrees, recombinations
may be seen directly. On the other hand, the consequences of recombinations in
past generations can be observed, in population samples, in the form of linkage
disequilibrium (LD, non-random association of alleles at adjacent loci), [25].

Linkage analysis methods, [24], test for a relationship between disease and
alleles transmitted at a given marker within families. They utilize a relatively
small number of polymorphic markers (microsatellites) throughout the human
genome. With the help of linkage methods approximately, 1,500 single-gene
human diseases have been identified to date (Online Mendelian Inheritance in
Man (OMIM); http://www.ncbi.nlm.nih.gov/Omim/mimstats.html). These dis-
ease genes are rare, with large effects and known modes of inheritance. However,
the success of linkage analysis in detection of genetic factors for complex diseases
has been limited. Complex diseases are common, with unknown modes of inheri-
tance and arise as a result of multiple mechanisms: common alleles with small to
moderate effects, rare alleles with moderate to large effects, complex gene-gene
and gene-environmental interactions, etc.

Association methods utilize statistical association of genetic markers to traits,
either because of the direct effect of the polymorphism on the phenotype (”direct”
approach [29]), or due to linkage disequilibrium of a marker locus to a close disease
locus (”indirect” approach [6]). It was suggested that association study methods
may be more powerful than linkage analysis methods, [30]. For common complex
diseases, strong hypotheses about the roles of specific variants are generally not
available, so the indirect approach is preferred, [50, 20]. Indirect association
methods employ a dense map of polymorphic markers to test candidate genes,
scan all genes in candidate regions found by linkage analyses, and even scan all the
genes throughout the genome, [3]. They usually utilize biallelic single nucleotide
polymorphisms (SNPs) as markers. There are almost 10 million SNPs available in
the public database dbSNP (http://www.ncbi.nlm.nih.gov/SNP/) to date, [35,
37]. However, even though genome-wide association studies are feasible, the
candidate-gene approach is still being preferred in practice, [4]. Known genetic
markers in the candidate gene are genotyped, and their association to the disease
is tested with statistical association analysis methods. This can be done in a
case-control design, with a sample of affected individuals, or cases, and unaffected
individuals, or controls.

Genetic linkage is the coinheritance of alleles of loci that reside close to each
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other in a chromosome. A chromosome passed on from one generation to the
next is a mosaic of maternal and paternal chromosomes. The transition points
are the points in which crossing over has taken place. The co-segregation of
a disease with particular marker alleles is evidence of the close proximity of the
disease gene. The genetic distance unit, the Morgan (M), is based on the observed
number of recombination events between loci, [24]. Since recombination events
can be recognized only on the basis of haplotypes (a haplotype is the specific
set of alleles observed on a single chromosome) passed from parents to children,
linkage analysis can be carried out solely in pedigrees.

The coinheritance of alleles on haplotypes of tightly linked loci leads to asso-
ciations between these alleles in the population, known as linkage disequilibrium
(LD). Unlike linkage, linkage disequilibrium can be detected in population sam-
ples. A pair of loci is said to be in linkage disequilibrium when, in a sample of
individuals, their joint haplotype frequencies deviate from those expected under
independence. Consider, as an example, two closely spaced loci 1 and 2 on a
chromosome with alleles A, a, and B, b. Suppose p (A), p(a) and p(B), p(b) are
the frequencies of these alleles in the population. At equilibrium, the frequency
p(AB) of the AB haplotype should be equal to the product, p (A) p(B), of the
allele frequencies of A and B, respectively. If this holds, then p(Ab) = p(A)p(b),
p(aB) = p(a)p(B), and p(ab) = p(a)p(b) as well. Any deviation from these values
imply linkage disequilibrium.

Linkage disequilibrium can be generated by several different mechanisms such
as random genetic drift, mutation, selection, and population admixture and strat-
ification. On one hand, new mutations, selection, drift and population admixture
constantly create new LD between nearby loci, and on the other hand, recombi-
nations break it down over the generations, [33, 40].

The relative strength of these forces determines the overall level of the LD
and the distances to which it extends. LD varies widely between regions of the
genome and, in some part of the genome, between populations. Pairs of loci that
are tens of kilobases apart might be in complete LD, whereas nearby pairs of loci
from the same region might be in very weak LD. Despite the apparent complexity
of observed patterns, recent studies have proposed that the genome is composed
of blocks of DNA conserved as a group over long regions of chromosome, up to
0.1 ¢cM in length, see for example [42]. It is believed that these findings will have
large impacts on genetic association studies, [47]. A haplotype map describing
the block structure has recently been constructed, [37, 38].

