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SENSITIVITY ANALYSIS OF THE RISK OF FORECASTING
FOR AUTOREGRESSIVE TIME SERIES WITH MISSING

VALUES

Yu. S. Kharin, A. S. Huryn 1

The problems of statistical forecasting of vector autoregressive time series
with missing values are considered for different levels of prior information on
the parameters of the underlying model. The mean square risk of forecasting
and the risk sensitivity coefficient are evaluated and analyzed. Results of
numerical experiments are presented.

1. Introduction

Missing values is a typical distortion of model assumptions in data analysis
[6, 12]. It is fairly common for a time series to have gaps for a variety of reasons
[2, 11]: 1) the data do not exist at the frequency we wish to observe them; 2)
registration errors; 3) deletion of “outliers”.

The autoregressive model (AR or VAR) is often used in practice for statistical
analysis of time series. In statistical analysis of autoregressive time series with
missing values there are five main problems: P1) evaluation of the likelihood
function; P2) construction of the “optimal” (in some sense) forecast or forecasting
statistic; P3) interpolation of the missing values; P4) statistical estimation of the
model parameters and hypotheses testing; P5) evaluation of the risk (mean square
error) of forecasting.
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An approach to analytical solution of the problems P2, P3, P5 is given in
[9, 10] for univariate stationary time series: optimal (w.r.t. the minimum of
the risk) linear interpolators of missing values {xn1

, . . . , xnm
}, 0 = n1 < n2 <

. . . < nm, based on the knowledge of the infinite past {. . . , x−2, x−1}, the fi-
nite present {xk1

, . . . , xkr
}, 0 < k1 < . . . < kr, and of the covariance function

γτ = cov{xt, xt+τ}, τ = 0,±1,±2, . . ., are constructed. An approach to numeri-
cal solution of the problems P1 – P5 is presented in [5]. The EM-algorithm for
the problems P1, P4, P5 is given in [6]. The problem P4 is solved in [7] and in
[8] for the VAR(1), ARMA(2,1), AR(p) time series observed periodically with a
known period. Note also, that “outliers”-handling techniques can be modified for
missing data situations [12].

This paper is devoted mainly to the analytical solution of the problem P5 in
the following aspects: to evaluate the risk of ML-forecasting for vector autore-
gressive time series under different levels of the prior information on the model
parameters (known exactly; known with some misspecification errors; unknown);
to evaluate the increment of the risk generated by the effect of missing values; to
analyze sensitivity of the risk for different patterns of missing values and different
levels of the prior information.

2. Mathematical model

Let the observed p-vector time series be described by the VAR(1) model:

Yt = BYt−1 + Ut, t ∈ Z,(1)

where Z is the set of integers, Yt = (yt1, . . . , ytp)
′ ∈ Rp, B is a (p × p)-matrix

of coefficients, Ut = (ut1, . . . , utp)
′ ∈ Rp, {Ut} are i.i.d. normal random vectors,

E{Ut} = 0p is the zero p-vector, E{UtU
′
t} = Σ, |Σ| 6= 0, all eigenvalues of the

matrix B are inside the unit circle. There are missing values in observations
{Yt}. For each vector Yt the binary vector (pattern) Ot = (ot1, . . . , otp)

′ is given,
where oti = {1, if yti is observed; 0, if yti is a missing value}. Note, that AR(p)
and VAR(p) models can be transformed to VAR(1) increasing the number of
components [1].

