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STUDIA MATHEMATICA

BULGARICA

ON SOME CONCEPTS OF RESIDUALS

Georgi N. Boshnakov

We introduce confidence residuals and standardised confidence residuals.
These residuals may be especially useful for asymmetric and multimodal
distributions.

1. Introduction and preliminaries

Residuals measure discrepancy between a statistical model and observed data and
are used to evaluate the quality of the model either through summary statistics
or directly, e.g., via plots. In prediction, measures of uncertainty are often based
on residuals as well.

Let a quantity of interest be modelled as a random variable, Y , with distri-
bution µ. When an observation y of Y becomes available the ordinary definition
of residual is

(1) y − ŷ, ((location) residual),

where ŷ is a measure of location such as the mean, median, or the tallest mode
of µ. This residual can be standardised with a scale parameter, σ,

(2)
y − ŷ

σ
, (standardised residual),
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in order to remove heteroscedasticity and make residuals for different distributions
from a given class comparable. In the case when σ is the standard deviation this
residual is called the Pearson residual.

The term residual is often reserved for the case when µ contains estimated
parameters. Numerous variations of the residuals mentioned here arise when some
of the quantities are replaced by their sample analogues or other approximations
(see, for example, McCullagh and Nelder (1989),Pierce and Schafer (1986)). For
our purposes it is sufficient to work with the “theoretical” characteristics of µ
since we are concerned with the concepts here.

The above residuals work well in normal linear models but may be of limited
value in non-linear models. This has been long recognised in generalized linear
models, where residuals have received considerable attention (see McCullagh and
Nelder (1989, pp. 37–40), Pierce and Schafer (1986)). One approach is to replace
y in equation (2) by a function t(y) chosen so that residuals from a non-Gaussian
distribution behave like those from Gaussian distributions:

t(y) − t(ŷ)

Var(t(Y ))
.

An example of this is the Anscombe residual [7]*p. 37. Even more sound the-
oretical basis has the deviance residual which for our purposes may be defined
by

d = sgn(y − a)
√

2(log f(M) − log f(y)),

where f is the density of µ, M is its maximal mode, and a is the mean. For a
normal density d is (y − a)/σ.

A recent discussion of residuals for survival data is given by Therneau and
Grambsch (2000, Chapter 4).

Many parametric models express a new or future observation as a function
of, among others, error (or, in time series context, innovation) term. A general
definition of residuals can be based on inverting this function with respect to
the error term [3], it that is possible. In some models there is no explicit error
term or there are more of them. For example, there is no explicit error term in a
mixture model specified by a mixture distribution but there are two such terms
if the mixture is specified by two random variables, one to choose the mixture
component, the other being the outcome of a draw from the distribution of that
component. In such cases the very concept of residual becomes vague.

We briefly discuss residuals from a general viewpoint in Section 3., emphasise
their relation to transformations (such as power transformations) and indicate
how new types of residuals may be introduced. Seemingly remote quantities
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qualify for this extended notion of residual. The treatment seems novel even
though it is based on the elementary fact that if X is a random variable with
continuous distribution function F , then F (X) is a uniform random variable.

In Section 4. we define a confidence residual as (roughly) the length of the
region where the density is larger or equal to the density at the observed value. In
Section 2. we provide some background material about the confidence transform
[1] which is a very powerful tool for studying “concentration” properties of prob-
ability distributions. Examples of such properties are highest density regions [6]
and highest posterior density regions [2], for more details see Boshnakov (2003).
The confidence residuals complement the tools for presentation of predictors in
the multimodal case developed by Hyndman (1996).

The confidence residual measures quite naturally how “far” a particular value
is from the “most probable” value. Confidence residuals for variables having
different distributions are comparable as long as the variables are measured in
the same units, in contrast to deviance residuals which, in general, are not. We
also define standardised confidence residuals in the spirit of Section 3. which may
be useful in assessing goodness of fit.

2. The confidence transform

The confidence transform [1] maps the probability distributions to a smaller class
of distributions with excellent analytical properties. It preserves many “con-
centration” and “spread” properties of the originals. For absolutely continuous
distributions it “rearranges”, in the sense of Hardy et al. (1959), the (possibly
weird) original densities into nice monotonically decreasing densities. The sup
operation below can be interpreted as taking the “densest” region of the distri-
bution µ for any given size l.