There are various measures that can be utilized to summarize the magni-
tude of LD between two loci (markers), see for example [19, 33, 43, 44, 42].
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One of them is D’. In the notation of the example considered above, let D =
p(AB) — p(A)p(B). D is dependent on allele frequencies in the population.
Its maximum and minimum values are Dy,x = min(p (A) p(b),p(a)p(B)) and
Diyin = max(—p (4) p(B), —p(a)p(b)). Then D’ is defined as

D
7 Dmax’ D > 0
D p—
D
D D <0

A value of 0 means no disequilibrium. If |[D’| = 1, only two or three of the
four possible haplotypes are present. If |D’| < 1, all haplotypes are present.

Indirect genetic association studies rely on the extent of LD between neutral
(without effect on the gene product) markers and disease susceptibility loci. One
will be able to find markers in LD with a disease locus if the effect of the disease
susceptibility locus on the observed phenotype is strong enough and if there exists
a sufficient amount of LD between the disease locus and markers neighboring it.
Among other factors that influence the outcome of an association study are the
frequency of the disease allele(s), the frequency of the markers’ allele(s) and the
spacing of the markers.

In this article we propose a test of association between a set of tightly
linked biallelic markers typed in a candidate gene and qualitative trait of inter-
est (case/control status). We model the probability of observing a multi-marker
genotype by Gibbs distribution. This leads to a model similar to that of Potts
(with interaction terms only) in statistical mechanics. Based on it, we construct
a likelihood ratio test, called Potts Likelihood Ratio (PLR).

Using simulations we study the type I error rate and the power of our proposed
test PLR. We compare them, under various disease models, with those of two well
known and widely used candidate-gene association tests: Pearson’s y? goodness-
of-fit test (GOF), [8, 1, 33, 43], and the generalized two-sample Hotelling’s T
test, [41]. We use Monte Carlo permutation method to evaluate the p-values of
the above three tests. Our simulation results show that the PLR has correct type
I error rate. The power comparisons are performed under two scenarios, which
include three one-locus disease models, and high LD haplotype structure in one
candidate gene. The results show that the PLR is the most powerful test among
the three tests in most cases considered. Therefore, PLR might be potentially
useful for association studies of candidate genes with high LD haplotype structure.
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2. Methods

2.1. Potts Likelihood Ratio Test

Consider a candidate gene. To test its association with a trait of interest, n
unrelated individuals are sampled: n; of them affected called cases, and no normal
called controls. We assume that the underlying population is either homogeneous
or that the cases and the controls are properly matched for race, ethnicity, etc.,
to avoid spurious association due to population substructure and (or) admixture,
[33, 40]. Let the subjects be genotyped at a set S = {1,2,...,m} of m biallelic
markers (SNPs for example) in the candidate gene. We shall denote the alleles
of each marker by 0 and 1. Thus, at each marker locus there are three possible
genotypes 0/0, 0/1 and 1/1. Therefore, the observed i*" individual’s multi-
marker genotype (i = 1,2,...,n) can be written as a m-dimensional numerical
vector ot = (2, 2%,...,2¢ ), where the genotype z* at each marker is coded as

0, if the genotype is 0/0
xt =< 1, if the genotype is 0/1
2, if the genotype is 1/1

This set S = {1,2,...,m} is actually a one dimensional lattice, and the
markers in S could be considered as sites in that lattice. Then a multi-marker
genotype © = (x1,%9,...,%y) is the configuration of the observed values of a

family of discrete random variables X = {X}cs indexed by S. The random
variables in X take values in the set {0, 1,2}.

We propose to model the probability of observing a multi-marker genotype
with the Gibbs distribution

P(z) = Z—lm exp(—H (),

where
Zm = Z eXp<_H(x))

is the partition function, and H(x) is the energy. The summation in Z,, is over
all 3™ possible multi-marker genotypes. The origins of the Gibbs distribution can
be found in physics and statistical mechanics literature (there, it is also known
as Boltzmann distribution), where it is used for modeling the equilibrium states
of large physical systems, [13]. The Gibbs distribution was successfully applied
by Majewski, Li and Ott ([22]) in the context of the multipoint affected-sib-pair
linkage analysis in genetics.
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The energy H (z) may have different forms. For example, in the 3-states Potts
model, [45, 21], the energy is

m—1
H(z)=-J Z (s, Tsy1) — thS,
s=1 s

where 0(xg, zs4+1) is the Kronecker §—function giving value 1 when x4 = 2441 and
0 otherwise. J is the interaction strength (one and the same for all neighboring
pairs xg, zs+1) and h is the external magnetic field. Another model is

m—1 m
H(z) ==Y j(s)8(xs, a1) — »_ h(s)zs,
s=1 s=1
where j(s) is the interaction strength between zg, zs41 and h(s) is the external
field acting on x.

