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ON PRINCIPLE EIGENVALUE FOR LINEAR SECOND  
ORDER ELLIPTIC EQUATIONS IN DIVERGENCE FORM

A. Fabricant, N. Kutev, T. Rangelov

A b s t r a c t . The principle eigenvalue and the maximum principle for second- 
order elliptic equations is studied. New necessary and sufficient conditions 
for symmetric and nonsymmetric operators are obtained. Applications for 
the estimation of the first eigenvalue are given.

1. Introduction
The aim of this paper is to investigate the principal eigenvalue and the related 
maximum principle for linear second order uniformly elliptic equations in diver­
gence form

(1) Lu =  — (a,j(x)uXk +  (ij(x)u'j +  V (x)uXj +  b°(x)u in O,

(2) a j ( x ) ^ ^ k > /j, |£|2 for every x E Cl, £ E R n, /i =  const > 0.

Here О is a bounded domain in R n,

(3) oj, a°j € C'i∩), V  € С(й), b° € L ∞ (∩), ∂Sl € C 1, {a j}  = { 4 }

and under the repeating indices the summation convention is understood.
The case of L°° coefficients or domains with weaker regularity assumptions 

can be considered in a similar way as in [2] but for simplicity we omit it.
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Let us recall that the maximum principle for the operator L holds if every 
weak subsolution и E Hq(∩) of (1) is nonpositive, и < 0 in О. The function 
и E Hq (O) is a weak subsolution of (1) if the integral inequality

J  ( a j U Xk w Xj  +  CLjUWXj +  VwuXj +  b ° u w ^  d x  <  0 

ft

is satisfied for every nonnegative function w E Cq(O).
The motivation for investigation of this problem is the comparison principle 

for quasilinear second-order uniformly elliptic equations in divergence form

∂
(4) Q(u) =  — ——o∙jix, u, Du) +  b(x, u, Du) in O.∂Xj

In fact the maximum principle in the linear case is the base for the validity 
of the comparison principle for weak C 1(0) smooth sub- and supersolutions of 
(4). More precisely, if

l l

where St =  v(x) +  t(u(x) — v(x), Pt =  Dv(x) +  t(Du(x) — Dv(x) and u, v E 
С г(й) are weak sub-and supersolutions of (4), then the validity of the comparison 
principle for (4) is reduced to the validity of the maximum principle for linear 
equation (1) with the above coefficients (5). As a consequence of the maximum 
principle we get immediately the uniqueness and the continuous dependence on 
the data of the weak solutions of (1) and (4). Moreover, using suitable chosen 
barrier functions one can estimate the amplitude of the weak solutions of (1) or
(4) which is an important step in the proof of the existence of a classical solution 
by means of the Leray-Schauder fixed point theorem. The maximum principle is 
important also in the investigations of the asymptotic behaviour of the solutions 
of linear and quasilinear parabolic equations in divergence form which appear 
in the population dynamics modeling a population which will persist or will go 
extinct.

There are two type of conditions guaranteeing the validity of the maximum 
principle. The first of them are necessary and sufficient and are given in [1] for 
linear equations in divergence form and in [2] for general nondivergence form
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equations. One of the main results in [1] and [2] is that the maximum principle 
for the operator L holds if and only if the first eigenvalue of L with zero 
Dirichlet data is positive. It is clear that the positiveness of the first eigenvalue 
Xl is not easy checkable condition so that this result is more useful for some 
theoretical investigations. However, there are some qualitative properties of Â  
which can be used one to find out lower and upper bounds for the first eigenvalue. 
For example, A  ̂ is an increasing function with respect to the coefficient 6° and 
a decreasing one with respect to the domain inclusions, i.e. Az,(ft°) > Az,(ft°) if 
6° > 6° and Al(^) ≤ if О D Ö . Moreover, Â  is Lipschitz continuous with
respect to the coefficients a*∙, ¥ ,  6° (using the L°° norm) and concave function 
of b° (see [2]).

There are also second type results which are only sufficient but easy checkable 
conditions for wide class of equations. They are given, for example, in [4], [6],
[8] (see also the references there) and guarantee the maximum principle for (1) if 
one of the following assumptions is satisfied:

(i) b° — diva0 > 0  in O, a0 = (a°, ∙ ∙ ∙ , a°);
(ii) b° — divb > 0  in O, b=  (b1,--- ,6n);

(6) (iii) The matrix A  +  A* is a nonnegative one, where
(  ак- Ы \

A  — ^ о j  and A* is the conjugate matrix of A.

