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EXTREMES OF BIVARIATE GEOMETRIC VARIABLES

WITH APPLICATION TO BISEXUAL BRANCHING

PROCESSES

Kosto V. Mitov
1

We obtain a limit theorem for the row maximum of a triangular array of
bivariate geometric random vectors. An application of this limit theorem is
provided for maximum family size within a generation of a bisexual branch-
ing process with varying geometric offspring laws.

1. Introduction

It is well known ([1], [18]) that the most commonly used discrete probability
distributions (Poisson, uniform, geometric, negative-binomial, binomial) are not
attracted to any max-stable law when the parameters are fixed. Considering tri-
angular arrays of random variables where the parameters vary with the number
of the raw allows one to obtain non-degenerate limiting distributions under ap-
propriate normalizations. Anderson et al. [2] showed how this could be done for
the Poisson distribution. Nadarajah and Mitov [18] performed the same for the
other four discrete distributions.

Similar problem arises for bivariate discrete distributions. It is known (see,
for example, Theorem 5.2.3 in [4]) that if there exist normalizing sequences which
yield a non-degenerate limit for the maximum of some iid bivariate random vec-
tors then the same sequences give non-degenerate limits for the marginals of the
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maximum. Coles and Pauli [3] considered the problem of finding non-degenerate
limit distributions for the maximum of bivariate Poisson random vectors by using
the results of [2].

The aim of this note is to find a non-degenerate limit distribution for the
maximum of bivariate geometric random vectors. We also provide an application
of this theorem for the maximum family size within a generation for bisexual
branching processes in varying environment. This kind of branching processes
have been studied by the very prolific work of Professor M. Molina and his col-
leagues [16], [5]–[11], [13]–[15]. In the present note we consider the particular
case when the mating function is L(x, y) = min(x, y) and the offspring of mating
has a bivariate geometric distribution. Applying the result for the maximum of
bivariate geometric variables we obtain a limit theorem for the offspring of the
most prolific mating living in the nth generation. The result relates to those in
[17] for Galton-Watson branching processes.

The paper is organized as follows. In Section 2 we give the construction of
a bivariate geometric distribution following Marshall and Olkin [12]. In Section
3 two limit theorems for the maxima of bivariate geometric random vectors are
proved. These results are used in Section 4 to prove a limit theorem for bisexual
branching processes in varying geometric environment.

2. Marshall and Olkin’s Bivariate Geometric

The bivariate geometric distribution can be constructed in different ways. The
following construction is given by Marshall and Olkin [12].

Consider a vector (U, V ) having Bernoulli marginals. This vector has only
four possible values (1, 1), (1, 0), (0, 1) and (0, 0) with probabilities p11, p10, p01

and p00, respectively. The marginal probabilities are

Pr(U = 1) = p1+ = p11 + p10,

Pr(U = 0) = p0+ = p01 + p00,

Pr(V = 1) = p+1 = p11 + p01,

Pr(V = 0) = p+0 = p10 + p00.

For a sequence (U1, V1), (U2, V2), . . . (Un, Vn), . . . of iid bivariate Bernoulli random
vectors let f and m denote the number of 0’s before the first 1 in the sequences
U1, U2, . . ., Un, . . . and V1, V2, . . ., Vn, . . ., respectively. Clearly f and m each has
a geometric distribution, and in general they will not be independent. Marshall
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and Olkin’s bivariate distribution is given by

Pr(f = l,m = k) =
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and

F̄ (l, k) = Pr(f ≥ l,m ≥ k) =























pl
00p

k−l
+0 , 0 ≤ l < k,

pl
00, 0 ≤ l = k,

pl
00p

l−k
0+ , 0 ≤ k < l.

(1)

The marginal pmfs and the marginal survival functions of f and m are

Pr(f = l) = p1+pl
0+, Pr(m = k) = p+1p

k
+0,

and

F̄f (l) = Pr(f ≥ l) = pl
0+, F̄m(k) = Pr(m ≥ k) = pk

+0,(2)

respectively, for l ≥ 0 and k ≥ 0.
Using (1) and (2), the joint cdf can be written as

F (x, y) = 1 − F̄f (x) − F̄m(y) + F̄ (x, y)

=
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(3)

3. Bivariate Geometric Maxima

Let (f1,m1), (f2,m2), . . . (fk,mk), . . . be iid copies of the vector (f,m) defined
in the previous section. Suppose that {νn}

∞

n=1 is a sequence of positive integers

such that νn → ∞ as n → ∞. Define (M f
νn

,Mm
νn

) by

Mf
νn

= max {f1, f2, . . . , fνn
}
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and