We note that in the first model above the external field & is only one, whereas
in the second model the external fields h(s) are local, one for each site s. If
>0t h(s)xs is not present in H(x) the model is called interactions only model.

Versions of the Potts model (set in a Bayesian framework) have been applied
in epidemiology for spatial disease mapping [15], and in statistical genetics for
spatial modeling of haplotype associations [39].

The above models, as they are, are not quite appropriate for modeling a
set of markers in a gene because of the following reasons. First, the interaction
strength parameter J is one and the same for all pairs of adjacent sites. However,
if the interaction between two sites is to reflect the level of linkage disequilibrium
between the markers, which may vary considerably from pair to pair, then we
might lose information. Also, including external fields in H(x) may increase
the information, but will also increase the number of parameters. Second, the
Kronecker’s delta function in H(z) gives value 1 when the genotypes at two
adjacent markers are the same type, and 0 otherwise, which again will poorly
capture the information carried by the nine possible two-marker genotypes at
these markers.

Here, we let the energy H(z) be similar to that in the one dimensional
nearest-neighbor, interactions only, Potts model (see for example [45, 21]),

m—1

H(z) = =) j(s)G(xs, zs11),

s=1

where the parameter j(s) represents the interaction (correlation, linkage disequi-
librium) between the markers s and s + 1, and
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if the genotype at (s,s+1)is 00
- //- 10
- //- 20
- //- 01
- //- 11
—//- 21
- //- 02
—//- 12
—//- 22

The sum in the partition function Z,, = ) exp(—H(z)) runs over all 3™
possible multi-marker genotypes. Hence, the number of terms in the summation
increases exponentially with the number of markers, and the calculation may
be very time intensive. Since the energy of our model do not include more than
nearest-neighbor interactions, the partition function can be calculated recursively,
in linear time, using the algorithm in [28] (see also [22]).

When a disease-associated mutation arises on a single chromosome, alleles at
the nearby linked markers are initially in complete linkage disequilibrium with
the mutation, [24]. Over time, this linkage disequilibrium decays by recombina-
tion at a rate determined by the map distance between the disease mutation and
the marker, [27]. However, in small regions such as a gene, even after many gen-
erations from the mutation, substantial linkage disequilibrium might still exist.
Thus, the linkage disequilibrium structure for a set of markers within a disease-
associated gene observed in a sample of cases is expected to be different from
that exhibited in a sample of controls. In other words, we expect the interaction
strength (represented by j(s), s = 1,2,,...,m — 1) between the markers in the
set S to be different in cases and controls.

Thus, when we model a set of markers with the Gibbs distribution, testing
the null hypothesis of no association between the candidate gene against the
alternative hypothesis of association is equivalent to testing that the parameters of
the model for cases are equal to the parameters for controls. The null hypothesis
of no association between gene and disease is then equivalent to the hypothesis

G(fpm strl) =

0 N OOk W O

Hy: jcases(3> = jcontrols(3>7 s=1,2,...,m—1.
We call the likelihood ratio statistic for testing Hg versus its alternative
H, : at least one pair is different

Potts Likelihood Ratio test statistics, and denote it by PLR:
PLR = _Q(IHL({jall(3>}> - lnL({jcases(S)}) - lnL({jcontrols(S)}))v
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where Ja1($), Jeases(S) and Jeontrols(s) are the maximum likelihood estimators of
the parameters based on all the data (pooled sample), the cases only and the
controls only, respectively. Under the null hypothesis, as the sample size n — oo,
PLR has, approximately, a x? distribution with m — 1 degrees of freedom. The
maximum likelihood estimators are found numerically by Powell’s method, [26].
The same method was used by Majewski, Li and Ott in [22].