Unfortunately, conditions (6)i,  (6)∏ are not useful for quasilinear equations
(4) because the derivatives of the coefficients a!∙, V given by (5) are not under 
control. That is why (6)i ,  (6)∏ are replaced in the nonlinear case with some 
additional structure assumptions guaranteeing that aj or Ы are identically equal 
to zero (see theorem 9.5 in [6]). By the way, (6)i ,  (6)∏ are not sharp even in the 
linear case because they guarantee that the discrete spectrum of the operator L 
(or of the formal self-adjoint operator L* of L) is on the right hand side of the 
origin. However, it is possible the first eigenvalue of L (or L*) to be far from the 
origin.

As for (6)iü,  it seems to be the most general sufficient condition but it is 
not sharp, too. Following the idea in [7] we obtain that (6)ш is not invariant if 
equation (1) is rewritten in an equivalent way, for example with

(7) Lu  =  — (a,jUXk +  (a°j +  f 3) u)  +  {V +  f J) uXj +  (b° +  d i v / )  и
\  ∕  X j

for arbitrary vector f ( x ), / J E C0,1(0). Now (6)ш for equation (1) in the new
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form (7) is

The matrix A f  +  Aj is a nonnegative one, where
(8)

Condition (8) can be better than (6)ш for some special choice of / .
Starting from the idea of Protter in [7] we consider the whole class of equa­

tions (7) instead of (1) and sufficient conditions (8) instead of (6)i∏. Moreover, 
we prove in section 2 that (8) is also a necessary condition for the validity of 
the maximum principle for symmetric operators if (8) is taken over the set of 
all vectors /(ж), / J E C 0,1(0). Unfortunately, the same result is not true for

nonsymmetric operators. The reason is that the matrix - ( A f  +  Aj) in (8) corre-
 ̂ z

sponds exactly to the symmetric part L q =  - ( L  +  L*) of the operator L and the
first eigenvalue of Lean be far from the first eigenvalue of Lo, see theorem 3 in 
section 3.

However, over the set of nondegenerate transformations of the operator L pre­
serving the first eigenvalue of L, for example, Lu =  e~zL(uez) for £ E C 1 (0), we 
get as in the previous case a necessary and sufficient condition for the maximum 
principle for nonsymmetric operators.

In this way we prove in section 2 several equivalent formulas for the first 
eigenvalue Al which are different from the well known results and in many cases 
are more convenient for lower and upper estimates for A ∙̂

Using the new expressions for A  ̂ we get in section 3 some quantitative prop­
erties of the first eigenvalue Al with respect to the coefficients a!∙, V as well as

2. M ain results and definitions
In this section we will recall some definitions for the first eigenvalue Al . If the 
operator L is a symmetric one, i.e. a® =  fr7', then the variational formulation of 
Xl is given in the following way

ft
As it is well known (see [5]) the above infinum is attained for a function 

Ф  e Ф  > 0 in O, which solves the equation Ьф = А̂</> in О, 0 = 0 on <90

with respect to the matrix

(9)
n

where the infinum is taken over all functions v E Hq (O), f  v2 dx =  1.
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in a weak sense. The function ф is the first eigenfunction of L and every weak 
solution ф E of the above equation is a multiple of ф.

When L is a nonsymmetric operator then the following “max-min” represen­
tation formulae for the first eigenvalue Al holds

(10) AL =  sup inf (L v /v ), V E W  ,n(0), v > 0 in ft.
V x

In order to formulate our results we will rewrite the operator L in the following 
equivalent way

(11) Lu = — (akuXk +  (gj -  c?) u)  + (gj + c?) uXj + b° и
Xj

where gJ = + a°), c> = -  a°).
The reason is that the influence on A  ̂of the coefficients g J from the symmetric 

part Lq of L is quite different in comparison with the coefficients cJ forming the 
nonsymmetric part \{L  — L*) of L.

For every Lipschitz continuous vector f ( x ), / J E C0,1(0) let us introduce the 
notations

o-Lo(∕) =  ess ( b° +  div /  -  a kA f 3 + gJ) ( f k + gk))
(12) яеv <?l 0 = sup a L ( f )

fJ£C o-∏∏)

where j  = and L q  is the symmetric operator

L q u  =  -  ( c i j U Xk +  g i u j  +  g j u Xj +  b ° u .

Now for symmetric operator L q we have the following result.
T heorem  1. Let the operator L q satisfy (2) and (3). Then <jl0 =  Al 0 and 

hence the maximum principle for L q holds if and only if a l 0 > 0.
Pr oof .  For arbitrary f ( x ), / J E C0,1(0) we get from (9) the inequalities

XLo = inf /  (a^vX;ivXk +  2g3vvx . +  ( f 3v2)Xj +  b°v2) dx

=  i n f  f  \ a k v Xj +  a f  (gm +  f m ) v  [ v Xk +  a sk (gs +  f s ) v ]

+ b° +  d i v / - a ^ ( P  + g J) ( f k + gk) u2|  dx > aLo(f)

i.e. ALo > supcrLo(/) =  crLo. 
∕
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In order to prove the opposite inequality we will use a special choice of / .  
For every positive constant 5 > 0, there exists from (1.10) in [2] a function 

u5 £ (7∞(Q) 5 u5 > 0 in O, such that L qu0 > (Al0 — 6)uö. Now for / J =
—ак- u*Xk/ и5 — gi we get from (12) the estimate

CLo ≥ CLo (/) = ess^inf [Lqu5 j u s) > XLo -  5.

