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CHARACTERIZATION OF SCHRÖDINGER PROCESSES

WITH UNBOUNDED POTENTIALS

A. Benchettah

This work is concerned with a class of Schrödinger process with unbounded
potentials : a variant of Jamison’s theorem is given without the assump-
tion of continuity and of everywhere strict positivity of q. It associates with
Jamison data (q, Pa, Pb), the Csiszar’s projection Q∗ of a reference measure
R∗ on a set E(Pa, Pb) of probability measures with marginals Pa, Pb. Exis-
tence of a solution to the corresponding Schrödinger’s system, construction
of the Schrödinger’s bridge and variational characterisation of Schrödinger
process are established.

1. Introduction

In his paper Schrödinger[10] (1931) has solved the problem: ”knowing the position
of a Brownian particle in an Euclidean space at times a and b > a; what is the
probability for this particle to have passed through some prescribed domain of
the space at some intermediate time?”

A generalization of this problem by prescribing probability distribution at the
initial and terminal time has led to the concept of Schrödinger bridge which has
been approached from different points of view:

– the theory of reciprocal processes: Jamison[6];
– Information theory and statistics with the concept of entropy: Kullback

and Csiszar[2];
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– the theory of large deviations: Föllmer[5], Wakolbinger[12];
– the theory of stochastic optimal control: Benchettah[1], Nagasawa[8] and

Wakolbinger[12].
The most concise formulation of the convex optimization problem is probably

the one of Csiszar[2]: let E be a given convex set of probability measures on
some measure space (Ω,F), a reference measure µ, we wishe to find a probability
measure ν∗ ∈ E, whenever it exists, for which the entropy distance

H (ν, µ) =

∫
log

dν

dµ
dν, if ν � µ and +∞ otherwise, ν ∈ E.

is minimum, i.e., H (ν∗, µ) = min
ν∈E

H (ν, µ) .

Shrödinger has treated the case: Ω = C0 ([0, T ] ;R) , F : the σ−field of Borels
sets of C0, µ : the Wiener measure and E the set of probability measures P on
(Ω,F) with given marginal P0 and PT which represent the end conditions. In
other words, the reference measure µ is associated with the Brownian transition
probability density, but Shrödinger’s problem can be formulated for a given not
necessarily complete transition density p (s, x; t, y) as well Existence of a solution
to Shrödinger’s problem has been reduced by Shrödinger to existence conditions
for a solution to a system of two integral equations (7), the Shrödinger sys-
tem. Beurling-Jamson’s condition for existence of a solution to the corresponding

Shrödinger’s system is that the function q (x, y)
∆
= p (o, x;T, y) be strictly positive

and jointly continuous at x, y. Note that, since in this more general framework
the transition density p needs not be complete, the definition of a probability
measure µ associated with p requires a normalization. At this point we are faced
with two directions: we can discuss existence in terms of p, on the the basis
of Beurling-Jamison’s work in the area of reciprocal processes, or in terms of µ
thus entering Csiszar’s geometric approach. Of course the two methods are in
correspondence to one another.

In this work, we give a variant of Beurling-Jamison’s without the assumptions
of continuity and everywhere strict positivity of q. Our Theorem 1 links Beurling-
Jamison’s statement and Csiszar’s geometric point of view together. In particular
it associates with Beurling-Jamison’s data (q, Pa, Pb) the Csiszar’s projection Q∗

of a reference measure R∗ on a set E (Pa, Pb) of probability measures with marginal
Pa and Pb. Theorem 2 extends this result by associating with this Q∗ a set {R}
containing R∗ of reference measures with the same projection. Theorem 3 is
concerned with a function q, given explicitly. We obtain sufficient conditions for
existence of a solution to the Schrödinger’s system. In most of paragraph 3 , we
suppose M = R

n. By relying on arguments of Föllmer[5] and Wakolbinger[12],
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we pass to the construction of a Schrödinger bridge with creation and killing.
The main result is enclosed in relations (13) and (14) which will be given later.

Paragraph 4 extends a characterization of Schrödinger processes given by
Wakolbinger[12] to the larger class of potential functions c considered in this
paper. With Theorems 1 and 3 in hand the proof is similar to the proof of
Wakolbinger’s Theorem[12].