To assess the statistical significance of an association, one can utilize the
x? approximation. However, the use of asymptotic results may not be appro-
priate for at least two reasons. First, for the asymptotic distribution to hold,
the sample size should be large. Second, the number of degrees of freedom in-
creases with the number of markers typed in the candidate gene, making the tail
of the x? distribution thicker, thereby leading to eventual loss of power to de-
tect association. Thus, the use of the empirical distribution of the test statistic
under the null hypothesis is desirable. This situation is encountered often in ap-
plied statistics, and in genetic association studies in particular (see for example
[10, 9, 46, 23, 48]). Since, in most cases, obtaining of the exact null distribu-
tion of a particular test statistic is computationally infeasible, one estimates it
through Monte Carlo methods in which a finite number of random permutations
are performed, [14, 9]. We estimate the empirical p-values using the following
randomization-permutation strategy, [9, 23]. Suppose that the observed value of
the test statistic under consideration is tg. Then, we 1. randomly shuffle the
case and control status among the individuals; 2. calculate the value ¢; of the
test statistic using the permuted data; 3. repeat steps 1 and 2 N times; and 4.
estimate the empirical p-value with the proportion of times the value of the test
statistic calculated from the permuted data set is more extreme than that for the
observed data: p = W In our studies we use N = 1,000 permutations to
estimate the empirical p-values.

2.2. Other Tests Compared

In this study, we will compare the performance of the Potts Likelihood Ratio test
with two well known and widely used candidate-gene association tests: Pearson’s
x? goodness-of-fit test (GOF), [8, 1, 33, 43], and the generalized two-sample
Hotelling’s T2 test, [41, 12].

Suppose that a set of m tightly linked biallelic markers (SNPs) are typed
in a sample of cases and controls. There are 3" possible multi-marker geno-
types at these m markers. Suppose that L of them, L < 3™, are present in
the pooled sample of cases and controls. Denote these multi-marker genotypes
by g1,92,...,9r. The resulting data can be written in a 2 x L contingency ta-
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ble. The statistical model underlying such data is that of two samples drawn
from multinomial distributions. Pearson’s x? goodness-of-fit statistic provides a
standard asymptotic test of the null hypothesis of no association in the 2 x L
contingency table, that is, the equality of the distributions of the multi-marker
genotype frequencies in cases and controls. When the sample size is large, un-
der the null hypothesis, GOF test statistic is asymptotically distributed as a
x? distribution with L — 1 degree of freedom. The main drawback of GOF in
its application to multi-marker genotype data is that the number of degrees of
freedom increases with the increase of the number of markers considered. Hence,
it loses power. Besides, asymptotic approximations may be rather poor when
there is a small number of data in some cells.

Recently Xiong et al., [41], proposed the generalized T2 statistic for case-
control association studies of complex traits that simultaneously utilizes multiple
biallelic (SNP) markers. This statistic is a corollary to that originally devel-
oped for multivariate analysis, [17], and is known in this context as two-sample
Hotelling’s T2 statistic, see for example [14, 2]. Under the null hypothesis of
no linkage disequilibrium between any marker in the set and a disease locus,
the covariance matrix of the indicator variables for the marker genotypes of the
cases, and the covariance matrix of indicator variables for the controls are equal.
Hence, when the sample size is large enough, under the null hypothesis, T2 is
asymptotically distributed as a x? distribution with m degrees of freedom, [2].
The generalized T2 statistic is a promising statistic for association studies of com-
plex diseases. It has been generalized, [11, 4], for use in high-resolution linkage
disequilibrium mapping based on haplotype maps, microsatellite marker maps,
and for family data [12]. In [4] was shown that the generalized T'?statistic is
optimal or near optimal (in the case of one disease susceptibility locus, strong
LD between markers and additive disease model) among wide class of statistics,
in the generalized linear models framework, see also [5].

We evaluate the p-values of GOF and T? with the same randomization-
permutation strategy employed for the PLR test.

3. Simulations

We use simulation studies to evaluate the performance of the proposed test and to
compare its power with two other tests. We perform the simulation studies based
on the haplotype frequencies in a gene taken from a study aiming to understand
the impact of the apolipoprotein B (ApoB) polymorphism on cholesterol[16]. In
this study, five intragenic single nucleotide polymorphisms were typed in 121
French nuclear families. ApoB gene has 10 haplotypes. The haplotype structure,



302 R. Nickolov, V. Milanov

haplotype frequencies, and SNP frequencies from the study are given in Table 1.