Definition 1. Let µ be a probability measure and λ be the Lebesgue measure

on R. The confidence characteristic of µ is the distribution ν whose distribution

function is defined by

(3) G(l) =

{

0, if l < 0,

sup{µ(A) : λ(A) ≤ l, A ∈ B}, if l ≥ 0.

G(·), its derivative g(·), and ν are called the confidence distribution function,

confidence density, and confidence characteristic of µ, respectively. The map

from µ to ν is called confidence transform. More generally, any property of the

confidence characteristic is prefixed with the qualifier “confidence” when referred

to as a property of µ.



26 G. Boshnakov

The function G is known as the decomposition concentration function of µ [5,
p. 110] but there are many concepts of “concentration function”. The above def-
inition provides consistent terminology for any property of the confidence char-
acteristic.

On (0,∞), the confidence distribution function is continuous, concave and
has everywhere left- and right- derivatives, the confidence density exists and is
monotonic and continuous except possibly on a countable set.

In what follows we will assume that µ is absolutely continuous with density
f . In that case the confidence density is obtained, effectively, by reordering the
values of the original density in decreasing order so that the probability content
and length of regions of the form {x : f(x) > c} and {l : g(l) > c} are the same,
the precise meaning of this is discussed in Section 4.. The confidence transform
preserves the entropy. More generally,

∫

U(f)dF =

∫

U(g)dG

for any function U for which the integrals exist [1]*Theorem 3.

3. Residuals and transformations

Let Y be a random variable with continuous distribution function F and H
be a strictly monotonic distribution function. The following definition probably
stretches the notion of residual to the limit but it is consistent with the usual
practice of centering and standardising (see below) and will be used to define
standardised confidence residuals in Section 4..

Definition 2. The H-residual of F at x is a value z = z(x) such that

(4) H(z) = F (x).

In principle, the H-residual may be obtained by taking the inverse of H:

z = H−1(F (x)).

Assuming that F and H are absolutely continuous and z differentiable at x, we
get from the above

(5) h(z)
dz

dx
= f(x).

The solution of this differential equation, for given f and h, will normally be given
by the implicit equation (4). For given z(x) and h equation (5) is a change of
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variables formula and may be explored to see which distributions can be converted
to a given distribution, h, by a given transformation z. Care must be taken in
applying formula (5) in this way to ensure that z(x) indeed covers the support
of H.

For example, let z = (x−a)/b, b > 0. Then dz/dx = 1/b and from (5) we get
f(x) = 1

b
h((x − a)/b), i.e., this transformation works for distributions from the

shift-scale family generated by h. More exotic distributions result for other stan-
dard transformations, such as the power or Box-Cox family of transformations
(indexed by λ),

zλ,BC =
xλ − 1

λ
, x ≥ 0,

where z0,BC := log x by definition.

The close relationship between residuals and transformations (to normality)
can be seen particularly well when H is the distribution function of a normal
distribution. The main difference is in the purpose of these tools. Residuals are
often used to provide diagnostics for a model. In this case the distribution (i.e.,
F ) suggested by the model may be taken as given and an exact transformation
applied with the desired H. On the other hand, transformations like zλ,BC are
applied to raw data in order to make them more conformable to (usually) a normal
distribution. In this case a particular form of F can rarely be justified and one
looks for transformations that “generally” work well and thus are approximate.
For example, the power transformations zλ,BC are used to make the data “more
normal” even though zλ,BC cannot be exactly normal for λ 6= 0. If for some reason
an exact transformation is preferred, then a “target” may be chosen, such as a
χ2-distribution. For example, xλ converts densities of the form cxλα−1e−βxλ

to
Gamma densities which may be close to normal densities, such as the χ2-density
obtained for β = 1

2
and large α.

Although the normal distribution would appear to be the most natural choice
of H, for non-negative variables the exponential distribution may be considered.
Also, the choice of the uniform distribution on [0, 1] (H(x) = x) gives z = F (x),
which is not called a residual but is used in diagnostic tools, such as probability
plots (see also at the end of Section 4.).