2. Shrödinger System for a process with birth and death

Theorem 1. Let M be a σ−compact metric space and Pa, Pb two probability
measures on Σ,(σ−field of borel sets).
Let E = {P / Σ ⊗ Σ: P (. × M) = Pa (.) , P (M × .) = Pb (.)} and q : M ×M → R

borel bounded away from zero below(Pa ⊗ Pb)−a.s. and (Pa ⊗ Pb)−integrable.
Then ∃! pair of measures(Q∗, π)on Σ ⊗ Σ for which:
(a) Q∗ ∈ E and π is a finite product measure;

(b)
dQ∗

dπ
= q;

(c) H(Q∗; R∗) ≤ H (P ; R∗) ∀P ∈ E where

(1) dR∗ = qd (Pa ⊗ Pb) /

∫
qd (Pa ⊗ Pb) ;

(2) (d) dπ = φγd (Pa ⊗ Pb) /

∫
qd (Pa ⊗ Pb)

with log φ ∈ L1 (Pa) and log γ ∈ L1 (Pb) ;

(e) If Pa � λa and Pb � λb, λa, λb two σ−finites measures and log
dPa

dλa

∈ L1 (Pa)

and log
dPb

dλb

∈ L1 (Pb), then

(3) dQ∗ = ϕa q ϕbdλadλb,

where log ϕa ∈ L1 (Pa) , log ϕb ∈ L1 (Pb) .

To prove this theorem we need the following result.

Lemma 2. If R is a probability. on Σ⊗Σ for which ∃P ∈ E with H
(
P ; R

)
<

∞. Then ∃!Q ∈ E such that

H(Q; R) ≤ H (P ; R) ,∀P ∈ E.
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Furthermore if P ∼ α ⊗ β and R ∼ α ⊗ β on Σ ⊗ Σ, then
dQ

dR
is such that

dQ

dR
(x, y) = φ (x) γ (y) ,with 0 ≤ φ (x) < ∞ α − a.s, 0 ≤ γ (y) < ∞ β − a.s.

P r o o f. The first statement follows from Theorem 2-1 of Csiszar[2]. Now
M being a σ−compact and metric space, it is generated by a countable class of
sets, that is

E =

{
P/Σ ⊗ Σ :

∫
fidP =

∫
fidPa,

∫
gidP =

∫
gidPb, i = 1, 2, ...

}

where the f ′
is and g′is are bounded measurable real valued functions, only de-

pending on one of the two arguments x, y ∈ M, respectively. We consider then
the sequence

En =

{
P/Σ × Σ :

∫
fidP =

∫
fidPa,

∫
gidP =

∫
gidPb, i = 1, ..., n

}

Using Föllmer’s argument[5], we have En ↓ E and, for each n, ∃Q Csiszar’s
projection of R on En which converges in variation to Q as n → ∞. According to
corollary 3-1 of Csiszar[2], the Q′

ns have densities with respect to R of the form
dQn

dR
= Qnγn, where Qn and γn are bounded strictly positive functions of x and

y, respectively, except possibly for a subset Nn of M × M where
dQn

dR
vanishes

and Pn (Nn) = 0 ∀Pn ∈ En with H (Pn; R) < ∞.

Then, ∀Pn we have 0 <
dQn

dR
(x, y) = φn (x) γn (y) Pn − a.s.

Furthermore ∫ ∣∣∣∣
dQ

dR
−

dQn

dR

∣∣∣∣ dR → 0.

So, ∃

{
dQn

dR

}
a sub-sequence for which

lim
nq

∣∣∣∣
dQ

dR
−

dQn

dR

∣∣∣∣ = 0 ,R − a.s with 0 ≤
dQ

dR
< ∞ a.s.

Since P ∈ E ⇒ P ∈ En, n = 1, 2, ....., we show that
dQ

dR
(x, y) = φ (x) γ (y) with

0 ≤ φ (x) < ∞ α − a.s. ; 0 ≤ γ (y) < ∞ β − a.s. �
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P r o o f o f Th e o r em 1.
Let P = Pa ⊗ Pb. Then P ∈ E, and from the assumption of Theorem 1 and

the definition of R∗ it follows that

0 ≤ H
(
P; R∗

)
≤

∣∣∣∣log
∫

qd (Pa × Pb)

∣∣∣∣+
∫

|log q| d (Pa ⊗ Pb) < ∞.

