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STUDIA MATHEMATICA

BULGARICA

STUDY ON ROBUSTNESS OF CORRELATED FRAILTY

MODEL

Dimitar Atanasov

This study considers a robust properties of correlated frailty models. The
dependence between related individuals must be considered in order to be
studied the difference between the gene information and the environment as
causes of death. To do that, one can introduce the frailty parameter Z, which
can be decomposed as Z = Zg + Ze, where Zg represents the frailty, due to
the gene information, and Ze represents the influence of the environment.
Using the WLTE(k) one can obtain a robust maximum likelihood estimation
of the unknown parameters of the model.

1. Introduction

This study considers a robust modification of correlated frailty models. Corre-
lated frailty is a generalization of the Shared Frailty models which are very useful
in studying the mortality of related individuals (ex. twins).

There are a lot of reasons for development of models like Frailty Models.
Obviously, the assumption that the individuals are identical is not true. Fur-
thermore, the difference, the heterogeneity and the dissimilarities between the
individuals are some of the most important laws of nature.

Let us suppose that the mortality of the individuals in the population depends
on an unknown variable Z: µ(x | Z) = Zµ0(x). It is reasonable to suppose that Z
is Gamma distributed with EZ = 1. On the one hand, this allows us to estimate
the survival function, on the other hand, by changing the parameters of the
Gamma distribution we can handle quite a large class of probability distributions.
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The dependence between related individuals must be considered in order to
be studied the difference between the gene information and the environment as
causes of death. To do that, we can decompose the frailty Z = Zg +Ze, where Zg

represents the frailty due to the gene information and Ze represents the influence
of the environment. As Z is Gamma distributed we can assume that Zg and Ze

are also Gamma distributed.
We can extend this concept using the idea that not all, but almost all of

the individuals have the same distribution of the frailty parameter. Therefore,
using the WLTE(k) we can obtain a robust maximum likelihood estimation of
the unknown parameters of the model in the case when there are some outliers.
Moreover, we can use the trimming parameter k to study if there are any sub-
populations in the data.

2. The Correlated Frailty Model

The Shared Frailty Models, as their name tells, state that both individuals share
the same frailty Z. Obviously this assumption leads to restriction in interpre-
tation of the dependence between the individuals in the couple. To overcome
this the Correlated Frailty Models were introduced (Yashin, Vapuel and Iachine,
1995c). The model can be represented in the following way.

Let us have the times of death of two related individuals T1, T2, and the
frailties of these two individuals X1, X2. We can decompose them as:

X1 =
λ0

λ1
Z + Z1

X2 =
λ0

λ2
Z + Z2,

where Z ∈ Γ(k0, λ0), Z1 ∈ Γ(k1, λ1), Z2 ∈ Γ(k2, λ2) and EX1 = EX2 = 1, DX1 =
1
λ1

= σ2
1, DX1 = 1

λ1
= σ2

1 . If Zi = 0, i = 1, 2 we obtain the Shared Frailty
Model. We can assume that all the information about common genes and common
environment is represented by Z, and Zi, i = 1, 2 represent only the difference
between the individuals and between their environments. Therefore, if there is
any correlation between the individuals, it will be represented by Z. So, we can
assume that Z,Zi, i = 1, 2 are independent.

According to Weinke (2001) the unconditional survival function for this model
is

S(x1, x2) = ES(x1, x2 | Z1, Z2) = ES(x1 | Z1)S(x2 | Z2) =

= (1 + σ2
1H(x1) + σ2

2H(x2))
−

ρ

σ1σ2 (1 + σ2
1H(x1))

−

1−
σ1
σ2

ρ

σ
2
1 (1 + σ2

2H(x2))
−

1−
σ2
σ1

ρ

σ
2
2 ,
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where ρ = k0

λ1λ2
and H(x) =

∫ x
0 µ0(u)du is the cumulative hazard function. We

assume that the hazard function follows the Gompertz law µ0(x) = aebx, but it
is not difficult to extend the model for µ0(x) = aebx + c.

The parameters of the model can be estimated using the maximum likelihood
model. As the density function

f(x1, x2) =
∂2

∂x1∂x2
S(x1, x2)

is a very complicated one, it was obtained by symbolic calculations with MAT-
LAB.