Define the finite set M = {(t, i), t ∈ Z, i ∈ {1, . . . , p} : oti = 1}; its ele-
ments are assumed to be lexicographically ordered in ascending order; K = |M |
is the total number of observed components; t− = min{t :

∑p
i=1 oti > 0} is the

minimal time moment with observed components, t+ = max{t :
∑p

i=1 oti > 0}
is the maximal time moment with observed components. Define a bijection
M ↔ {1, . . . ,K} : k = χ(t, i) and the inverse function (t, i) = χ̄(k). Com-
pose the K-vector of all observed components: X = (x1, . . . , xK)′ ∈ RK , xk =
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yχ̄(k), k = 1, . . . ,K. Note, that if oti = 1, t− ≤ t ≤ t+, 1 ≤ i ≤ p, then the
process Yt is observed on [t−, t+] without any missing value, K = (t+ − t− + 1) p,

X =
(

Y ′
t−

, Y ′
t−+1, . . . , Y

′
t+

)′

, χ(t, i) = i + (t − t−)p; χ̄(k) = ([(k − 0.5)/p] + 1,

(k − 1) mod p + 1), k = 1, . . . ,K.
We will also consider the AR(p)-model as a special case of (1):

yt = β′Yt−1 + ξt, t ∈ Z,(2)

where Yt = (yt, . . . , yt−p+1)
′ ∈ Rp, β ∈ Rp is a p-vector of coefficients, {ξt} are

i.i.d. normal variables, L(ξt) = N (0, σ2); the pattern Ot = {1, if yt is observed;
0, if yt is a missing value}; M = {t, t ∈ Z : Ot = 1}, K = |M | =

∑

t∈Z
Ot,

k = χ(t) =
∑

i≤t Oi.

Let Yt++τ ∈ Rp be a “future vector” to be forecasted for τ ≥ 1, Ŷt++τ =

Ŷt++τ (X) : RK → Rp be a forecasting statistic (procedure). Introduce the
(p × p)-matrix risk R and the (scalar) risk r of forecasting:

R = E

{

(

Ŷt++τ − Yt++τ

)(

Ŷt++τ − Yt++τ

)′
}

, r = tr(R) ≥ 0.(3)

It is known [2], that for the case of complete observations and known param-

eters B, Σ the minimal risk r∗0 = tr
(

∑τ−1
i=0 BiΣ(B′)i

)

> 0 is attained for the

forecast: Ỹt++τ = BτYt+ . To evaluate the sensitivity of the risk let us use the
risk sensitivity coefficient [3, 4]:

κ = (r − r∗0)/r
∗
0 ≥ 0;(4)

it is the relative increment of the risk r generated by missing values w.r.t. the
minimal risk r∗0.

3. ML-forecasting under missing values and known B, Σ

Introduce the matrices:

F = (Fij) = cov{X,X}, G = (Gij) = cov{X,Yt++τ},

H = (Hij) = cov{Yt++τ , Yt++τ}, A0 = A0(B,Σ) = G′F−1.

Lemma 1. The following expressions for F , G, H hold:

Fij = Fji =
(

Bχ̄1(i)−χ̄1(j)H
)

χ̄2(i),χ̄2(j)
, i, j = 1, . . . ,K, i ≥ j;(5)
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Gij =
(

B(t++τ)−χ̄1(i)H
)

j,χ̄2(i)
, i = 1, . . . ,K, j = 1, . . . , p; H =

∞
∑

i=0

BiΣ(B′)i.

P r o o f. Using the expression for the covariance matrix for the VAR(1) model [1]:
cov{Yi, Yj} = Bi−jH, i ≥ j, we find: Fi,j = cov {xi, xj} = cov

{

yχ̄(i), yχ̄(j)

}

=
(

cov{Yχ̄1(i), Yχ̄1(j)}
)

χ̄2(i),χ̄2(j)
=
(

Bχ̄1(i)−χ̄1(j)H
)

χ̄2(i),χ̄2(j)
. In the same way we

find H and G. �

Theorem 1. If the true values B,Σ are known and |F | 6= 0, then the ML-
forecasting statistic and its risk functionals are

Ŷt++τ = E{Yt++τ |X} = A0X,(6)

R0 = H − G′F−1G � 0, r0 = tr(H) − tr(F−1GG′).(7)

P r o o f. Denote Y+ = (X ′, Y ′
t++τ )

′ ∈ RK+p. By the model (1) conditions,
the vector Y+ has the normal distribution. By the Anderson theorem [1] the
likelihood function(w.r.t Yt++τ ) is:

l
(

Yt++τ ;B,Σ
)