Then ∃!Q∗ ∈ E satisfying:

H (Q∗; R∗) ≤ H (P; R∗) ∀P ∈ E

From lemma 2.1 of Csisar [2], it follows that:

0 ≤

∫
log

dQ∗

dR∗
dP < ∞, ∀P ∈ E such that H (P; R∗) < ∞.

In particular:

0 ≤

∫
log

dQ∗

dR∗
d (Pa × Pb) < ∞.

Let m =
q∫

qd (Pa ⊗ Pb)
, then dR∗ = m d (Pa × Pb) . Since m > 0 (Pa × Pb) a.s.,

R∗ is equivalent to Pa ⊗ Pb. We deduce from Lemma 1 that:

dQ∗

dR∗
(x, y) = φ (x) γ (y) , x, y ∈ M

with
0 ≤ φ (x) < ∞ Pa − a.s., 0 ≤ γ (y) < ∞ Pb − a.s.,

but, since (Pa ⊗ Pb)

{
(x, y) :

dQ∗

dR∗
(x, y) = 0

}
, we have in fact

dQ∗

dR∗
(x, y) = φ (x) γ (y) , x, y ∈ M

with 0 < φ (x) < ∞ Pa − a.s., 0 < γ (y) < ∞ Pb − a.s.
It is easy to find that: log φ ∈ L1 (Pa) , log γ ∈ L1 (Pb) .

Also, from the definition of R∗, we get
dQ∗

dπ
= q, where π is the product measure

defined by

dπ =
φγd (Pa ⊗ Pb)∫

qd (Pa ⊗ Pb)
,

which is finite since dπ =
dQ∗

q
with

1

q
bounded above (Pa ⊗ Pb) − a.s.
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Finally, from the assumptions of (e), we have

dQ∗ = ϕaqϕbdλadλb,

where

log ϕa = const + log φ + log
dPa

dλa

∈ L1 (Pa)

log ϕb = const + log γ + log
dPb

dλb

∈ L1 (Pb) .

Theorem 3. Suppose that Pa and Pb satisfy the assumptions (e) of theorem1
and let the function q be as in Theorem1. Then Q∗ given by:

(4) dQ∗ = ϕa q ϕbdλadλb

satisfies H(Q∗; R) ≤ H (P ; R) ,∀P ∈ E and ∀R given by:

(5) dR (x, y) = f (x) g (y) q (x, y) dλa (x) dλb (y)

with log f ∈ L1 (Pa) and log g ∈ L1 (Pb).

P r o o f. Since
dQ∗

dR
(x, y) =

ϕa (x) ϕb (y)

f (x) g (y)
x, y ∈ M. Pa ⊗ Pb − a.s. and

log ϕa, log f ∈ L1 (Pa) and log ϕb, log g ∈ L1 (Pb) .Corollary 3.1 of Csiszar[2]
⇒ H (Q∗; R) ≤ H (P; R) ∀P ∈ E. �

Now we suppose that the space M is a complete σ−compact metric space
(then separable), Σ its σ-field borel sets and {ξ (t) , a ≤ t < ∞} is a (M,Σ) valued
continuous Markov process on a probability space (Ω,F ,P) with a transition
probability:

P (s, x; t, B) = P (ξ (t) ∈ B | ξ (s) = x) = Ps,x (ξ (t) ∈ B) ,

and initial distribution Pa. We suppose that:

P (s, x; t, B) =

∫

B

p (s, x; t, y) λ (dy) , a ≤ s < t < ∞, B ∈ Σ, x ∈ M.

where λ is a σ−finite measure on Σ.
Let Θ be a not empty open relatively compact subset of M . For a terminal

time b > a, the part {η (t) , a ≤ t ≤ b} of the process {ξ (t) , a ≤ t ≤ b} on the set
Θ has transition density p̃ (s, x; t, y) defined by:

p̃ (s, x; t, y) = Es,x [It < τs | η (t) = y] p (s, x; t, y) ; a ≤ s < t ≤ b
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where τs =

{
inf {t > s : ξ (t) ∈ M − Θ } if it exists,

+∞ otherwise.

Let the function c : [a, b] × M → R measurable and

D
4
= {(s, x) ∈ [a, b] × M : |c (s, x)| < ∞}.