Mm
νn

= max {m1,m2, . . . ,mνn
}

for n = 1, 2, . . ..
As mentioned in Section 1, there are no sequences (af (n), bf (n))) and

(am(n), bm(n)), n = 1, 2, . . . such that

lim
n→∞

Pr
(

Mf
νn

≤ af (n)x + bf (n),Mm
νn

≤ am(n)y + bm(n)
)

= H(x, y)

for a non-degenerate limit H. Assuming the existence of such sequences (Theorem
5.2.3, [4]) would imply the same for the maxima of the marginals, i.e.

lim
n→∞

Pr
(

Mf
νn

≤ af (n)x + bf (n)
)

= H(x,∞)(4)

and

lim
n→∞

Pr
(

Mm
νn

≤ am(n)y + bm(n)
)

= H(∞, y),(5)

which cannot be true (see [1]). On the other hand, if we consider a rectangular
array of iid bivariate geometric vectors where the parameters vary together with
n we can prove the existence of such sequences, corresponding with the results
in [18] for the univariate geometric distribution. More precisely, we consider a
rectangular array {(fi(n),mi(n)), i = 1, 2, . . . , νn}, n = 1, 2, . . . of independent
random vectors which are identically distributed in each row, i.e.

Pr(fi(n)= l,mi(n)=k)=































p00(n)lp10(n)p+0(n)k−l−1p+1(n), 0≤ l < k,

p00(n)lp11(n), l=k,

p00(n)kp01(n)p0+(n)l−k−1p1+(n), 0≤k < l,

(6)

where p00(n), p10(n), p01(n), and p11(n) satisfy the conditions

p1+(n) = p11(n) + p10(n) → 0(7)

and

p+1(n) = p11(n) + p01(n) → 0(8)
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as n → ∞. It is clear that p11(n)→0, p10(n)→0, p01(n)→0, and p00(n)→1 as
n→∞. We assume further that

p11(n)=o

(

1

log νn

)

,
p10(n)

p11(n)
=o

(

1

log νn

)

, and
p01(n)

p11(n)
=o

(

1

log νn

)

(9)

as n → ∞. Now we are ready to prove the following theorem.

Theorem 1. Assume (6), (7), (8) and (9). Then

lim
n→∞

Pr

(

Mf
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≤
x + log νn

p11(n)
,Mm

νn

≤
y + log νn

p11(n)

)

= H(x, y),(10)

where

H(x, y) = exp [− exp(−x) − exp(−y) + exp {−max(x, y)}] .

P r o o f. Suppose that x < y. Obviously,

x + log νn

p11(n)
<

y + log νn

p11(n)

for every n. Using (3) and (6), one obtains
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Taking logarithms and expanding in Taylor’s series, the above can be reduced to
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as n → ∞. If {x} denotes the fractional part of the real number x (i.e. [x] =
x − {x}) then it is not difficult to see that

lim
n→∞

νn






p0+(n)

�
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+ p+0(n)

�
y + log νn

p11(n) � +1
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1

log νn
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− � y + log νn
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(
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(
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(
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(

1
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n→∞

νn

(
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(
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(

1
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)))

y + log νn
p11(n)

× lim
n→∞

(

1 − p11(n)

(

1 + o

(

1

log νn

)))

− � y + log νn
p11(n) � +1

= exp(−x) + exp(−y).(12)

Using (9) and p00(n) = 1 − p11(n) − p10(n) − p01(n), one can see

p00(n) = 1 − p11(n)

(

1 + o

(

1

log νn

))

as n → ∞, which can be used in the same way as above to prove that

νnp00(n)

�
x + log νn

p11(n) � → exp(−x)(13)

as n → ∞. Similarly, using (9) and p+0(n) = 1 − p11(n) − p01(n), one can see

p+0(n) = 1 − p11(n)

(

1 + o

(

1

log νn

))
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as n → ∞, from which it follows that

p+0(n)

�
y + log νn

p11(n) � − �
x + log νn

p11(n) �
=

(

1 − p11(n)

(

1 + o
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as n → ∞. Combining (13) and (14), one obtains

lim
n→∞
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=exp(−y)(15)

for x < y. Finally, from (11), (12) and (15), one obtains

lim
n→∞

log Pr

(

Mf
νn

≤
x + log νn

p11(n)
,Mm

νn

≤
y + log νn

p11(n)

)

= − exp(−x) − exp(−y) + exp(−y).(16)

Similarly, for x > y, one can show that

lim
n→∞

log Pr

(

Mf
νn

≤
x + log νn

p11(n)
,Mm

νn

≤
y + log νn

p11(n)

)

= − exp(−x) − exp(−y) + exp(−x).(17)

Combining (16) and (17) completes the proof of (10). �

Let {Nn}
∞

n=1 be a sequence of integer valued non-negative random variables
independent of the vectors (f1(n),m1(n)), (f2(n),m2(n)), . . . in the nth row of the
rectangular array. The following theorem gives the distribution of the maximum
in the case of a random indexing sequence.