= nK (X|0K , F ) np

(

Yt++τ |G′F−1X,H − G′F−1G
)

,(8)

where nK (X|µ,Σ) means the K-dimensional normal p.d.f. with the parameters
µ,Σ. The ML-forecast is the solution of the extremum problem:
l
(

Yt++τ ;B,Σ
)

→ maxYt++τ
. Since the first multiplier in (8) does not depend on

Yt++τ , we come to the unique solution (6): Ŷt++τ = G′F−1X = A0X. Using the
total mathematical expectation formula and (6) we find the risk (7):

R0 = E
{(

Ŷt++τ − Yt++τ

)

(Ŷt++τ − Yt++τ )
′
}

= E
{

cov
{

Yt++τ , Yt++τ |X
}}

=

E
{

H − G′F−1G
}

= H − G′F−1G. �

Corollary 1. The risk sensitivity coefficient for the ML-forecast (6) is κ0 =
(r0 − r∗0) /r∗0 =

(
∑∞

i=τ tr
(

BiΣ(B′)i
)

− tr(G′F−1G)
)

/
∑τ−1

i=0 tr
(

BiΣ(B′)i
)

≥ 0.

Formulate now important corollaries for the univariate autoregressive model
AR(p), defined by (2).

Corollary 2. Let the AR(p) model (2) takes place and there exists the time
moment t∗ = max {t ∈ M : Ot∗ = . . . = Ot∗+p−1 = 1}. Then the ML-forecast
(6) does not depend functionally on the observations {yt : t < t∗}: A0 =
(A01, . . . , A0K), A01 = . . . = A0,χ(t∗−1) = 0.
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P r o o f. One can come to the statement using the mathematical induction
method. �

This corollary means that the optimal forecast and its risk r0 are non-sensitive
to the “sub-pattern” {t ∈ M : t ≤ t∗ − 1} for the case when the true model pa-
rameters B, Σ are known exactly.

Corollary 3. If the model (2) under the pattern Mm = {t−, . . . , t+} \ {m}
with the only one missing value ym at a time moment m ∈ {t+ − p + 1, . . . , t+}
takes place, and K = t+ − t− ≥ 2p, then the risk sensitivity coefficient for the
ML-forecast at τ = 1 is:

κ(m) = β2
t++1−m/(1 + β2

1 + . . . + β2
t+−m).(9)

P r o o f. Using the Box-Jenkins representation of the likelihood function, inte-
grating it by ym and maximizing by yt++1, one can come to (9). �

One can see from (9), that if the autoregressive coefficient βt++1−m = 0, then
κ(m) = 0 and the risk of forecasting is non-sensitive to the missing value ym. The
formula (9) gives also the expression for the variation zone of the risk sensitivity
coefficient: κ− = min0≤j≤p−1(sj+1 − sj)/sj ≤ κ ≤ κ+ = max0≤j≤p−1(sj+1 −
sj)/sj , where s0 = 1, sj = 1 + β2

1 + . . . + β2
j . The most influencing is the missing

value ym∗ at the time moment m∗ for which κ(m∗) = κ+.

4. Statistical forecasting in the case of unknown B, Σ

Theorem 2. If B,Σ are unknown, |F | 6= 0, then the ML-forecast of Yt++τ

is

Ŷt++τ = A0(B̂, Σ̂)X,(10)

where the ML-estimators (B̂, Σ̂) are the solution of the minimization problem:
l1(B,Σ) = X ′F−1X + ln |F | + ln |H − G′F−1G| → minB,Σ .