4. Confidence residuals

We wish to define a residual at a point x0 by measuring the length of the region
were the density, f , of µ is larger than the density at x0 but we do not wish our
definition to depend on values of the density at individual points. We therefore
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use a possibly modified value of the density arranging for it to correspond to the
intuitive idea of having positive mass around the chosen level.

Definition 3. We say that the height of f at x0 is at least c if the intersection

of the set {x : f(x) ≥ c} with each open interval containing x0 has positive λ-

measure. We say that the height of f at x0 is f∗(x0) if

f∗(x0) = sup{c ≥ 0 : the height of f at x0 is at least c}.

If f is continuous at x0 then f∗(x0) = f(x0). Also, if f has left and right
limits at x0 then f∗(x0) is equal to the larger of them.

The argument of the confidence density and confidence distribution function
has the meaning of a residual. We formalise this as follows.

Definition 4. The confidence residual of µ at x is defined by

r(x) =

{

sup{l : g(l) > f ∗(x)}, if f ∗(x) < ∞,

0, if f∗(x) = ∞.

A unimodal density decreases monotonically on each side of the mode. So,
the confidence residual is the length of a stretch connecting two points on either
side of the mode having the same density. If, in addition, the density is symmetric
the confidence residual is twice the absolute value of the location residual. If the
density is asymmetric, the difference between the two types of residual becomes
essential, e.g., equal confidence residuals do not necessarilly correspond to equal
location residuals. The two types of residual become even more different when
the mean is used in the computation of the location residual, rather than the
mode. They are incomparable for multimodal distributions where the confidence
residual may be the sum of the lengths of several pieces.

If g is continuous at r(x), the “usual” case, then g(r(x)) = f ∗(x). Note that
the confidence density may be discontinuous at a point l0 only if the set where f
takes values between the left and right limits of g at l0 is of zero λ-measure [1].
Figure 4. depicts this for the density

f(x) =

{

1

6
(1 − (x − 1)2), for 0 ≤ x < 2,

1

6
(2 + (x − 3)2), for 2 < x ≤ 4,

whose confidence density is

g(l) =

{

1

24
(12 − 4l + l2), for 0 ≤ l < 2,

1

24
(4l − l2), for 2 < l ≤ 4.
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Figure 1: A density (left), and the corresponding confidence density (right). The
height of f at the local maximum x1 = 1 and at the local minimum x2 = 3 is
f∗(x1) = f(x1) and f∗(x2) = f(x2), respectively. Both points have the same
confidence residual, l0 = l(x1) = l(x2) = 2. The confidence density “plunges”
from f(x2) to f(x1) at l0 since f does not take values in the interval (f(x1), f(x2)).

Figure 2: The pdf of a mixture of two normal distributions with the 75% highest
density region.
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Figure 3: The confidence density of the mixture from Figure 2 gives information
about the speed of decrease of the original density. For example, the length of
the region where the density is more than half its maximal height is about 2.5.
The slope may change abruptly at heights corresponding to peaks and valleys of
the original density.

Figure 4: The confidence distribution function, G, of the mixture from Figure 2.
The length of the 75% highest density region is approximately 4.2 since G(4.2) ≈
0.75.

Figure 2 shows the probability density of a mixture of two normal densities
used by Hyndman (1996). The shaded area is the 75% highest density region.
The corresponding confidence density and confidence distribution function are
given in Figures 3 and 4. The confidence density shows the height of the density
at a point with given confidence residual, e.g., f(4.1) = g(4.1) ≈ 0.1, while the
confidence distribution function shows the corresponding cumulative probability,
e.g., F (4.1) = G(4.1) ≈ 0.75. These values correspond to the height of the density
at the end points of the confidence region in Figure 1.

The following theorem shows that the confidence residual does not depend
on the particular choice of the density. Above we used the height f ∗(x0) as a
means to define the confidence residual. Now it is convenient to look at f ∗(x) as
a function defined on the domain of µ.
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Theorem 1. The height function f ∗(x) does not depend on the particular

choice of the density of the absolutely continuous measure µ.

