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JOINT DENSITIES OF CORRELATION COEFFICIENTS
FOR SAMPLES FROM MULTIVARIATE STANDARD
NORMAL DISTRIBUTION

Evelina Veleva

We consider the joint distribution of the correlation coefficients for samples
from multivariate standard normal distribution. Some marginal densities
are obtained. Independence and conditional independence between sets of
sample correlation coefficients are established.

1. Introduction

Let £ = (51,...,§n)T be a random vector with standard normal distribution
N, (0,1I), where 0 is a zero n x 1 vector, and I is the identity matrix of size n. Let
€M ..., 60 be a sample from & with size m, (m > n). Consider the matrix R,
L m2 ... M
e[ )
Mn M2n - -- 1

where 7;; is the sample correlation coefficient of the random variables §; and §;,
1 <i < j < n. The joint density of the elements 7;;, 1 <7 < j < n of the matrix
R is of the form (see [4] and [7]):

—n—1

(1) Cn(detY,) =2 Ip,
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where:

e (), is a suitable constant,

o o T

F()r(e?). r(=) [T G)] 7

' (-) is the well known Gamma function;

e Y, is a real symmetric matrix,

1y Yin
yiz 1 ... yon
(3) Yn = : : .. : ;
yln y2n e 1

e Ip is the indicator of the set D, consisting of all points (y;;,1 <i < j <n)
in the Euclidian real space R,,(,_1)/2 with dimension n(n —1)/2, for which
the matrix Y, is positive definite.

The multivariate normal (Gaussian) distribution is a basic distribution in
many models of the multivariate statistical analysis (see [1, 2, 3, 5, 6]). The
sample correlation matrix R arises naturally in the decision theory when we
consider hypothesis, connected with the correlation between the factors in the
experiment.

The author in [7] proves necessary and sufficient conditions for the positive
definiteness of the matrix Y,,. These conditions allow us to obtain some of the
marginal densities of the density in (1) (see [7]).

2. Joint density of union of subsets

Let us denote by V;, the set V;, = {n;;,1 <i < j <n}. Let S ={n; ., s=1,...,k}
be an arbitrary subset of the set of random variables V,,. To this subset S
we can attach a graph G(S) with nodes {1,2,...,n} and %k undirected edges
{{is,js},s =1,... k}. It is easy to find that the correspondence

S — G(S)
is bilateral, i.e. there exists the inverse correspondence
G — S(G).

Introduce the notation fg for the joint density of the random variables be-
longing to the set S. If S is the empty set @ we define fg = 1.
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Theorem 1. Let S1 and Sy be two subsets of the set V,,, and G1 = G(S1),
Go = G(S2) be their corresponding graphs. Denote by K; the set of the numbers
of the nodes, which are ends of edges of the graph G;, i =1,2. Let K = K1 N Ks.
If the set K contains at least two elements and for every two elements p and g
of K, p < q the random variable np, belongs simultaneously to S1 and Sy then

fS1fSQ

(4) fS1USQ = )
fSlﬁSQ

i.e. the sets S1 and So are conditionally independent on the set S1 N Ss.

Proof. Let us denote the number of the elements of the sets Ky, Ko
and K by k1, ko and k respectively. Let Sy and Sn be the sets Sy = 51 U Sy
and Sn = S1 NS, and Gy, Gn be their corresponding graphs, Gy = G(Sy),
Gn = G(Sn). Re-number the vertices in the graphs G1, Ga, Gy and Gn, so that
the nodes from the set K \ K to have the numbers from 1 to k1 — k; the nodes
from the set K to have the numbers from k1 — k+1 to k1 and the nodes from the
set Ko\ K to have the numbers from k1 +1 to k1 + ko —k. With this re-numbering
we get new graphs G7, G5, G, Gf, and corresponding new subsets ST, S5, S
and S of V,,, ST = S(GY), S5 = S(G5) Sy = S(GY)) and SK = S(GF). The next
proposition can be found in [9].

Proposition 1. Let G(S) be the corresponding graph to a subset S C V.
Let permute the numbers of the vertices of the graph G(S) and let denote the new
graph by G*. The subset S* = S(G*) has the same joint distribution as the initial
set S.