P r o o f. According to (8), the joint ML-estimators of Yt++τ , B,Σ are the solu-
tion of the extremum problem: l

(

Yt++τ ;B,Σ
)

→ maxYt++τ ,B,Σ. From Theorem

1 we get (10), where B̂, Σ̂ are the solution of the problem:
nK (X|0K , F )np

(

G′F−1X|G′F−1X,H − G′F−1G
)

→ maxB,Σ. Taking the loga-
rithm, we come to the statement. �

Because of the computation complexity of the minimization problem in (10),
let us adjust the LS-estimators. Consider the situation with “homogeneous ob-
servation patterns”: Ot = 0p or Ot = (1, . . . , 1) ∈ Rp. Denote t0 = t− and rep-
resent the sequence of registered observations in the form: Yt0 , Yt0+1, . . . , Yt0+l0 ,
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. . . , Ytn , Ytn+1, . . . , Ytn+ln , = = {t0 + 1, . . . , t0 + l0, . . . , tn + 1, . . . , tn + ln}, T0 =
|=| = l0 + . . . + ln ≥ n + 1, where n + 1 is the number of series of observations
without missing values. Introduce the notation: ⊗ is the Kronecker matrix prod-
uct, vec(A) is the vectorization of the matrix A by rows. Assume, that T0 > p,
|∑t∈= Yt−1Y

′
t−1| 6= 0, and introduce the following modifications of the Anderson

estimators [1] for the situation with missing values:

B̌ =
∑

t∈=

YtY
′
t−1

(

∑

t∈=

Yt−1Y
′
t−1

)−1

, Σ̌ =
1

T0

∑

t∈=

(

Yt − B̌Yt−1

) (

Yt − B̌Yt−1

)′
.

Theorem 3. If T0 → ∞, T0/n → ∞, and the matrix H is positive defined,
then the estimators B̌, Σ̌ are consistent: plimT0→∞B̌ = B,plimT0→∞Σ̌ = Σ, and
the random vector vec

(√
T0

(

B̌′ − B′
))

has the asymptotically normal distribution
with the zero mean and the covariance matrix H−1 ⊗ Σ.

P r o o f. At first, let us prove the convergence plimT0→∞

(

T−1
0

∑

t∈= YtY
′
t −

T−1
0

∑

t∈= Yt−1Y
′
t−1

)

= 0p×p. It follows from the law of large numbers and the

next inequality: D
{

T−1
0

∑n
k=0 (ytk+lk,iytk+lk,j − ytk,iytk,j)

}

≤ (n/T0)
2 ∗

max0≤k≤nD {ytk+lk,iytk+lk,j − ytk,iytk,j} ≤ 4 (n/T0)
2 E
{

(yt0,iyt0,j)
2
}

.

Further, following to the scheme of the proof of this statement for the case
with complete data [1], we come to the convergence in probability and to the
asymptotic normality. �

Theorem 4. Let Yt++τ be forecasted by the statistic: Ŷt++τ = AX, where
A is a (p × K)-matrix of coefficients: A = A0 + a, a is any (p × K)-matrix of
nonrandom misspecification error. Then the (p × p)-matrix risk of forecasting
R1 = R0 + aFa′, where R0 is the risk determined by (7).

P r o o f. According to the definition of the risk, the theorem conditions and the
result of Theorem 1

r1 = E
{

(

(A0 + a)X − Yt++τ

) (

(A0 + a)X − Yt++τ

)′
}

=

= E
{

aXX ′a′ +
(

E{Yt++τ |X} − Yt++τ

) (

E{Yt++τ |X} − Yt++τ

)′
}

+

+E
{

aX
(

E{Yt++τ |X} − Yt++τ

)′
+
(

E{Yt++τ |X} − Yt++τ

)

X ′a′
}

.

Using the total mathematical expectation formula and the equation

E
{

X ′
(

E{Yt++τ |X} − Yt++τ

)}

=
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= E
{

E
{(

X ′
(

E{Yt++τ |X} − Yt++τ

))

|X
}}

= 0,

we come to the statement. �

Corollary 4. For the AR(p) model (2) under misspesification the risk sen-
sitivity coefficient (4) is κ1 = κ0 + a′Fa/

∑τ−1
i=0 tr(BiΣ(B′)i).