After the limit 5 —>► 0 we have the desired inequality <j l 0 > Al0 and hence

&L0 =  Al0∙ □
As for general nonsymmetric operators L, an equivalent definition of A  ̂ by 

means of cfl is a little bit more complicated. More precisely, let us introduce for 
every Lipschitz functions £ (ж), f^(x) £ C0,1^ )  the notation
(13)

0 l( / ,  z ) = essginf ( b °  + di v /  -  +  g3){ fk +  gk) +  c ? z Xj -  { a f j  z X j z X k )

aL = sup a L(f ,z )
z,p e c 0’1 (si)

The following theorem gives the relation between the first eigenvalue A  ̂ of 
the nonsymmetric operator L and the first eigenvalues of the family of suitable 
chosen symmetric operators.

T heorem  2. Let the nonsymmetric operator L satisfies (2) and (3). Then 
ol — Xl and hence the maximum principle for L holds if and only if cfl > 0. 
Moreover, the following identity takes place

(14) aL = sup \ Mz
zec°<l (si)

where operator M z is defined as

M zu = ^ ( e - zl2L{ezl2u) + ezl2L*{e-zl2u)}

= ^(L  + L*) и + '̂ c?zXj -  i  akzxjzx^ j  u.

Pr oof .  From (9) and the chain of inequalities

Amz — inf f v M zv d x =  inf f  e~z/2v L(ez/2v) dx 
уеЩ(п)п уеЩ(п)п

< f  e~z/2wL(ez/2w) dx =  ( f  e~z(j)L(j)dx j ( f  е~гф2 dx j =  Al
n \ n  J \ n  J
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where w =  е~г!2ф ^ f  е~гф2 dx^j and ф is the first eigenfunction of L, we get 

the estimate

(15) sup Xmz ≤ A ∙̂
z

In order to prove the opposite inequality let us consider a sequence ∩j of
expanding C°° smooth subdomains of O, UfL∙ = O, Al(^) = ∏m ^(fL ∙), wherej —>■ oo
Al(^j) is the first eigenvalue of L in Oj. If ф > 0, ф > 0 are the first eigenfunc­
tions of L and L* respectively, we consider the truncated functions

!
kj for X E О and ln(0/,0) > k j , 
ln(0/^) for ж E О and raj < ln(0^) < k j ,

raj for ж E О and ln(0/^) <  raj,

where kj =  supln(</>/?/>), raj =  inf ln(0/'0). 
fij∙

Simple computations give us the identity М^-г; = A ^  in Öj, г; =  (фф)1/2. 
Since V > 0 in Oj it follows from corollary 2.1 in [2] that Ам j ≥ Using 
the monotonicity of Am j with respect to the domain inclusions, after the limit 
j  ^  oo we get the inequality sup Amz (&k) ≥ for every к =  1, 2, ∙ ∙ ∙ .

z
From theorem 1 we have

sup Amz (&k) — SUP ess i∏f
2 ∕

b° + d z Xj -  ^a jzxjzxk +  div/ -  a j ( f J +  ^ ) ( / fe +  / )

= °ь{^к)  
i.e. aL(£lk) = sup A Mz(^k) > A l -

After the limit к —>► oo, from (15) we obtain the final result (14)

ol =  Al  = sup XMz ∙ □
Using theorem 2 we will give here different variants of cfl or equivalently for 

AL which are useful for the investigations of the qualitative properties of Â  in 
section 3.

P roposition  1. Let the operator L satisfy (2), (3) and gi, cJ E (70,1(O). 
Then the identity

(17) AL — ctl — sup ess inf b° +  divf  +  а кс^ск — a k( f i  +  g^)(fk +  gk) 
zec^(∩) xeQ *-

holds, where / J = =LcJ — gi +  akzXk.
R em ark  1. For the special choice of ∕  and £ in (17), / J = cJ — gi =  — a® z =  0 

we get immediately from (17) the condition (6)i and for / J = —cJ — gi =  —fc7, 
z — 0 respectively, the condition (6)∏.
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3. P rop erties  o f th e  principal eigenvalue
In this section we will give some applications of theorems 1, 2 and propositions
1 for qualitative properties of A ∙̂ For this purpose let us recall the well known 
monotonicity and concavity properties of with respect to b°: Xl is an increas­
ing and concave function with respect to 6°.

For the time being it is not known whether a similar monotonicity result for
Xl is true with respect to the matrix or coefficients a!∙, fr7, respectively g∙7,
cJ. To give some particular answer of these questions we will need the following
properties of Xl .