According to this statement, the random variables from the set S} have the
same joint distribution as the random variables from the set S, i.e.

(5) fsr=fs -
Analogically,
(6) fss=1fsy o fsy=1Ffs, » [fsy=Ffsn -

It is easy to see that
(7) SH=STuUsSy , SH=5TNS;.

Let us denote by U; and Uy the sets U; = {nij |1 <i<j <k} and
Uy ={mij | ki —k+1<i<j<ki+ky—k} . Itisobvious that ST C Uy, S5 C Uy
and Uy, Uy C Vi, 1k,—k- The next proposition can be found in [7].
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Proposition 2. The joint density of the random wvariables from the set Vi,
where s is an integer (s < n), has the form (1) with n = s.

Consequently, the joint density of the random variables from the set Vi, 45,k
has the form (1). We will use the next proposition which can be found in [8].

Proposition 3. Let p and q be arbitrary integers, such that 2 < p <n—1
and1 < g <n—2. Let A and B be subsets of the set V,,, A= {n;; | 1 <i<j <p}
and B={n;; | q+1<i<j<n}. Then

_ fafB
faus =
fanB
From the last equality it follows that:
(8) foro, = fvfo,
fUlﬁUQ

It can be easily seen that
SINSy ={nij | ki —k+1<i<j<ki}.

Consequently,
SfﬂngUlﬂUg .

Let us integrate the two sides of the representation (8) with respect to the
variables, corresponding to the random variables from the set (U3 \ ST)U(U2\ S3).
On the left we get the density fsrus;. On the right, the variables, corresponding
to the random variables from the set Uy \ ST appear only in the density fy,, and
those related to the random variables from the set Uy \ S5 appear only in the
density fy,. Therefore we get that

fsifsy  [sifs;

fowvs — fsinsg

fsrusy =

)

whence by the equalities (5) — (7) the representation (4) follows. O

Theorem 2. Let S and Sy be two subsets of the set V,,, and G1 = G(S7),
Go = G(S2) be their corresponding graphs. Let us denote by K; the set of the
numbers of the nodes, which are ends of edges of the graph G;, i = 1,2. Let
K = K1 N Ky. If the set K contains at most one element then

fSlUSQ = fSlfSQ )

i.e. the sets S1 and So are independent.
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Proof. Let us denote the number of the elements of the sets K, Ko and
K by k1, ko and k respectively. Let S be the union S, = 51 U Sy, and G be
its corresponding graph, Gy = G(Sy). We consider two cases:

Case L. Let k = 0. Let us re-number the vertices in the graphs G, G5 and
Gy so that the nodes with numbers from the set K; can take values from 1 to
k1; the nodes from the set Ky can take values from ki + 1 to k1 + k2. With
this re-numbering we get new graphs G7, G5, G{, and corresponding new subsets

T, S5 and SY of V,,, ST = S(GY), S5 = S(G%) and SY = S(GY)). According
to Proposition 1, the random variables from the set ST have the same joint
distribution as the random variables from the set Si, i.e. fsx = fs,. Analogically,
fsy = fs, and fsy = fg,. It is easy to see that S¥ = ST U S3.

Let us denote by U; and Uy the sets Uy = {n;; | 1 < i < j < ki} and
Uy ={nij | ki +1 < i < j < ki + ka} . According to Proposition 2, the
joint density of the random variables from the set Vi, 1, is of the form (1). In
accordance with Proposition 3, for U; and Us the representation (8) holds. Since
in this case U3y N Uz = @ then fi,ny, = 1 and hence

9) Jfowous = foy fo, -

It is obvious that ST C U; and S5 C Us. Let us integrate the two sides of
the representation (9) with respect to the variables, corresponding to the random
variables from the set (U1 \ S7)U(Uz2\S3). On the left we get the density fs:us;-
On the right, the variables, corresponding to the random variables from the set
U1\ St appear only in the density f,, and those related to the random variables
from the set Uy \ S5 appear only in the density fr,. Therefore we get the equality

Isyusy = fspfsy

consequently it follows that

f51U52 = f51f52 )

i.e. the two subsets of random variables S; and S5 are independent.