One important point, that must be considered when applying to a real data
is cencoring of the data. It occurs when some of the observations are not times of
death, but moments when the individuals leave the population. Another restric-
tion which comes with the real data is truncation. It means that we observe the
times of death of these individuals that are alive at the moment when the study
begins. Let us suppose that there is a right censoring and a left truncation. We
have to calculate the density function in this case. Let the observations consist of
(T1, T2,∆1,∆2), where Ti = min{Di, Yi} and ∆i = δ(Yi − Di), δ is the Heviside
function. Here Di are the times of death and Yi are the moments of censoring.
Therefore, there are four cases of cumulative densities functions

P (T1 > t1, T2 > t2, d1 = 1, d2 = 1) =

t1∫

0

t2∫

0

∞∫

t1

∞∫

t2

f(x1, x2)g1(y1)g2(y2)dy2dy1dx2dx1

=

t1∫

0

t2∫

0

f(x1, x2)(1 − G1(x1))(1 − G2(x2))dx2dx1,

where gi(x) and Gi(x) are the density and the cumulative density of the censoring
times.

P (T1>t1, T2>t2, d1=1, d2=0)=

t1∫

0

∞∫

t1

t2∫

0

∞∫

y2

f(x1, x2)g1(y1)g2(y2)dx2dy2dy1dx1

=

t1∫

0

t2∫

0

∂

∂x1
(1 − F (x1, y2))(1 − G1(x1))g2(y2)dy2dx1.
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By analogy

P (T1>t1, T2>t2, d1=0, d2=1)=

t1∫

0

t2∫

0

∂

∂x2
(1−F (y1, x2))(1−G2(x1))g1(y2)dy1dx2.

In the last case

P (T1>t1, T2>t2, d1=0, d2=0)=

t1∫

0

t2∫

0

∞∫

t1

∞∫

t2

f(x1, x2)g1(y1)g2(y2)dx2dx1dy2dy1

=

t1∫

0

t2∫

0

S(x1, x2)g1(y1)g2(y2)dy1dy2

Therefore, the density function will be a mixture of the densities

f(x1, x2, d1, d2) = (f(x1, x2)(1 − G1(x1))(1 − G2(x2)))
d1d2×

×(
∂

∂x1
(1 − F (x1, x2))(1 − G1(x1))g2(x2))

d1(1−d2)×

×(
∂

∂x2
(1 − F (x1, x2))(1 − G2(x1))g1(x2))

(1−d1)d2(S(x1, x2))
(1−d1)(1−d2).

As the censoring is not informative, in the likelihood function only the terms
which give information will be included. So, the likelihood curve will be

l(x1, x2, d1, d2) = f(x1, x2)
d1d2

∂

∂x1
(1 − F (x1, x2))

d1(1−d2)×

×
∂

∂x2
(1 − F (x1, x2))S(x1, x2)

(1−d1)(1−d2).

If there is a left truncation we can use the same density function, but only if
the individuals have survived the truncation moment T ∗.

P (T1 > t1, T2 > t2, d1, d2 | T1 > T ∗, T2 > T ∗) =

P (T1 > t1, T2 > t2, d1, d2, T1 > T ∗, T2 > T ∗) =
f(x1, x2, d1, d2)

S(y1, y2)
,

where yi = T ∗ − bi. Here with bi denotes the time of birth. Therefore, for the
truncated model, the likelihood function becomes

l(x1, x2, d1, d2 | T1 > T ∗, T2 > T ∗) =
l(x1, x2, d1, d2)

S(y1, y2)
.(1)
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3. Statistical model and robustness

Applying this model to a real data it turns out that the optimization algorithm
strongly depends from the starting point of the optimization procedure. For
some values of the estimated parameters for a certain observations the probability
density function becomes negative and the log - likelihood goes to the complex
plane.

So we came to the idea to use a robustified maximum likelihood estimator
in order to filter out these observations, which for a given value of the estimated
parameters give a negative value for the density function.

A robust extension of the maximum likelihood estimators (MLE) that pos-
sesses a high breakdown point was introduced by Vandev and Neykov (1993).
This modification considers the likelihood of individual observations as residuals
and applies the basic idea of the LTS estimators of Rousseeuw (1984) using ap-
propriate weights. In this way Vandev and Neykov (1993) and put in a general
framework many kinds of statistical estimators and in particular the LME(k)
and LTE(k) estimators, previously proposed by Neykov and Neytchev (1990),
and studied by Vandev (1993) and Vandev and Neykov (1993).