T heorem  3. Let the operator L satisfy (2), (3). Then the inequalities

(18) Xl0 < XL < Xl x

hold, where L q is the symmetric part of L and L\ =  L q +  a kc^ck.
Moreover, if additionally ah, gi, c∙7 E C 1(0) then

(19)
(i) Xl =  Xlq фь =  Фь0 in О йт(сф2ь^) =  0 in O,

where фL̂  фLo are the first eigenfunctions of L and L q respectively;

(ii) Xl =  A !̂ c∙7 = - a kzXk for some z E C 1(0) and more precisely,∆i
z = In {фь/фь*)

Pr oof .  By integration by parts we get immediately the estimate

Al = f  фь^фь dx = f  а^(фь )Х] (фь)хк + 2gj Фь(Фь)х, + Ь°ф2ь dx 
n n

> inf f  ( t f v XjvXk +  2gJvvXj +  b°v2) dx = XLo.
veH0(∩)∩ V ∕

Since c?zXj — \a k zx .zxk < a kc^ck we get from (14) and theorem 2 the in­
equalities AL =  &L — sup Amz ≤ ^Li j where M z is defined in theorem 2.

z

Now let us suppose that div (c 0 |o) = 0 in О and for simplicity let us denote 
Фь0 =  Фо and Â o = Ao∙ Since Lu =  L qu+ ^div(eM2) it follows that L0o = Ao0o, 
0o = 0 on <90, 0o > 0 in O, i.e. 0o is the first eigenfunction of L, 0o = Фь and 
Xl = X о =  Al0∙

Suppose that 0o = 0l ∙ An easy calculations give us the identity

Хьфо = Хьфь = Ьфь = Ьф0 = Lo0o + т -div (сф1) = Х0ф0 + -^-div (сф1)Фо Фо
i.e. (AL — Ао) 0о = div(c0Q) in О. Integrating the above expression in О we get 
immediately that Â  = Aq = A^0 and div(c0g) = div(c0^ ) = 0 in O.
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Finally, let us suppose that =  Ao∙ By integration by parts we have

J  фоЬофо dx =  Ao = Xl =  J  фь^фь dx = J  фь^^офь dx
n n n

and from theorem 2 in section 6.5 in [5], it follows that фь = Фо-
To prove (20) Ü, let us suppose that Cj  = akjZxk for some £ E C 1(0). Since 

the operator ezL(ue~z) =  L\u  has the same first eigenvalue as the operator 
L we have Al  =  A^. Moreover, if ф^  is the first eigenfunction of L\ then 
Фь =  егфЬ1 , фь* = е~гфЬх and г =  ln{фь/фь*)-

The rest of the proof of (20)^ follows by means of (14) and the special choice
(16) of in the proof of theorem 2. □

Using theorem 3 we will give some partial results about the monotonicity of
AL with respect to the matrix |a ^  j .  For this purpose we introduce the operator 

M u  =  -  ( m kj U Xk + (gj -  cj ) u)j +  (gj +  cj ) uXj +  b°u.

Proposition 2. Let the operators L and M  satisfy (2) and (3) and >

Suppose that one of the following assumptions is satisfied:

i) L and M  are symmetric operators;

ii) Am = Am0; M q =  - ( M  +  M*);

iii) cJ =  a!j zXk for some z E C0,1(0) and ркс^ск =  ak c^ck for a.e. x E Ö

where j  ∕

iv) +  kl,  к =  const > 0 , /  is the unit matrix and fik c^ck <

к (сonj  |0 |)n 2̂ for a.e. x E Ö, where u)n is the volume of the unit ball in R n and
|0| =  messft.

Then the inequality Xl > Am holds.
As for the monotonicity of A  ̂ with respect to gi and cJ , it is trivially to 

prove that Al increases when div g decreases. However, the monotonicity of Â  
with respect to cJ is not clear. For convenience we will denote the operator L 
with Lc and with Ac and фс the first eigenvalue and the first eigenfunction of Lc, 
respectively, when the coefficients ak, b° are fixed and cJ vary.

Proposition 3. Let the operator Lc satisfy (2) and (3). Then the following 
inequality holds:

(20) Atc > Ac for every \t\ > 1 where Xtc =  Ac Asc = Aq for every s E R.
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As for the concavity of Ac with respect to the coefficients с we have such result 
only in fixed directions t c , t E R. In different directions с , с a similar result is 
true with a correction term. More precisely, we get the following result.

P roposition  4. Let the operators Lc and L t satisfy (2) and (3). Then Act 
is a concave function of t2. If  сф  с then for every 0 < t < 1 the inequality

As ≥ (1 — t)^Lc+ t \b 0 holds, where Su  =  L(1_^c+^ + ^ ( l  — t)ak(cP — &)(ck — ck)u.
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