## Provided for non-commercial research and educational use.

 Not for reproduction, distribution or commercial use.
## PLSKA <br> STUDIA MATHEMATICA BULGARICA

## ПЛИСКА

БЪЛГАРСКИ МАТЕМАТИЧЕСКИ СТУДИИ

The attached copy is furnished for non-commercial research and education use only. Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to third party websites are prohibited.

For further information on
Pliska Studia Mathematica Bulgarica
visit the website of the journal http://www.math.bas.bg/~pliska/
or contact: Editorial Office
Pliska Studia Mathematica Bulgarica
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: pliska@math.bas.bg

# JOINT DENSITIES OF CORRELATION COEFFICIENTS FOR SAMPLES FROM MULTIVARIATE STANDARD NORMAL DISTRIBUTION 

Evelina Veleva


#### Abstract

We consider the joint distribution of the correlation coefficients for samples from multivariate standard normal distribution. Some marginal densities are obtained. Independence and conditional independence between sets of sample correlation coefficients are established.


## 1. Introduction

Let $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)^{T}$ be a random vector with standard normal distribution $N_{n}(\overrightarrow{0}, \mathbf{I})$, where $\overrightarrow{0}$ is a zero $n \times 1$ vector, and $\mathbf{I}$ is the identity matrix of size $n$. Let $\xi^{(1)}, \ldots, \xi^{(m)}$ be a sample from $\xi$ with size $m,(m>n)$. Consider the matrix $\mathbf{R}$,

$$
\mathbf{R}=\left(\begin{array}{cccc}
1 & \eta_{12} & \ldots & \eta_{1 n} \\
\eta_{12} & 1 & \ldots & \eta_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\eta_{1 n} & \eta_{2 n} & \ldots & 1
\end{array}\right)
$$

where $\eta_{i j}$ is the sample correlation coefficient of the random variables $\xi_{i}$ and $\xi_{j}$, $1 \leq i<j \leq n$. The joint density of the elements $\eta_{i j}, 1 \leq i<j \leq n$ of the matrix $\mathbf{R}$ is of the form (see [4] and [7]):

$$
\begin{equation*}
C_{n}\left(\operatorname{det} \mathbf{Y}_{n}\right)^{\frac{m-n-1}{2}} I_{D} \tag{1}
\end{equation*}
$$

2000 Mathematics Subject Classification: 62H10
Key words: Multivariate normal distribution, sample correlation coefficients, independence, conditional independence.
where:

- $C_{n}$ is a suitable constant,

$$
\begin{equation*}
C_{n}=\frac{\left[\Gamma\left(\frac{m}{2}\right)\right]^{n-1}}{\Gamma\left(\frac{m-1}{2}\right) \Gamma\left(\frac{m-2}{2}\right) \ldots \Gamma\left(\frac{m-n+1}{2}\right)\left[\Gamma\left(\frac{1}{2}\right)\right]^{\frac{n(n-1)}{2}}} \tag{2}
\end{equation*}
$$

$\Gamma(\cdot)$ is the well known Gamma function;

- $\mathbf{Y}_{n}$ is a real symmetric matrix,

$$
\mathbf{Y}_{n}=\left(\begin{array}{cccc}
1 & y_{12} & \ldots & y_{1 n}  \tag{3}\\
y_{12} & 1 & \ldots & y_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
y_{1 n} & y_{2 n} & \ldots & 1
\end{array}\right)
$$

- $I_{D}$ is the indicator of the set $D$, consisting of all points $\left(y_{i j}, 1 \leq i<j \leq n\right)$ in the Euclidian real space $R_{n(n-1) / 2}$ with dimension $n(n-1) / 2$, for which the matrix $\mathbf{Y}_{n}$ is positive definite.

The multivariate normal (Gaussian) distribution is a basic distribution in many models of the multivariate statistical analysis (see $[1,2,3,5,6]$ ). The sample correlation matrix $\mathbf{R}$ arises naturally in the decision theory when we consider hypothesis, connected with the correlation between the factors in the experiment.

The author in [7] proves necessary and sufficient conditions for the positive definiteness of the matrix $\mathbf{Y}_{n}$. These conditions allow us to obtain some of the marginal densities of the density in (1) (see [7]).