P r o o f. The result may be obtained from the definition of f ∗ and the fact that
any two densities of µ may differ on a set of λ-measure 0 only. We use another
argument which may be useful in other circumstances as well. Assume that the
claim is not true. Then there exist two densities f1 and f2 and a point x0 such
that f∗

1 (x0) < f∗

2 (x0). Let c1 and c2 be such that f1(x0) ≤ c1 < c2 ≤ f2(x0).
From the definition of height it follows that there exists a set S with positive λ-
measure γ, say, such that f2(x) ≥ c2 for x ∈ S and at the same time f1(x) ≤ c1 on
S except possibly for a subset of λ-measure 0. But this means that

∫

S
f1 ≤ c1γ <

c2γ ≤
∫

S
f2, i.e., the µ-measure of S is different for f1 and f2 which contradicts

the assumption. �

Without additional assumptions, the height function of f cannot be guaran-
teed to be a density and if it is, it may be that of a different distribution. This
is not essential for the definition of the confidence residuals since it is based on
the confidence density. Nevetheless, the property is desirable and it makes sense
to formulate the following result.

Theorem 2. The height function, f ∗, of µ is a density of µ if and only if

f(x) 6= f ∗(x) on a set of λ-measure 0.

The condition of this theorem holds in the most important for applications
case when the density f is continuous almost everywhere.

It may be difficult to compare densities having different shapes, for example
when comparing predictors from different non-linear models. The confidence
density neatly represents the concentration of a distribution. By superimposing
confidence densities meaningful comparisons are made possible, for example by
their peakedness [1].

One of the virtues of the confidence residuals is that they are on the same
scale as the original variables. Thus confidence residuals from non-identically
distributed data may be pooled together. If desired, the confidence residuals
may be standardised in the spirit of Section 3. as follows.

Definition 5. Let µ be a distribution with distribution function F and confi-

dence distribution function G. For any x from the domain of µ the standardised

confidence residual of µ at x is defined as

z(x) = H−1(G(l)),

where l = l(x) is the confidence residual of µ at x.
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Choosing the uniform distribution with H(x) = x gives z = G(l), i.e., the
standardised confidence residuals, z = z(Y ) = G(Y ), are uniformly distributed.
Of course, F (Y ) is also uniformly distributed for continuous F , a fact used for
diagnostics such as probability plots. Note that while F (y) is the probability to
get a smaller observation, G(y) is the probability to get a “more likely” obser-
vation. Thus G(y) close to zero corresponds to an observation with high density
and so corresponds to a “good” observation. For comparison, F (y) < 1

2
shows

that y is to the left of the median, while G(y) < 1

2
coresponds to an observa-

tion that is “more likely” than more than “half” of the observations. So, if we
have data yi from Fi with confidence distribution function Gi, i = 1, . . . , n, then
the standardised confidence residuals zi are uniformly distributed on [0, 1]. For
example, we may be worried if too many of them turn out to be larger than 1

2
.

In theory, we should be equally worried if there are too many small zis but one
rarely worries when the data fit a model too well.

If the confidence density is constant, say c0, over an interval, then points
with f∗(x) = c will be allocated a residual corresponding to the left-hand end
of that interval. In the extreme case of a uniform distribution the confidence
residuals are identically zero. This will happen also with deviance residuals and
illusrates that it may be necessary to examine the confidence density along with
the residuals. In fact, it does not make sense to compute residuals for uniformly
distributed variables since these would introduce the false impression that some
values are “better” than others. In a sense, uniformly distributed random vari-
ables constitute the ultimate residuals.

5. Conclusion

We introduced confidence residuals and standardised confidence residuals. Such
residuals may be useful when accessing the quality of non-linear models par-
ticularly when the distributions involved have different shapes. The confidence
residuals preserve the measurement scale of the variables. They also resolve the
difficulty of defining residuals for some models. Applications of confidence resid-
uals for diagnostics of some time series and other models are in preparation, e.g.,
Boshnakov (2003). Extention to the multivariate case is possible if in the defini-
tions given here the Lebegue measure is taken to be in Rk even though in practice
the numerical calculations may be plagued with the curse of dimensionality.
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