SNP

Haplotype 1 2 3 4 5 Frequency
1 1 1 1 1 1 0.180
2 0 0 1 1 1 0.214
3 1 1 0 1 0 0.194
4 0 0 1 0 1 0.100
5 1 1 0 1 1 0.277
6 0 1 0 1 1 0.006
7 0 0 0 1 1 0.014
8 1 1 1 0 1 0.006
9 1 1 0 0 1 0.004
10 0 1 1 1 1 0.005
Minor allele frequency | 0.34 0.328 0.49 0.11 0.19

Table 1: Haplotypes and haplotype frequencies of ApoB gene.

For each pair of SNPs, the haplotype frequencies from all SNPs were collapsed
to obtain the four haplotype frequencies for the two SNPs under consideration,
and the linkage disequilibrium measure D’ was calculated. The linkage disequi-
librium values for each pair of SNPs are given in Table 2. The five loci are in
tight linkage disequilibrium, suggesting that recombination in this region is rare,
and the haplotype structure is similar to that of a haplotype block. That was the
reason for choosing ApoB gene for our simulation studies. Apo B gene was also
used in other theoretical studies [32, 18, 34]

SNP | 2 3 4 )
1 1.00 | —0.88 0.86 | —1.00
2 —-0.91 0.87 | —1.00
3 -0.93 1.00
4 —1.00

Table 2: Linkage diseequilibrium value (D’) for each pair of SNPs of the ApoB
gene.

In our simulations the trait values (case/control status) depend on the geno-
types at disease susceptibility loci and disease models. Let D and d denote the
two alleles at a disease susceptibility locus with frequencies pp and pg =1 — pp,
respectively. Denote the penetrance of the genotypes DD, Dd and dd as follows:
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fpop = P(case|DD), fpq = P(case|Dd), and fqq = P(case|dd). Let D be the
high risk allele at the disease locus. Then fpp > fpqg > faq- We consider three
one-locus disease models namely the dominant (fpp = fpqg # fad), the recessive
(fpp # [pa = fad), and the additive (fps = 0.5(fpp + faq)) models (see for
example [33, 40, 49]). We choose one SNP as disease susceptibility SNP and
choose the minor allele as high-risk allele. We consider two scenarios:

e Scenario I. The second SNP is the disease susceptibility locus itself. The
mutant allele D is the allele denoted with 0 in Table 1, and its relative
frequency 0.328 is taken as pp.

e Scenario II. The fourth SNP is the disease susceptibility locus itself. The
mutant allele D is the allele denoted with 0 in Table 1, and its relative
frequency 0.11 is taken as pp.

Once the sample of cases and controls is simulated (as explained bellow),
we calculate the values of the statistic under consideration for the set of all five
SNPs. Then, we randomly choose one SNP and remove it from the data. Next,
we calculate the statistic with the set of four SNPs left. Again, we reduce the
number of SNPs to three and recalculate the statistic. In such a way, we not only
have the possibility to compare the performance of the tests for different number
of SNPs typed, but also make the comparison more fair. For Scenario I, we first
exclude the fifth SNP and use SNPs 1,2, 3 and 4. Then we exclude the third SNP,
and use SNPs 1,2 and 4. So, the sets are {1,2,3,4,5}, {1,2,3,4} and {1,2,4}.
For Scenario II, we exclude the first SNP and then the third. So, the set of SNPs
are {1,2,3,4,5}, {2,3,4,5} and {2,4,5}.

3.1. Data sets for assessing the power
To assess the power, in both scenarios considered, we set the disease prevalence
to be 0.1 and vary the relative risk (fpp/fiq) of genotypes DD to dd from 2
to 5, in increments of 1.5. Given the prevalence, relative risk, disease allele fre-
quency pp and the disease model (dominant, recessive or additive), we calculate
the probability of the genotypes at the disease susceptibility locus, under the
condition that the individual is affected (case) or normal (control),  assuming
Hardy-Weinberg equilibrium. The probabilities used in our simulations are given
in Table 3.