Theorem 2. If the conditions of Theorem 1 are satisfied and
Nn

νn
converges

in probability, as n → ∞, to a proper random variable W, non-degenerate at zero,
i.e. Pr(W < ∞) = 1 and Pr(W > 0) > 0, then

lim
n→∞

Pr

(

Mf
Nn

≤
x + log νn

p11(n)
,Mm

Nn

≤
y + log νn

p11(n)

)

=

∫

∞

0
{H(x, y)}z dPr(W ≤ z).
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4. Maximum Family Size of A Bisexual Branching Process

In this section we use the rectangular array (fi(n),mi(n)), i = 1, 2, . . ., n =
1, 2, . . . of independent random vectors with bivariate geometric distributions
defined in Section 3 to define a bisexual branching process as follows. Assuming
the conditions (7), (8), and

∞
∑

n=1

p11(n) < ∞(18)

and the mating function L(x, y) = min(x, y), define

Z0 = N > 0,

(Fn+1,Mn+1) =

Zn
∑

i=1

(fi(n + 1),mi(n + 1)) ,

Zn+1 = min (Fn+1, Mn+1)

(19)

for n = 0, 1, 2, . . .. Define the sequence {Xn1}
∞

n=1 by Xn1 := min{f1(n),m1(n)}
and denote by

rnj = j−1E [Zn+1|Zn = j]

for n = 1, 2, . . . and j = 1, 2, . . ., the mean growth rate per mating unit. Denote
also

m0 = 1, mn =

n−1
∏

i=0

ri1, rn = sup
j>0

rnj(20)

for n = 1, 2, . . ..
From (6) and (1), we obtain

rn1 = EXn1 = E [min{f1(n),m1(n)}] =
∞
∑

k=1

Pr (min {f1(n),m1(n)} ≥ k)

=

∞
∑

k=1

Pr (f1(n) ≥ k,m1(n) ≥ k) =

∞
∑

k=1

p00(n)k =
p00(n)

1 − p00(n)

=
p00(n)

p11(n) + p10(n) + p01(n)
(21)

for n = 1, 2, . . .. It is also not difficult to check that rn1 = inf
j>0

rnj. From (7), (8),

(21) and (20) it follows

rn1 → ∞ and mn → ∞(22)
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as n → ∞. Denote further by νn = [mn] and assume that for νn = [mn], (9)
holds.

Remark 1. An example of probabilities p11(n), p10(n), and p01(n) such that
all the above conditions are satisfied is

p11(n) = (n + 1)−a

and

p10(n) = p01(n) = (n + 1)−a−b

for a > 1 and b > 1. In this case,

mn =

n−1
∏

k=0

(

(k + 1)a

1 + 2(k + 1)−b

)

for n ≥ 1, which yields

log mn =

n−1
∑

k=0

log

(

(k + 1)a

1 + 2(k + 1)−b

)

= ∼ an log n

as n → ∞. Now it is easy to check that all of the conditions above are satisfied.

Theorem 3 provides the main result of this section.

Theorem 3. If the conditions (6), (7), (8), (9) and (18) hold then

lim
n→∞

Pr







Zn

max
i=1

(fi(n)) + log[mn]

p11(n)
≤ x,

Zn

max
i=1

(mi(n)) + log[mn]

p11(n)
≤ y







=

∫

∞

0
{H(x, y)}z dPr(W̄ ≤ z),

where H(x, y) is given by Theorem 1.

P r o o f. For the proof we need to verify the following hypotheses required
by Theorems 3.1 and 3.2 in [[16]]:
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(i) The series

∞
∑

k=0

(1 − r−1
k rk1) converges.

(ii) There exists a random variable X such that E[X log+ X] < ∞
and Pr(r−1

n1 Xn1 ≤ u) ≥ Pr(X ≤ u) for all u ≥ 0 and n = 1, 2, . . .

(iii) There exist constants A > 0 and c > 1 such that mn+j/mj ≥ Acn for
j = 1, 2, . . . and n = 1, 2, . . ..

If the above hypotheses are satisfied then Zn/mn converges almost surely as
n → ∞ to a finite and nonnegative random variable W̄ non-degenerate at zero
(i.e. E[W̄ |Z0 = N ] < ∞ and Pr(W̄ > 0} > 0).