## 2. Joint density of union of subsets

Let us denote by $V_{n}$ the set $V_{n}=\left\{\eta_{i j}, 1 \leq i<j \leq n\right\}$. Let $S=\left\{\eta_{i_{s} j_{s}}, s=1, \ldots, k\right\}$ be an arbitrary subset of the set of random variables $V_{n}$. To this subset $S$ we can attach a graph $G(S)$ with nodes $\{1,2, \ldots, n\}$ and $k$ undirected edges $\left\{\left\{i_{s}, j_{s}\right\}, s=1, \ldots k\right\}$. It is easy to find that the correspondence

$$
S \rightarrow G(S)
$$

is bilateral, i.e. there exists the inverse correspondence

$$
G \rightarrow S(G)
$$

Introduce the notation $f_{S}$ for the joint density of the random variables belonging to the set $S$. If $S$ is the empty set $\varnothing$ we define $f_{S}=1$.

Theorem 1. Let $S_{1}$ and $S_{2}$ be two subsets of the set $V_{n}$, and $G_{1}=G\left(S_{1}\right)$, $G_{2}=G\left(S_{2}\right)$ be their corresponding graphs. Denote by $K_{i}$ the set of the numbers of the nodes, which are ends of edges of the graph $G_{i}, i=1,2$. Let $K=K_{1} \cap K_{2}$. If the set $K$ contains at least two elements and for every two elements $p$ and $q$ of $K, p<q$ the random variable $\eta_{p q}$ belongs simultaneously to $S_{1}$ and $S_{2}$ then

$$
\begin{equation*}
f_{S_{1} \cup S_{2}}=\frac{f_{S_{1}} f_{S_{2}}}{f_{S_{1} \cap S_{2}}} \tag{4}
\end{equation*}
$$

i.e. the sets $S_{1}$ and $S_{2}$ are conditionally independent on the set $S_{1} \cap S_{2}$.

Proof. Let us denote the number of the elements of the sets $K_{1}, K_{2}$ and $K$ by $k_{1}, k_{2}$ and $k$ respectively. Let $S_{\cup}$ and $S_{\cap}$ be the sets $S_{\cup}=S_{1} \cup S_{2}$ and $S_{\cap}=S_{1} \cap S_{2}$, and $G_{\cup}, G_{\cap}$ be their corresponding graphs, $G_{\cup}=G\left(S_{\cup}\right)$, $G_{\cap}=G\left(S_{\cap}\right)$. Re-number the vertices in the graphs $G_{1}, G_{2}, G_{\cup}$ and $G_{\cap}$ so that the nodes from the set $K_{1} \backslash K$ to have the numbers from 1 to $k_{1}-k$; the nodes from the set $K$ to have the numbers from $k_{1}-k+1$ to $k_{1}$ and the nodes from the set $K_{2} \backslash K$ to have the numbers from $k_{1}+1$ to $k_{1}+k_{2}-k$. With this re-numbering we get new graphs $G_{1}^{\star}, G_{2}^{\star}, G_{\cup}^{\star}, G_{\cap}^{\star}$ and corresponding new subsets $S_{1}^{\star}, S_{2}^{\star}, S_{\cup}^{\star}$ and $S_{\cap}^{\star}$ of $V_{n}, S_{1}^{\star}=S\left(G_{1}^{\star}\right), S_{2}^{\star}=S\left(G_{2}^{\star}\right) S_{\cup}^{\star}=S\left(G_{\cup}^{\star}\right)$ and $S_{\cap}^{\star}=S\left(G_{\cap}^{\star}\right)$. The next proposition can be found in [9].

Proposition 1. Let $G(S)$ be the corresponding graph to a subset $S \subset V_{n}$. Let permute the numbers of the vertices of the graph $G(S)$ and let denote the new graph by $G^{\star}$. The subset $S^{\star}=S\left(G^{\star}\right)$ has the same joint distribution as the initial set $S$.