Next, in order to generate the haplotypes of an individual, we first generate
the individual’s genotype at the disease locus, given the affectation status, using
the above conditional probabilities. If the individual’s genotype is DD, we choose
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Relative Scenario | Scenario 11
Probability Risk Dom. | Rec. | Add. | Dom. | Rece. | Add.
2 0.139 | 0.194 | 0.162 | 0.020 | 0.024 | 0.022
P(DD)|case) 3.5 0.159 | 0.297 | 0.207 | 0.028 | 0.041 | 0.033
5 0.168 | 0.376 | 0.232 | 0.033 | 0.058 | 0.042
2 0.569 | 0.398 | 0.498 | 0.324 | 0.193 | 0.265
P(Dd|case) 3.5 0.651 | 0.347 | 0.545 | 0.451 | 0.190 | 0.346
5 0.690 | 0.308 | 0.572 | 0.535 | 0.187 | 0.408
2 0.292 | 0.408 | 0.340 | 0.656 | 0.783 | 0.714
P(dd|case) 3.5 0.190 | 0.356 | 0.248 | 0.521 | 0.769 | 0.621
5 0.141 | 0.316 | 0.195 | 0.432 | 0.756 | 0.550
2 0.104 | 0.098 | 0.102 | 0.011 | 0.011 | 0.011
P(DD)|control) | 3.5 0.102 | 0.087 | 0.097 | 0.010 | 0.009 | 0.010
5 0.101 | 0.078 | 0.094 | 0.010 | 0.007 | 0.009
2 0.427 | 0.446 | 0.434 | 0.182 | 0.196 | 0.188
P(Dd|control) | 3.5 0.418 | 0.451 | 0.429 | 0.168 | 0.196 | 0.179
5 0.413 | 0.456 | 0.426 | 0.158 | 0.197 | 0.172
2 0.469 | 0.456 | 0.464 | 0.807 | 0.793 | 0.801
P(dd|control) 3.5 0.481 | 0.462 | 0.474 | 0.822 | 0.795 | 0.811
5 0.486 | 0.467 | 0.480 | 0.832 | 0.796 | 0.819

Table 3: Conditional probabilities at the disease locus used in the simulations,
under dominant (Dom.), recessive (Rec.), and additive (Add.) models.
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two haplotypes with the disease mutation. We do this, using the distribution of
the haplotype frequencies from Table 1. If there are many haplotypes bearing
the mutation, we sample one of them according to their frequencies. If the in-
dividual’s genotype is Dd, we sample one haplotype with, and one haplotype
without the disease mutation, according to the haplotype frequencies in Table 1.
If the individual’s genotype is dd, we sample two haplotypes without the disease
mutation, again according to the haplotype frequencies in Table 1. Proceeding in
this way, we simulate the haplotypes for a sample of cases and controls. Finally,
we convert the haplotype data into genotype data.

For each simulation scenario, we generate 1,000 independent samples of 100
case and 100 controls, and for each sample, the p-values of the tests considered
is estimated by 1,000 permutations.

3.2. Data sets for assessing the type I error:

To assess the type I error rate, we generate the data under null hypothesis of
no association between trait values and the multi-marker genotypes, as described
above, by simply setting the relative risk equal to 1. For each simulation sce-
nario, we generate 1,000 samples of 100 case and 100 controls, and use 1,000
permutations for each sample to evaluate the p-values of the tests.

4. Results

4.1. Type I Error Rates

The estimated type I error rates for the three tests (PLR, GOF, and T?), un-
der Scenario I and Scenario Il,are given in Table 4. Two levels of statistical
significance are considered: 0.05 and 0.01. For 1,000 replicated samples, the
standard errors for the type I error rate estimates were /(0.05 x 0.095)/1,000 ~
0.0069 and /(0.01 x 0.099)/1,000 = 0.00315, for the nominal levels of 0.05
and 0.01, respectively. The 95% confidence intervals were (0.0365,0.0635) and
(0.0019,0.0181), respectively. It is easy to see from Table 4 that the estimated
type-1 errors of PLR are similar to these of the other tests, and are not statis-
tically significantly different from the nominal levels. However, even though all
three tests have reasonable type I error rates they are slightly inflated. This might
be improved by increasing the sample size and (or) the number of permutations.

4.2. Power Comparisons

To compare the power of the three tests, we generate data by using the haplotype
frequencies in the ApoB gene considered in our simulation. For each of the two
scenarios, we consider three disease models. For each scenario and each disease
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Number of | Significance level 0.01 | Significance level 0.05
Scenario | markers PLR | GOF T? PLR | GOF T?

) 0.016 | 0.013 | 0.012 | 0.064 | 0.059 | 0.063
I 4 0.014 | 0.014 | 0.017 | 0.060 | 0.056 | 0.060
3 0.014 | 0.008 | 0.007 | 0.054 | 0.056 | 0.066
5 0.021 | 0.016 | 0.014 | 0.064 | 0.072 | 0.063
11 4 0.012 | 0.018 | 0.015 | 0.057 | 0.066 | 0.060
3 0.018 | 0.014 | 0.016 | 0.072 | 0.059 | 0.071

Table 4: Type I error rate comparisons of the three tests in simulations of 100
cases and 100 controls.

model, we consider three different values, 2, 3.5,and 5, of relative risks, and 3, 4,
or 5 markers in the gene. We set the significance level to be 0.01, and 0.05. Thus,
we perform the simulations under 2 x 3 x 3 x 3 x 2 = 108 different cases. The
results are summarized in Tables 5 and 6. Table 5 presents the power comparisons
under the Scenario I, and Table 6 gives the power comparisons under the Scenario
II.