Assume:

(H1)
dPa

dλ
= Φa and

dPb

dλ
= Φb are continuous with compact support Ka and

Kb respectively such that Ka ∪ Kb ⊂ Θ;

(H2) p (a, .; b, .) is C0 on Θ ⊗ Θ and strictly positive on Ka ⊗ Kb;

(H3) c is finite and continuous on [a, b] × Θ;

(H4)
∫
[
∫

exp

(
b∫
a

c (r, ξ (r)) dr

)
Ib<T dPax

]
Φa (x) λ (dx) < ∞,

where T =

{
inf {t > a : |c (t, ξ (t))| = ∞} if it exists
+∞ otherwise,

is measurable.

Theorem 4. Let (H1)-(H4) hold. Then the function q given by

(6) q (x, y) = Eax


exp




b∫

a

c (r, ξ (r)) dr


 Ib<T | ξ (b) = y


 p (a, x; b, y) ,

x, y ∈ M, satisfies the assumptions of Theorem1

P r o o f. By assumption (H4), we have

∫ [∫
q (x, y)λ (dy)

]
Φa (x) λ (dx)

=

∫ 

∫

exp




b∫

a

c (s, ξ (s)) ds


χb<T dPax


Φa (x)λ (dx) < ∞;

therefore
∫

qd(Pa × Pb) =

∫
q (x, y) Φa (x)Φb (y)λ (dx)λ (dy)

≤ sup
y∈Kb

Φb (y)

∫
q (x, y) Φa (x)λ (dx) λ (dy) < ∞.
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Let

q̃ (x, y) = Eax[exp




b∫

a

c (s, ξ (s)) ds


χb<τ/ξ (b) = y]p (a, x; b, y) .

Since the process ξ (t), a ≤ t ≤ b, is continuous, we have τ ≤ T. It follows that

q̃ (x, y) ≤ q (x, y) , x, y ∈ M.

By assumption (H3), c is bounded on [a, b] × Θ̄. Therefore, e

�
b�

a

c(s,ξ(s))ds �
χb<τ

1 m′χb<τ for some m
′

> 0, thus q̃ (x, y) 1 m′Eax [χb<τ/ξ (b) = y] p (a, x; b, y) ,
x, y ∈ M. Furthermore, by assumption (H2) ,

Eax [χb<τ/ξ (b) = y] p (a, x; b, y) > m”

for some m” > 0 (Pa ⊗ Pb) − a.s.. Therefore

q (x, y) 1 q̃ (x, y) 1 m′m” > 0 (Pa ⊗ Pb) − a.s.

�

Corollary 5. Let (H1)-(H4) hold. Then there exists a unique (up to multi-
plicative constants) nonnegative solution (ϕa, ϕb) for the Schrödinger’s system

(7)

{
Φa (x) = ϕa (x)

∫
q (x, y)ϕb (y) dy

Φb (y) = ϕb (y)
∫

q (x, y) ϕa (x) dx

with q as in Theorem 3.

Let M be a σ−compact complete metric space; c′ : [a,∞[ ×M → R measur-
able;
D′ = {(s, x) ∈ [a,∞[ × M : |c′ (s, x)| < ∞};

ζs =

{
inf {t > s : |c′ (t, ξ (t))| = ∞} if it exists
∞ otherwise;

,

Is
t : σ-field borel sets of [s, t] and N s

t = σ (ξ (u) , a ≤ s ≤ u ≤ t < ∞)
Consider the following hypotheses:

(h1): {ω, ζs (ω) > t} ∈ N s
t , a ≤ s < t < ∞,(verified if ∂D′ is smooth)

(h2): c′ is continuous on D′;

(h3):Es,x

[
exp(

t∫
s

c′ (r, ξ (r)) dr) Iζs>t

]
< ∞, a ≤ s < t < ∞, x ∈ M ;

(h4): c′ (s, x) = c (s, x), (s, x) ∈ [a, b] × M.
Using Dynkin[4], we obtain.
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Proposition 6. Under assumptions (h1)-(h4), the function

q (s, x; t, y) = Es,x


exp(

t∫

s

c (r, ξ (r)) dr) ITs >t | ξ (t) = y


× p (s, x; t, y) ,

a ≤ s < t < ∞; x, y ∈ M ; where(1)

Ts =

{
inf {t > s : |c (t, ξ (t))| = ∞} if it exists
+∞ otherwise,

is a quasi-transition density .