According to this statement, the random variables from the set $S_{1}^{\star}$ have the same joint distribution as the random variables from the set $S_{1}$, i.e.

$$
\begin{equation*}
f_{S_{1}^{\star}}=f_{S_{1}} \tag{5}
\end{equation*}
$$

Analogically,

$$
\begin{equation*}
f_{S_{2}^{\star}}=f_{S_{2}} \quad, \quad f_{S_{\cup}^{\star}}=f_{S \cup} \quad, \quad f_{S_{\cap}^{\star}}=f_{S_{\cap}} . \tag{6}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
S_{\cup}^{\star}=S_{1}^{\star} \cup S_{2}^{\star} \quad, \quad S_{\cap}^{\star}=S_{1}^{\star} \cap S_{2}^{\star} \tag{7}
\end{equation*}
$$

Let us denote by $U_{1}$ and $U_{2}$ the sets $U_{1}=\left\{\eta_{i j} \mid 1 \leq i<j \leq k_{1}\right\}$ and $U_{2}=\left\{\eta_{i j} \mid k_{1}-k+1 \leq i<j \leq k_{1}+k_{2}-k\right\}$. It is obvious that $S_{1}^{\star} \subset U_{1}, S_{2}^{\star} \subset U_{2}$ and $U_{1}, U_{2} \subset V_{k_{1}+k_{2}-k}$. The next proposition can be found in [7].

Proposition 2. The joint density of the random variables from the set $V_{s}$, where $s$ is an integer $(s<n)$, has the form (1) with $n=s$.

Consequently, the joint density of the random variables from the set $V_{k_{1}+k_{2}-k}$ has the form (1). We will use the next proposition which can be found in [8].

Proposition 3. Let $p$ and $q$ be arbitrary integers, such that $2 \leq p \leq n-1$ and $1 \leq q \leq n-2$. Let $A$ and $B$ be subsets of the set $V_{n}, A=\left\{\eta_{i j} \mid 1 \leq i<j \leq p\right\}$ and $B=\left\{\eta_{i j} \mid q+1 \leq i<j \leq n\right\}$. Then

$$
f_{A \cup B}=\frac{f_{A} f_{B}}{f_{A \cap B}} .
$$

From the last equality it follows that:

$$
\begin{equation*}
f_{U_{1} \cup U_{2}}=\frac{f_{U_{1}} f_{U_{2}}}{f_{U_{1} \cap U_{2}}} . \tag{8}
\end{equation*}
$$

It can be easily seen that

$$
S_{1}^{\star} \cap S_{2}^{\star}=\left\{\eta_{i j} \mid k_{1}-k+1 \leq i<j \leq k_{1}\right\}
$$

Consequently,

$$
S_{1}^{\star} \cap S_{2}^{\star} \equiv U_{1} \cap U_{2}
$$

Let us integrate the two sides of the representation (8) with respect to the variables, corresponding to the random variables from the set $\left(U_{1} \backslash S_{1}^{\star}\right) \cup\left(U_{2} \backslash S_{2}^{\star}\right)$. On the left we get the density $f_{S_{1}^{\star} \cup S_{2}^{\star}}$. On the right, the variables, corresponding to the random variables from the set $U_{1} \backslash S_{1}^{\star}$ appear only in the density $f_{U_{1}}$, and those related to the random variables from the set $U_{2} \backslash S_{2}^{\star}$ appear only in the density $f_{U_{2}}$. Therefore we get that

$$
f_{S_{1}^{\star} \cup S_{2}^{\star}}=\frac{f_{S_{1}^{\star}} f_{S_{2}^{\star}}}{f_{U_{1} \cap U_{2}}}=\frac{f_{S_{1}^{\star}} f_{S_{2}^{\star}}}{f_{S_{1}^{\star} \cap S_{2}^{\star}}},
$$

whence by the equalities $(5)-(7)$ the representation (4) follows.
Theorem 2. Let $S_{1}$ and $S_{2}$ be two subsets of the set $V_{n}$, and $G_{1}=G\left(S_{1}\right)$, $G_{2}=G\left(S_{2}\right)$ be their corresponding graphs. Let us denote by $K_{i}$ the set of the numbers of the nodes, which are ends of edges of the graph $G_{i}, i=1,2$. Let $K=K_{1} \cap K_{2}$. If the set $K$ contains at most one element then

$$
f_{S_{1} \cup S_{2}}=f_{S_{1}} f_{S_{2}},
$$

i.e. the sets $S_{1}$ and $S_{2}$ are independent.