Consider the case of bounded misspecification error a ∈ Rp: 0 ≤ ‖a‖ ≤ γ,
where γ ≥ 0 is a known upper bound. Then maximizing κ1 w.r.t. a one can
find the variation zone for the risk sensitivity coefficient: κ0 ≤ κ1 ≤ κ1+ =
κ0+γ2λmax(F )/

∑τ−1
i=0 tr(BiΣ(B′)i), where λmax(F ) is the maximal characteristic

number of the matrix F .

Theorem 5. Let Ŷt++τ = ÂX, where Â = A0+a is an unbiased statistical es-

timator of A0 with the covariances: E

{

(

Â − A0

)

ij

(

Â − A0

)

kl

}

= Vi,j,k,l, i, k =

1, . . . , p; j, l = 1, . . . ,K. If the estimator Â is independent on X, then the matrix

risk of forecasting R2 = R0 +
(

∑K
s,t=1 FstVi,s,j,t

)

i,j=1,...,p
.

P r o o f. According to Theorem 4 we have:

(R2)ij =

(

E

{

E

{

(

Ŷt++τ − Yt++τ

)(

Ŷt++τ − Yt++τ

)′

|a
}})

ij

=

(E {R1(a)})ij =
(

E
{

R0 + aFa′
})

ij
=

(R0)ij + E







K
∑

s,t=1

aisFstajt







= (R0)ij +

K
∑

s,t=1

FstVi,s,j,t.

�

Note, that the condition of independence of Â,X is satisfied if the estimator
Â is constructed by the data X̃ independent on X. Such a situation takes place
if the ”learning stage” is separated from the ”forecasting stage” [4].

Corollary 5. If Â is a consistent estimator:
∑K

s,t=1 |Vi,s,j,t| → 0, then R2 →
R0.

P r o o f. Using the inequality for the elements of the covariance matrix F [1]:
|(F )ij | ≤ c < +∞ , where c does not depend on i and j, we get the inequality:
∣

∣

∣
(R2 − R0)ij

∣

∣

∣
=
∣

∣

∣

∑K
s,t=1 FstVi,s,j,t

∣

∣

∣
≤ c

∑K
s,t=1 |Vi,s,j,t| → 0. �
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Corollary 6. For the AR(p) model (2) under unbiased estimation of A0 the

risk sensitivity coefficient (4) is κ2 = κ0 +
∑p

i=1

(

∑K
s,t=1 FstVi,s,i,t

)

/
∑τ−1

i=0 tr(BiΣ(B′)i).

5. Numerical results

To compare the theoretical and experimental results we consider the AR(11)
model (p = 11) for the classical centered data “The Canadian Lynx data 1821 –
1934” [13]: yt = 1.0938yt−1−0.3571yt−2−0.1265yt−4+0.3244yt−10−0.3622yt−11+
ξt, σ2 = 0.04405, t− = 1, t+ = T = 113, under a single missing value at the time
moment m ∈ {T − p + 1, . . . , T − 1} (pattern Mm) and different levels of prior
information on model parameters. Note, that in [14] one can find an interesting
review of previous analyses of this celebrated set of data. The Monte-Carlo
experiments with 100 000 simulations of time series were used to evaluate the
experimental value of the risk sensitivity coefficient κ and its 95%-confidence
limits.

Figure 1: Risk sensitivity coefficient(RSC) in the case of known parameters
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Figure 2: Risk sensitivity coefficient in the case of unknown parameters

Fig.1 presents values of the theoretical risk sensitivity coefficient (9) and its
95%-confidence limits for different values of m for the case of known values of
model parameters. Fig. 2 presents theoretical values of the risk sensitivity coef-
ficient κ1 (see Corollary 9) and its 95%-confidence limits under misspecification
error am−p = am−p+1 = . . . = at+−1 = 0.01, and also the point and interval esti-
mates of the risk sensitivity coefficient κ2 for the case of the “plug-in” forecasting
procedure based on the proposed estimators B̌, Σ̌. Fig. 1,2 show a sufficiently
good fit of theoretical and experimental results.
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