3. Schrödinger bridge over process with birth and death

Let F = N (=σ (ξ(t) , a ≤ t ≤ b)) and define the probability R on (Ω,N ) by

(9) dR =
exp

(∫ b

a
c (r, ξ(r) dr

)
Ib<T dPa

∫
exp

(∫ b

a
c (r, ξ(r) dr

)
Ib<T dPa

,

where Pa (.) =

∫
Pax (.) Φa (x) dx is the probability on N .

Therefore, the joint end-points distributions measure of the process ξ (t) relatively
to R, is R, given by:

(10) dR =
Φa (x) q (x, y) dxdy

∫
exp

(
b∫
a

c (r, ξ(r) dr

)
Ib<T dPa

,

with q given by (6). And if Pa and Pb � λ, Lebesgue’s measure in R
n, and

log
dPa

dx
∈ L1 (Pa), log

dPb

dy
∈ L1 (Pb) then Q∗ (x, y) given by

(11) Q∗ (x, y) = ϕa (x) q (x, y)ϕb (y) dxdy

is the Csiszar’s projection of R on

E
∆
= { Pon B × B : P (. × R

n) = Pa(.), P (Rn × .) = Pb(.)} ,

i.e.,

H (Q∗; R) ≤ H (P; R) , ∀P ∈ E.
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Consider now the case where M = R
n. Let Ω0 = C0 ([a, b] ;Rn) ,M its σ-

field of Borels subsets of Ω0 and the process X (t) defined by X (t, x (.)) = x (t),

x (.) ∈ Ω0, t ∈ [a, b]. Let µξ
ax and µξ

a the distribution measures on the path

space of the process ξ with respect to Pax and Pa respectively, i.e., µξ
ax (M) =

Pax {ω : ξ (., ω) ∈ M} and µξ
a (M) = Pa {ω : ξ (., ω) ∈ M} , M ∈ M. Thus the

distribution measure on (Ω0,M) of ξ with respect to R is given by:

(9’) dµ =

exp

(
b∫
a

c (r,X(r)) dr

)
Ib <T dµξ

a

∫
exp

(
b∫
a

c (r,X(r)) dr

)
Ib <T dµξ

a

.

The problem is the following:

Find the probability measure ν∗on M , which minimizes the relative entropy
H (ν;µ) on the set

E= {ν on M: ν [X (a) ∈ .] = Pa(.), ν [X (b) ∈ .] = Pb(.)} .

Using the multiplication formula:

(12)
dν

dµ
(X) =

dP

dR
(X (a) , X (b))

dν
X(b)
X(a)

dµ
X(b)
X(a)

(X), µ − p.s.,

where

P (A × B) = ν [X (a) ∈ A,X (b) ∈ B] , A,B ∈ B,

R (A × B) = µ [X (a) ∈ A,X (b) ∈ B] , A,B ∈ B,

νy
x (.) = ν [. | X (a) = x,X (b) = y] , x, y ∈ R

n,

µy
x (.) = µ [. | X (a) = x,X (b) = y] , x, y ∈ R

n.

The problem is reduced to the one studied above, since we have

H (ν;µ) = Eν

[
log

dP

dR
(X (a) , X (b))

]
+ Eν


log

dν
X(b)
X(a)

dµ
X(b)
X(a)



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=

∫
log

dP

dR
dP+

∫ ∫ ∫
log

dνy
x

dµy
x

(.) dνy
x (.) dP (x, y)

= H (P; R) +

∫
H (νy

x;µy
x) dP (x, y) , si ν � µ.

The right hand side of this relation is minimum (zero) iff νy
x = µy

x, P−a.a., x, y ∈
R

n. Thus, the problem becomes

min
P∈E

H (P; R) .

Thus the minimizing one is given by:

ν∗ (.) =

∫
µy

x (.) dQ∗ (x, y) .

We find

dν∗

dµ
(.) =

dQ∗

dR
(X (a) , X (b))

=
ϕa (X (a))ϕb (X (b))

Φa (X (a))

∫
exp




b∫

a

c (r, ξ(r) dr


 Ib <T dPa,

from which

(13) dν∗ (.) =
ϕb (X (b))

ϕ (a,X (a))
exp




b∫

a

c (r,X(r)) dr


 Ib <T dµξ

a,

with ϕ (a,X (a)) = Φa (X (a)) /ϕa (X (a)).