Proof. Let us denote the number of the elements of the sets $K_{1}, K_{2}$ and $K$ by $k_{1}, k_{2}$ and $k$ respectively. Let $S_{\cup}$ be the union $S_{\cup}=S_{1} \cup S_{2}$, and $G_{\cup}$ be its corresponding graph, $G_{\cup}=G\left(S_{\cup}\right)$. We consider two cases:

Case I. Let $k=0$. Let us re-number the vertices in the graphs $G_{1}, G_{2}$ and $G_{\cup}$ so that the nodes with numbers from the set $K_{1}$ can take values from 1 to $k_{1}$; the nodes from the set $K_{2}$ can take values from $k_{1}+1$ to $k_{1}+k_{2}$. With this re-numbering we get new graphs $G_{1}^{\star}, G_{2}^{\star}, G_{\cup}^{\star}$ and corresponding new subsets $S_{1}^{\star}, S_{2}^{\star}$ and $S_{\cup}^{\star}$ of $V_{n}, S_{1}^{\star}=S\left(G_{1}^{\star}\right), S_{2}^{\star}=S\left(G_{2}^{\star}\right)$ and $S_{\cup}^{\star}=S\left(G_{\cup}^{\star}\right)$. According to Proposition 1, the random variables from the set $S_{1}^{\star}$ have the same joint distribution as the random variables from the set $S_{1}$, i.e. $f_{S_{1}^{\star}}=f_{S_{1}}$. Analogically, $f_{S_{2}^{\star}}=f_{S_{2}}$ and $f_{S_{\cup}^{\star}}=f_{S \cup}$. It is easy to see that $S_{\cup}^{\star}=S_{1}^{\star} \cup S_{2}^{\star}$.

Let us denote by $U_{1}$ and $U_{2}$ the sets $U_{1}=\left\{\eta_{i j} \mid 1 \leq i<j \leq k_{1}\right\}$ and $U_{2}=\left\{\eta_{i j} \mid k_{1}+1 \leq i<j \leq k_{1}+k_{2}\right\}$. According to Proposition 2, the joint density of the random variables from the set $V_{k_{1}+k_{2}}$ is of the form (1). In accordance with Proposition 3, for $U_{1}$ and $U_{2}$ the representation (8) holds. Since in this case $U_{1} \cap U_{2}=\varnothing$ then $f_{U_{1} \cap U_{2}}=1$ and hence

$$
\begin{equation*}
f_{U_{1} \cup U_{2}}=f_{U_{1}} f_{U_{2}} \tag{9}
\end{equation*}
$$

It is obvious that $S_{1}^{\star} \subset U_{1}$ and $S_{2}^{\star} \subset U_{2}$. Let us integrate the two sides of the representation (9) with respect to the variables, corresponding to the random variables from the set $\left(U_{1} \backslash S_{1}^{\star}\right) \cup\left(U_{2} \backslash S_{2}^{\star}\right)$. On the left we get the density $f_{S_{1}^{\star} \cup S_{2}^{\star}}$. On the right, the variables, corresponding to the random variables from the set $U_{1} \backslash S_{1}^{\star}$ appear only in the density $f_{U_{1}}$, and those related to the random variables from the set $U_{2} \backslash S_{2}^{\star}$ appear only in the density $f_{U_{2}}$. Therefore we get the equality

$$
f_{S_{1}^{\star} \cup S_{2}^{\star}}=f_{S_{1}^{\star}} f_{S_{2}^{\star}},
$$

consequently it follows that

$$
f_{S_{1} \cup S_{2}}=f_{S_{1}} f_{S_{2}}
$$

i.e. the two subsets of random variables $S_{1}$ and $S_{2}$ are independent.