Scenario 1

As can be seen from Table 5, PLR is the most powerful test in all cases
considered. It clearly outperforms T2, especially in the case of 4 and 5 markers,
under recessive and dominant models, and for low relative risk. Under the reces-
sive model, five markers, and relative risk 3.5, the margin is the highest: 19%.
Even under additive model PLR is more powerful than 72 (margin up to 14%).
In the case of recessive model 72 has power less than that of GOF.

For 3 markers and relative risk 5, GOF has power close to that of PLR. For
4 and 5 markers the power of GOF' is reduced due to the increase of the degrees
of freedom.

Scenario 11

Under this simulation scenario, the fourth marker is the disease susceptibility
locus itself. Under the recessive model, its lower frequency, 0.11, leads to very
high percentage of phenocopies (individuals who are affected without carrying a
disease-causing allele) among the cases (see Table 3). This in turn leads to lower
power of the tests. However, even in this case it can be seen from Table 6 that
PLR is more powerful than the other two tests (margin up to 4%).

Under dominant and additive models (3 markers) the most powerful test is
PLR, followed closely by T2. In the case of 4 and 5 markers 72 and PLR
performed similarly without clear winner.
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As in scenario I, our proposed test and 72 are more powerful than the GOF
test. Only in the case of 5 markers, dominant disease model, and relative risk 5,
GOF has power comparable to that of PLR and T°2.

Comparing the power of the three tests shown in the two tables, we see that
the PLR is the most powerful test among the three tests in all cases considered.
Its power advantage is larger when the disease allele frequency is higher (Scenario

).

5. Discussion

Our proposed test targets the detection of population-level association between
candidate gene and disease from a case-control sample. It is designed to exploit,
simultaneously, set of tightly linked biallelic markers (SNPs), typed in the gene
of interest. The goal is to optimally use the information on all markers. The
proposed likelihood ratio test statistics, PLR, is built on a Gibbs random field
model. Similar models have been used in many areas of science, such as statistical
mechanics, spatial statistics, image analysis, biology, genetics, etc. for modeling
interacting systems.

We evaluated the type I error rate and the relative power of the proposed
test through simulations. In our simulation scenarios we assumed one disease
susceptibility locus in the candidate gene of interest. The proposed test statistics
had correct type I error rate, when permutation testing was employed.

We compared the power of our proposed test with the power of two others,
the widely used Pearson’s x? goodness-of-fit test (GOF), and the generalized two
sample Hotelling’s T2 test. We choose T2, because it was shown in [4], that in
certain cases, this test is optimal or near optimal, among wide class of statistics
in the generalized linear models framework.

We found that our proposed test PLR is more powerful than GOF and T2
in the cases considered. The difference in power increases with the number of
markers, and is larger when the relative risk is low.

Our limited simulation studies were based on the haplotype structure of ApoB
gene. We choose this gene, because all five SNP are in high linkage disequilibrium
with each other mimicking haplotype block structure. We assumed that one
of the genotyped markers is the disease locus itself. This is equivalent to the
case in which one of the SNPs is in complete linkage disequilibrium with the
unobserved disease locus. We expect our results to hold also in the cases when
the disease locus is not genotyped and is in incomplete linkage disequilibrium
with the observed SNPs, as long as the last are in a haplotype block. However,
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Number of Relative | Significance level 0.01 | Significance level 0.05
markers Model | Risk PLR | GOF | T? PLR | GOF | T?