Generally speaking, Vandev and Neykov (1998) defined the WLTE(k) esti-
mators, θ̂, for the unknown parameter θ ∈ Θp as

θ̂ = argmin
θ∈Θ

k∑

i=1

wifν(i) (θ),

where fν(1) (θ) ≤ fν(2) (θ) ≤ · · · ≤ fν(n) (θ) are the ordered values of fi =
− log ϕ (xi, θ) at θ, ϕ (xi, θ) is a probability density, θ is an unknown param-
eter and ν = (ν(1), · · · , ν(n)) is the corresponding permutation of the indices,
which may depend on θ. The weights wi ≥ 0, i = 1, · · · , k, are such that an index
k = max {i : wi > 0} exists.

Vandev and Neykov (1998) proved that the finite sample breakdown point
of the WLTE(k) estimators is not less than (n − k)/n if n ≥ 3d, (n + d)/2 ≤
k ≤ n − d, when Θp is a topological space and the set F = {fi(θ), i = 1, · · · , n}
is d-full. We remind the reader that a finite set F of n functions is called d-
full, according to Vandev (1993), if for each subset of cardinality d of F , the
supremum of this subset is a subcompact function. A real valued function g (θ)
is called subcompact, if its Lesbegue sets Lg (C) = {θ : g (θ) ≤ C} are compact
for any constant C (see Vandev and Neykov, 1993).

For the sake of completeness, we draw the attention to the fact that the finite
sample breakdown point of an estimator T , at the finite sample X = {xi; i =
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1, · · · , n}, is defined as the largest fraction m/n for which the

supX̃

∥∥∥T (X) − T
(
X̃

)∥∥∥

is finite, where X̃ is a sample obtained from X by replacing any m of the points
in X by arbitrary values (see Hampel et al. 1986, Rousseeuw and Leroy, 1987).

Thus, if one wants to study the breakdown point of the WLTE(k) estimators
for a particular distribution, one has to find out the index d of fullness of the
corresponding set of log-density functions.

According to Atanasov and Neykov (2001) if D is an open subset of Rn,
θ0 belongs to the boundary of D and g (θ) is a real valued continuous function
defined on D, then we have the following theorem.

Theorem 1. The function g (θ) is subcompact if and only if for any sequence

θi → θ0 g (θi) → ∞ when i → ∞.

Remark: If D is a compact set, then any continuous function defined on D
is subcompact.

We will apply this for the likelihood function described above. This func-
tion depends on 5 unknown parameters: σ1, σ2, ρ are parameters describing the
Gamma distributed frailty and a, b represent the parameters of the Gompertz
hazard function.

Using the symbolic calculations of MATLAB we can find out that if we
study all five unknown parameters there is no set of likelihood curves that sat-
isfis the conditions of d-fullness theory. But if one considers the parameters of
the Gamma distributed frailty variable (the parameters of the hazard function
are fixed to a constant) one can find out that the index of fullness of the set
F = {fi(σ1, σ2, ρ), i = 1, · · · , n} is 3. Here {fi}

n
i=1 are logarithms of the likelihood

functions defined with (1).This result was expected, according to Atanasov and
Neykov (1999). They show that the index of fullness of the set of log-likelihood
curves for Gamma distributed observations is equal to 2.

This allows us to study the correlation coefficient between the frailty vari-
ables in the case when there are some outliers in the data. Also it is possible,
using weights, to find out if there are subpopulations in the observed population
(Atanasov,2002). If the weights are calculated during the minimization algorithm
we will obtain different weights for the observations of the different subpopula-
tions.

The likelihood curves are not subcompact on the mortality parameters. So
there is no subset of any cardinality which satisfies the theory of d-fullness in this
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case. Therefore, in order to obtain a robust estimator on them we have to restrict
their values in compacts. Then, according to the remark above, the likelihood
function will be subcompact as it is continuous.

The maximum likelihood estimator can be defined as

θ̂ = argmin
θ∈Θ

k∑

i=1

wi(−loglν(i)(x
1
ν(i), x

2
ν(i), d

1
ν(i), d

2ν(i), θ | x1
ν(i) > T ∗, x2

ν(i) > T ∗)),

where θ = (σ1, σ2, ρ, a, b) in the case when all parameters are studied or θ =
(σ1, σ2, ρ) in the case when only frailty parameters are studied.

According to the theory of d-fullness the breakdown point properties of this
estimator are not less than (n − k)/n if n ≥ 3d, (n + d)/2 ≤ k ≤ n − d, where
d = 5 in the case when all parameters studied and d = 3 in the other case.
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