Case II. Let $k=1$. The proof is by analogy with Case I, but here we renumber the vertices in the graphs $G_{1}, G_{2}$ and $G_{\cup}$ so that the nodes with numbers from the set $K_{1}$ can take values from 1 to $k_{1}$; the nodes from the set $K_{2}$ can take values from $k_{1}$ to $k_{1}+k_{2}-1$. After that we consider the sets $U_{1}$ and $U_{2}$, $U_{1}=\left\{\eta_{i j} \mid 1 \leq i<j \leq k_{1}\right\}, U_{2}=\left\{\eta_{i j} \mid k_{1} \leq i<j \leq k_{1}+k_{2}-1\right\}$. For $U_{1}$ and $U_{2}$, according to Propositions 2 and 3, the representation (9) holds. The rest of the proof is analogically to the Case I. Thus the proof is complete.

Theorem 3. Let $r$ be an integer, $r \geq 2$, and $S_{1}, \ldots, S_{r}$ be a sequence of subsets of the set $V_{n}$, such that

$$
S_{t}=\left\{\eta_{i j} \mid i, j \in M_{t}, i<j\right\}
$$

where $M_{t}, t=1, \ldots, r$ are subsets of the set $\{1, \ldots, n\}$. Let for all $t, t=2, \ldots, r$ the intersection

$$
\begin{equation*}
\left(M_{1} \cup \ldots \cup M_{t-1}\right) \cap M_{t} \tag{10}
\end{equation*}
$$

satisfies one of the next two conditions:

1. The set in (10) contains at most one element;
2. The set in (10) contains at least two elements. In this case for every two elements $p$ and $q$ from (10), the random variable $\eta_{p q},(p<q)$, belongs to the set

$$
\left(S_{1} \cup \ldots \cup S_{t-1}\right) \cap S_{t}
$$

Then

$$
\begin{equation*}
f_{S_{1} \cup S_{2} \cup \ldots \cup S_{r}}=\frac{f_{S_{1}} f_{S_{2}} \ldots f_{S_{r}}}{f_{S_{1} \cap S_{2}} f_{\left(S_{1} \cup S_{2}\right) \cap S_{3}} \ldots f_{\left(S_{1} \cup \ldots \cup S_{r-1}\right) \cap S_{r}}} \tag{11}
\end{equation*}
$$

Proof. The proof is by induction on $r$. Let $r=2$, and $S_{1}, S_{2}$ be subsets of the set $V_{n}$ of the form

$$
S_{1}=\left\{\eta_{i j} \mid i, j \in M_{1}, i<j\right\} \quad, \quad S_{2}=\left\{\eta_{i j} \mid i, j \in M_{2}, i<j\right\}
$$

where $M_{1}$ and $M_{2}$ are subsets of the set $\{1, \ldots, n\}$. It is easy to see that the intersection $S_{1} \cap S_{2}$ will have the form

$$
\begin{equation*}
S_{1} \cap S_{2}=\left\{\eta_{i j} \mid i, j \in M_{1} \cap M_{2}, i<j\right\} \tag{12}
\end{equation*}
$$

Let us denote by $G_{1}$ and $G_{2}$ the corresponding graphs to the subsets $S_{1}$ and $S_{2}$, i.e. $G_{1}=G\left(S_{1}\right)$ and $G_{2}=G\left(S_{2}\right)$. Let $K_{i}$ be the set of the numbers of the nodes, which are ends of edges of the graph $G_{i}, i=1,2$. It is easy to see that $K_{1}=M_{1}$ and $K_{2}=M_{2}$. Denote by $K$ the set

$$
K=K_{1} \cap K_{2}=M_{1} \cap M_{2}
$$

Let the set $K$ contain at most one element. According to Theorem 2, we have

$$
f_{S_{1} \cup S_{2}}=f_{S_{1}} f_{S_{2}}
$$

From (12) it follows that the set $S_{1} \cap S_{2}$ is empty, whence $f_{S_{1} \cap S_{2}}=1$. Consequently, we get the representation

$$
\begin{equation*}
f_{S_{1} \cup S_{2}}=\frac{f_{S_{1}} f_{S_{2}}}{f_{S_{1} \cap S_{2}}} . \tag{13}
\end{equation*}
$$

Let the set $K$ contains at least two elements and for every two elements $p$ and $q$ of $K$, the random variable $\eta_{p q},(p<q)$, belongs to the intersection $S_{1} \cap S_{2}$. Then, according to Theorem 1 the equality (13) holds. Therefore, this Theorem 3 is true for $r=2$.