2 0.31 |0.14 |0.21 [055 |0.31 |0.40

Dom. | 3.5 0.81 | 0.58 |0.70 [0.93 |0.78 |0.86

5 093 087 [0.86 [0.98 |096 |0.93

2 0.10 | 0.05 |0.05 [0.25 |0.15 |0.16

5 Rec. 3.5 0.62 |0.40 |043 |0.83 |0.66 |0.65

5 092 |0.83 082 |098 [094 |09

2 0.22 |0.06 |0.11 [042 |0.17 |0.26

Add. |35 0.74 10.32 |059 (091 |054 |0.80

5 094 | 064 |086 |098 |0.83 |0.94

2 0.33 | 021 |0.24 |0.58 |0.38 |0.42

Dom. | 3.5 0.83 |0.71 |0.74 | 094 | 087 |0.88

5 095 [ 093 [0.89 [096 | 098 |0.95

2 0.11 | 0.06 |0.06 |0.27 |0.19 |0.18

4 Rec. 3.5 0.65 | 052 |049 |08 |0.73 |0.68

5 094 1090 |086 |098 |097 |0.94

2 0.22 | 0.08 |0.14 [043 |0.21 |0.30

Add. |35 0.77 |10.41 |0.64 |093 |0.64 |0.84

5 095 [ 076 [0.89 [0.99 |0.89 |0.95

2 0.36 | 0.29 |0.28 [0.60 | 049 |0.49

Dom. | 3.5 0.87 |10.83 |080 |09 |093 |0.91

5 095 | 097 |091 {099 |0.99 |1.00

2 0.11 | 0.08 |0.08 [0.28 |0.23 |0.19

3 Rec. 3.5 0.67 |0.68 |054 |08 |086 |0.73

5 094 | 097 |0.89 [0.99 |0.99 |0.96

2 0.23 |0.11 |0.18 044 |0.27 |0.33

Add. | 3.5 0.81 |0.60 |0.70 | 094 |0.80 |0.88

5 0.96 |0.88 091 1099 |095 |0.97

Table 5: Power comparisons of the three tests in simulations based on ApoB
gene; Scenario I. Sample size for cases and controls 100.
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Number of Relative | Significance level 0.01 | Significance level 0.05
markers | Model | Risk PLR | GOF | T? PLR | GOF | T?

2 0.20 | 0.07 |0.22 (043 |0.25 |0.43

Dom. | 3.5 0.84 | 0.65 |0.88 |0.96 |0.83 |0.97

5 098 1095 |0.99 |1.00 |0.99 |1.00

2 0.01 |0.02 |0.01 [0.05 |0.06 |0.06

5 Rec. 3.5 0.02 |0.02 |0.03 [0.09 |0.08 |0.08
5 0.04 |10.03 |0.03 |0.15 |0.11 |0.11

2 0.07 |0.03 |0.07 |0.17 |0.11 |0.17

Add. |35 0.40 |0.17 |040 |0.64 |0.36 |0.65

5 0.75 | 0.52 | 0.8 [091 |0.72 |0.92

2 023 |0.10 |0.22 [046 | 025 |0.45

Dom. | 3.5 0.89 |0.66 |0.90 097 |0.85 |0.98

5 0.99 | 095 | 1.00 |1.00 |0.99 |1.00

2 0.01 |0.02 |0.01 [0.05 |0.05 |0.05

4 Rec. 3.5 0.03 |0.02 |0.02 [0.09 |0.08 |0.09
5 0.04 |0.03 |0.04 |[0.16 |0.12 |0.12

2 0.07 | 0.03 |0.07 {017 | 0.10 |0.19

Add. |35 0.44 |0.17 044 |0.70 |0.37 |0.67

5 0.82 | 052 |0.82 (094 |0.73 |0.93

2 0.32 | 0.15 |0.27 |0.54 |0.33 | 0.47

Dom. | 3.5 094 |0.80 |0.93 098 |0.93 |0.98

5 1.00 | 099 |1.00 | 1.00 | 1.00 | 1.00

2 0.01 |0.01 |0.01 [0.06 |0.05 |0.06

3 Rec. 3.5 0.03 |0.03 |0.02 {010 |0.09 |0.09
5 0.07 | 0.05 |0.04 [0.18 |0.16 |0.15

2 0.10 | 0.04 |0.08 |024 |0.14 |0.21

Add. | 3.5 0.56 | 025 |049 076 | 047 |0.73

5 0.89 | 0.68 |0.87 [097 |0.84 |0.96

Table 6: Power comparisons of the three tests in simulations based on ApoB
gene; Scenario II. Sample size for cases and controls 100.
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to achieve adequate power one will need larger sample size. Future work is needed
to assess the performance of our proposed test with respect to sample size and
to candidate genes with different haplotype structures.

In conclusion, our proposed test seems a promising approach for case-control
candidate-gene association studies, in which a number of markers in high linkage
disequilibrium with each other (a haplotype block) are genotyped in the gene of
interest.
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