(i)
′

For j = 1, 2, . . .,

jrnj = E [min {f1(n) + f2(n) + . . . + fj(n),m1(n) + m2(n) + . . . + mj(n)}]

≤ E

[

{f1(n) + f2(n) + . . . + fj(n)} + {m1(n) + m2(n) + . . . + mj(n)}

2

]

=
1

2

j
∑

l=1

(E [fl(n)] + E [ml(n)])

=
j

2
(E [f1(n)] + E [m1(n)])

=
j

2

(

p0+(n)

p1+(n)
+

p+0(n)

p+1(n)

)

.

Therefore,

rn1 ≤ rnj ≤ r∗n =
1

2

(

p00(n) + p01(n)

p10(n) + p11(n)
+

p00(n) + p10(n)

p01(n) + p11(n)

)

,(23)

which implies rn1 ≤ rn ≤ r∗n for every n = 1, 2, . . .. Using (18), (21), and
(23), it is not difficult to see that

1−
rn1

r∗n
= 1−

2p00(n)

p11(n)+p10(n)+p01(n)

(

p00(n)+p01(n)

p10(n)+p11(n)
+

p00(n)+p10(n)

p01(n)+p11(n)

)

−1

= 1 −
2[1 − p11(n)(1 + o(1))]

p11(n)(1 + o(1))

(

2[p11(n)(1 + o(1))]

[p11(n)(1 + o(1))]2

)

−1

= 1 − (1 − p11(n)(1 + o(1))) = p11(n)(1 + o(1)),
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which yields
∞
∑

n=1

(

1 −
rn1

r∗n

)

< ∞.

Because rn ≤ r∗n, it follows that
∞
∑

n=1

(

1 −
rn1

rn

)

< ∞.

Hence, (i) is satisfied and we have that

Zn

mn
→ W̄

almost surely, where Pr(W̄ ∈ [0,∞)) = 1. Since mn → ∞ as n → ∞, we
also have

Zn

[mn]
→ W̄

almost surely.

(ii)
′

Consider the sequence r−1
n1 Xn1. By repeating the arguments of Theorem 1,

one obtains

Pr
(

r−1
n1 Xn1 ≥ u

)

= Pr (Xn1 ≥ urn1)

= Pr (min {fn1,mn1} ≥ urn1)

= p00(n)[urn1]

= {1 − p11(n)(1 + o(1))}[u/(p11(n)(1+o(1)))]

→ exp(−u)(24)

as n → ∞, where the convergence is uniform on [0,∞). From (24), it
follows that there exists n0 such that

Pr
(

r−1
n1 Xn1 ≥ u

)

≤ (1 + ε) exp(−u)(25)

for all n > n0 and u ∈ [0,∞), where ε = exp(1 − p00(1)) − 1 > 0. Further-
more,

Pr
(

r−1
n1 Xn1 ≥ u

)

= p00(n0)

�
u

1 − p00 (n0) �
≤ p00(n0)

u

1 − p00(1)
− 1

=
exp(−αu)

p00 (n0)
(26)
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for all n = 1, 2, . . . , n0 and u ∈ [0,∞), where α = − log p00(n0)/(1 −
p00(1)) > 0. From (25) and (26), it is clear that

Pr
(

r−1
n1 Xn1 ≥ u

)

≤ max
{

Ḡ1(u), Ḡ2(u)
}

for all n = 1, 2, . . . and u ≥ 0, where Ḡ1 and Ḡ2 are the survivor functions
on [0,∞) defined by

Ḡ1(u) =

{

1, u ∈ [0, 1 − p00(1)),
(1 + ε) exp(−u), u ∈ [1 − p00(1),∞),

and

Ḡ2(u) =







1, u ∈ [0, 1 − p00(1)),
exp(−αu)

p00(n0)
, u ∈ [1 − p00(1),∞),

respectively. But max{Ḡ1(u), Ḡ2(u)} is a survivor function with exponen-
tial tail, so, it must have finite moments of all orders. Hence, (ii) is satisfied.

(iii)
′

Using the relations rn1 → ∞ and mn → ∞ as n → ∞, it is easy to verify
that there exist constants A > 0 and c > 1 as described in the hypothesis
(iii).

The rest of the proof is an immediate application of Theorem 2. �

5. Concluding Remarks

We have obtained a limiting distribution for the maximum family size within
a generation of a bisexual branching process with varying geometric offspring
laws. This distribution depends on the random variable W̄ introduced in [16].
Unfortunately, there is no explicit formulas for the distribution function of W̄ ,
even in particular cases. Our attempt to find the distribution function in the case
considered above has been unsuccessful too.
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