Suppose that the Theorem 3 is true for some $r, r \geq 2$. Let $S_{1}, \ldots, S_{r+1}$ be a sequence of subsets of the set $V_{n}$, such that

$$
S_{t}=\left\{\eta_{i j} \mid i, j \in M_{t}, i<j\right\},
$$

where $M_{t}, t=1, \ldots, r+1$ are subsets of the set $\{1, \ldots, n\}$. Let for all $t, t=$ $2, \ldots, r+1$ the intersection (10) satisfies one of the conditions 1 and 2. Let us denote by $A$ and $B$ the sets $A=S_{1} \cup \ldots \cup S_{r}, B=S_{r+1}$. Let $G_{1}$ and $G_{2}$ be the corresponding graphs of the subsets $A$ and $B$, i.e. $G_{1}=G(A)$ and $G_{2}=G(B)$. Denote by $K_{i}$ the set of the numbers of the nodes, which are ends of edges of the graph $G_{i}, i=1,2$. It is easy to see that $K_{1}=M_{1} \cup \ldots \cup M_{r}$ and $K_{2}=M_{r+1}$. Let $K$ be the intersection $K=K_{1} \cap K_{2}=\left(M_{1} \cup \ldots \cup M_{r}\right) \cap M_{r+1}$.

Suppose that the set $K$ contains at most one element. According to Theorem 2, we have

$$
f_{A \cup B}=f_{A} f_{B}
$$

The set $A \cap B$ is empty, therefore $f_{A \cap B}=1$. Consequently, we get the representation

$$
\begin{equation*}
f_{A \cup B}=\frac{f_{A} f_{B}}{f_{A \cap B}} . \tag{14}
\end{equation*}
$$

Let the set $K$ contains at least two elements and for every two elements $p$ and $q$ of $K$, the random variable $\eta_{p q},(p<q)$, belongs to the set

$$
A \cap B=\left(S_{1} \cup \ldots \cup S_{r}\right) \cap S_{r+1}
$$

Then, according to Theorem 1 the equality (14) holds. From the induction assumption we have the representation (11) for the density $f_{A}$. Hence, by the equality (14) the Theorem 3 follows for $r+1$. Thus the proof of this Theorem 3 is complete.

## REFERENCES

[1] Anderson, T. W. An Introduction to Multivariate Statistical Analysis. New York, John Wiley \& Sons, 1958.
[2] Dempster, A. P. Elements of Continuous Multivariate Statistical Analysis. Mass., Academic Press, Reading, 1969.
[3] Eaton, M. L. Multivariate Statistics. New York, John Wiley \& Sons, 1983.
[4] Ignatov, T. G., A. D. Nikolova About Wishart's Distribution. Annuaire de l'Univerite de Sofia "St.Kliment Ohridski", Faculte des Sciences Economiques et de Gestion 3 (2004), 79-94.
[5] Muirhead, R. J. Aspects of Multivariate Statistical Theory. New York, John Wiley \& Sons, 1982.
[6] Rao, C. R. Linear Statistical Inference and Its Application. New York, John Wiley \& Sons, 1973.
[7] Veleva E. I. Some marginal densities of the sample correlation coefficients of independent normally distributed random variables (in Bulgarian). Annuaire de l'Universite de Sofia "St.Kliment Ohridski", Faculte des Sciences Economiques et de Gestion 5 (2006), 353-369.
[8] Veleva E. I. Conditional independence of joint sample correlation coefficients of independent normally distributed random variables. Proceedings of 35-th Spring conference of the Union of Bulgarian Mathematicians 5-8 April, 2006, Borovec, 315-320.
[9] Veleva E. I., T. G. Ignatov Distributions of joint sample correlation coefficients of independent normally distributed random variables. Advanced Studies in Contemporary Mathematics 12(2) (2006), 247-254.

Evelina Veleva
Department of Numerical Methods and Statistics, University of Rousse "Angel Kanchev",
Studentska str. 8,
Rouse, 7017, Bulgaria,
$e$-mail: eveleva@abv.bg