Case II. Let £ = 1. The proof is by analogy with Case I, but here we re-
number the vertices in the graphs G, G2 and G|, so that the nodes with numbers
from the set Ky can take values from 1 to kq; the nodes from the set Ko can
take values from ki to k1 + ko — 1. After that we consider the sets U; and Us,
U1={77w’1§i<j§k1}, UQZ{nij‘k1§i<j§k1+k‘2—l}. For U; and
Us, according to Propositions 2 and 3, the representation (9) holds. The rest of
the proof is analogically to the Case I. Thus the proof is complete. O
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Theorem 3. Let r be an integer, r > 2, and Si,...,S, be a sequence of
subsets of the set V,, such that

Se={nij |i,j € My,i <j},

where My, t = 1,...,1 are subsets of the set {1,...,n}. Let for allt, t =2,...,r
the intersection

(10) (MyU...UM;_1)N M,
satisfies one of the next two conditions:
1. The set in (10) contains at most one element;

2. The set in (10) contains at least two elements. In this case for every two
elements p and q from (10), the random variable 1y, (p < q), belongs to
the set

(SlU...UStfl)ﬂSt .

Then
Jsifsy - fs,

fSlﬂSQf(SlUSQ)ﬂS;g cee f(Slu...USr,l)mST ‘

(11) fs1uSsu..uS, =

Proof. The proof is by induction on r. Let r = 2, and S1, So be subsets of
the set V,, of the form

Sy=Amij |i,j € My,i<j} , Sy=Amy|i,j€Mi<j},

where M; and My are subsets of the set {1,...,n}. It is easy to see that the
intersection S7 N .Sy will have the form

(12) SlﬁSQZ{mj’i,jGMlﬂMQ,i<j}.

Let us denote by G; and G»> the corresponding graphs to the subsets S and So,
ie. G1 = G(S1) and G2 = G(S2). Let K; be the set of the numbers of the nodes,
which are ends of edges of the graph G;, ¢ = 1,2. It is easy to see that K1 = M
and K9 = Ms. Denote by K the set

K=K NnKy=M NM,.
Let the set K contain at most one element. According to Theorem 2, we have

fSlUSQ = fSlfSQ .
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From (12) it follows that the set S1 N Sy is empty, whence fs,ng, = 1. Conse-
quently, we get the representation

(13> fSlUSQ = fSlf52 .
fSﬂ_]SQ

Let the set K contains at least two elements and for every two elements p
and ¢ of K, the random variable 7,4, (p < ¢), belongs to the intersection S; N .Sy.
Then, according to Theorem 1 the equality (13) holds. Therefore, this Theorem 3
is true for r = 2.

Suppose that the Theorem 3 is true for some r, r > 2. Let S1,...,5,41 be a
sequence of subsets of the set V,,, such that

St:{n'bj ”l,j eMt7Z <]} )

where M;, t = 1,...,r + 1 are subsets of the set {1,...,n}. Let for all ¢, ¢t =
2,...,r + 1 the intersection (10) satisfies one of the conditions 1 and 2. Let us
denote by A and B the sets A=51U...US,, B=5,4+1. Let G; and G2 be the
corresponding graphs of the subsets A and B, i.e. G; = G(A4) and G2 = G(B).
Denote by K; the set of the numbers of the nodes, which are ends of edges of the
graph G;, i = 1,2. It is easy to see that K1 = My U ...UM, and Ko = M, 4.
Let K be the intersection K = K1 N Ko = (MyU...UM,) N M,4q .

Suppose that the set K contains at most one element. According to Theo-
rem 2, we have

fauB = fafs -

The set AN B is empty, therefore f4np = 1. Consequently, we get the represen-
tation

falB

fan

(14) faus =

Let the set K contains at least two elements and for every two elements p
and ¢ of K, the random variable 1,4, (p < ¢), belongs to the set

AﬂBZ(Slu...UST)ﬂST_H.

Then, according to Theorem 1 the equality (14) holds. From the induction as-
sumption we have the representation (11) for the density f4. Hence, by the
equality (14) the Theorem 3 follows for 7 4+ 1. Thus the proof of this Theorem 3
is complete. O
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