Note that ϕa (X (a)) > 0, Pa − a.s., and then µξ
a − a.s., since log ϕa ∈ L1 (Pa).

Furthermore, letting

(14) dν∗
ax (.) =

ϕb (X (b))

ϕ (a,X (a))
exp




b∫

a

c (r,X(r)) dr


 Ib <T dµξ

ax,

where

µξ
a (.) =

∫
µξ

ax (.) Φa (x) dx,

we have

(15) ν∗ (.) =

∫
ν∗

ax (.) Φa (x) dx.
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4. Variational Characterization for the case c unbounded

Assume that the Markov process ξ (t) is a n−dimensional Wiener process W (t),

t ∈ [a, b], with initial distribution Pa. Thus µξ
a and µξ

ax will be replaced by µw
a

and µw
ax and we shall take the same notations for µ, ν∗and ν∗

ax. Let’s recall the
result of Girsanov’s transformation.

Lemma 7. Let (Ω0,M, ν) probability space, Nt = σ (X (s) , a ≤ s ≤ t) a
non decreasing family of sub-σ-algebras of M. Assume that ν � µw

a , then, on
(Ω0,M, ν) , ∃ a Wiener w = (w (t) ,Nt) , t ∈ [a, b] and a nonanticipatif process
υ = (υ (t) ,Nt) such that:

X (t) = X (a) +

t∫

a

υ (r) dr + w (t) , t ∈ [a, b] , ν − a.s.

ν




b∫

a

υ2 (t) dt < ∞


 = 1,

dν

dµw
a

(.) = exp




b∫

a

υ (t) dX(t) −
1

2

b∫

a

υ2 (t) dt


 , ν − a.s.

Thus, according to (13) with µξ
a replaced by µw

a , we have ν∗ � µw
a and then

∃ (w∗ (t) , υ∗ (t)) , such that:

(16) X (t) = X (a) +

t∫

a

υ∗ (r) dr + w∗ (t) , t ∈ [a, b] , ν∗ − a.s.,

(17) ν∗




b∫

a

(υ∗ (t))2 dt < ∞


 = 1,

(18)
dν∗

dµw
a

(.) = exp




b∫

a

υ∗ (t) dX(t) −
1

2

b∫

a

(υ∗ (t))2 dt


 ν∗ − a.s..

Now we are ready to extend a Theorem given by Wakolbinger[12] to a large class
of potentials c.
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Let A be the class of n-dimensional non anticipatif stochastic processes υ (t) with
values in R

n relatively (Ω0,M,Nt, ν), satisfying
(H5): (i) ν {b < T} = 1;

(ii) the marginal of ν at times a and b are Pa and Pb with log
dPa

dx
∈ L1 (Pa)

and log
dPb

dy
∈ L1 (Pb);

(iii) Eν

[∫ b

a
|υ (t)|2 dt

]
< ∞;

(iv) X (t)−X (a)−
∫ t

a
υ (r) dr, a ≤ t ≤ b, is a standard Brownian motion on

[a, b] with respect to ν;

(v) J (a, b, υ) = Eν

{∫ b

a

[
1
2 ‖υ (r)‖2 − c (r,X (r))

]
dr
}

is defined.

(H6): Eν∗

[∫ b

a
c (r,X (r)) dr

]
< ∞. (This condition is satisfied if c is bounded.)

Theorem 8. Let (H1)-(H6) hold. Then ∃ϑ∗ = (υ∗ (t) , ν∗) ∈ A, t ∈ [a, b],
such that:

−∞ < J (a, b, υ∗) = min
υ∈A

J (a, b, υ) < ∞;

where ν∗ is the Csiszar’s projection of µ given by

dµ =

exp

(
b∫
a

c (r,X(r)) dr

)
Ib <T d µw

a

∫
exp

(
b∫
a

c (r,X(r)) dr

)
Ib <T d µw

a

, on

E = {ν / M : ν [X (a) ∈ .] = Pa (.) , ν [X (b) ∈ .] = Pb (.)}

that is, its joint end-points distributions measure is Q∗ given by Theorem 1 with
q given by (6) (Theorem 4).
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[9] Roelley, S., M. Thieullen A Characterisation of Reciprocal Processes
via an Integration by Parts Formula on the Path Space. Probability Theory
and Related Fields Vol. 123 N◦1, (2002).
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Faculté des sciences,
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