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STUDIA MATHEMATICA

BULGARICA

MONTE CARLO METHOD FOR RECONSTRUCTION OF

DENSITIES

Sofiya Ivanovska

The present paper considers the problem how to construct the unknown
density having N realizations of the random variable using B-splines approx-
imation, least squares method and Monte Carlo method. It is shown that
B-splines are appropriate for density modeling. The results from approxi-
mation of an unknown density distribution for the considered algorithm are
compared with some non-parametric statistical methods such as histogram
and kernel density estimation. A large number of numerical experiments are
made using Matlab 6.

1. Introduction

Numerical methods of Monte Carlo type are important area in applied mathe-
matics. Monte Carlo methods are a powerful tool for solving many problems in
the field of mathematics, physics and engineering. It is known that they provide
statistical estimations for a functional of the solution using sample of a certain
random variable whose mathematical expectation is equal to the given functional
([2, 5]). Monte Carlo methods become more popular because of their high rate
of parallelism.

The density function modeling is a very important task when solving many
real problems in ecology, probabilistic theory and physics. For example the prob-
lem of developing efficient algorithms for density function modeling is of signifi-
cant interest in the problem of air pollution transport.
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The problems of this type arising when it is necessary to find approximately
the unknown density of a random variable using a given number of its realizations.

2. The Monte Carlo Method

Consider the problem of approximation of the unknown density function p(x)
defined in [a,b] by given N realizations {ξi}

N
i=1 ∈ [a, b] of the random variable ξ

with density p(x) ([1]).
Suppose p(x) ∈ Ck[a, b] where k ≥ 0 is an integer number. It divides the

interval [a, b] into the m subintervals and introduce following set points:

ωm = {a = x0 < x1 < . . . < xm = b},

with step h =
b − a

m
. 2k new nodes are added to the set ωm and the result is the

set:

Tn = {t1 < t2 < . . . < tk+1 = x0 < . . . < xm = tn−k < tn−k+1 < . . . < tn}.

Consequently n = 2k + m + 1.
It holds approximation of p(x) with B-splines of k-th degree:

p(x) =
L
∑

i=1

ciBi,k(x), x ∈ [a, b], L = n − k − 1

with an error O(hk) where ci, i = 1, . . . , L are the approximate coefficients.
The I-th B-spline of k-th degree with nodes ti, . . . , ti+k+1 is defined as the divided
difference of truncated power function (t − x)k

+ with respect to t in the points
ti, . . . , ti+k+1:

Bi,k(x) = (· − x)k
+[ti, . . . , ti+k+1], i = 1, . . . , L,

where x is fixed point and

(t − x)k
+ =

{

(t − x)k, t > x

0, t ≤ x.

Each spline is represented as a linear combination of truncated power functions.
Therefore Bi,k(x) could be represented as follows:

Bi,k(x) =
i+k+1
∑

s=i

(ts − x)k+
ω

′

i,k(ts)
,
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where ωi,k(t) = (t − ti) . . . (t − ti+k+1).
The advantage when we apply splines for approximation of unknown function

is the usage of algebraic polynomials of low degree because the computations
with polynomials of high degree are difficult. Consequently the increasing of the
accuracy in the approximation of the function could be achieved only by the
division into small intervals.

In order to obtain the coefficients ci(i = 1, . . . , L), we apply the least squares
method. The point of the method consists in choosing the coefficients in such
way ensures the minimization of the integral value of the least squares error.

U =

b
∫

a

(

p(x) −
L
∑

i=1

ciBi,k(x)

)2

dx

The function U is a function of L variables:

U = U(c1, . . . , cL) =

b
∫

a

(p(x) − ϕ(x; c1, . . . , cL))2 dx

U =

b
∫

a

p2(x) dx − 2
L
∑

i=1

ci(p,Bi,k(x)) +

b
∫

a

(

L
∑

i=1

ciBi,k(x)

)2

dx.

All the partial derivatives of U = U(c1, . . . , cL) are continuous. The necessary
condition the function U = U(c1, . . . , cL) to possess a minimum is expressed with
the system of linear algebraic equations:

∂U

∂c1

= 0,
∂U

∂c2

= 0, . . . ,
∂U

∂cL

= 0.

We obtain

∂U

∂ci

= −2(p,Bi,k(x)) + 2

b
∫

a





L
∑

j=1

cjBj,k(x)



Bi,k(x) dx = 0

L
∑

j=1

(Bi,k(x), Bj,k(x))cj = (p(x), Bi,k(x)) i = 1, . . . , n − k − 1,

where the inner product is defined by this means

(f, g) =

b
∫

a

f(x)g(x) dx.
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The unknown approximate coefficients cj is obtained as a solution of the system
of L equations. Obviously the functional (p(x), Bi,k(x)) is the mathematical
expectation of Bi,k(x) with a density p(x) ([5]):

(p(x), Bi,k(x)) =

b
∫

a

p(x)Bi,k(x) dx = EBi,k(ξ),

where the random number ξ has a density p(x). The inner product (p(x), Bi,k(x))
is estimated using Monte Carlo method for calculation of the integrals:

(p(x), Bi,k(x)) ≈
1

N

N
∑

j=1

B(ξj) = θ̂N .

where {ξi}
N
i=1 is the given sample. Each B-spline function of k-th degree is defined

only in finite number of nodes - k+2. So, the first and the last nodes could
be considered as limits of a subinterval corresponding to a subinterval which is
obtained by splitting of the region using stratification method.

3. Non-parametric Techniques for Probability Density Estima-

tion

In this section, some non-parametric techniques for probability density estimation
are described (see [3, 4]). For these techniques few or no assumptions are made
about what functional form the probability density takes. This is in contrast to a
parametric method, where the density is estimated by assuming a distribution and
then estimating the parameters. Two methods for probability density estimation
are considered in the presented paper: histograms and kernel method.

3.1. Histograms

Histograms represent a graphical way of summarizing or describing a data set. A
histogram visually conveys how a data set is distributed and provides information
about relative frequencies of observations. Histograms are easy to create and are
computationally feasible.

The histograms are the oldest and most widely used non-parametric density
estimator. This is usually formed by dividing the real line into equally sized
intervals, often called bins. The histogram is calculated using a random sample
ξ1, ξ2, . . . , ξN . Firstly, the origin x0 for the bins and a bin width h have to
be chosen. The bin width h is usually called a smoothing parameter since it
controls the amount of ”smoothing” being applied to the data. Our goal is to
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estimate a probability density function, so we have to obtain a function p̂(x) that
is nonnegative and satisfies the following condition:

∫ b

a
p̂(x) dx = 1.

The one-dimensional histogram estimate p̂Hist(x) at a point x is defined with the
following expression:

p̂Hist(x) =
νi

hN
=

1

hN

N
∑

i=1

ISj
(ξi) for x ∈ Sj,

where Sj = [xj , xj+1) is the j-th bin (j = 0, . . . ,m − 1), νj is the number of
observations in the j-th bin (

∑m−1

j=0
νj = N), and ISj

(ξi) is the indicator function
for the bin Sj .

3.2. Kernel Density Estimation

The histogram is informative but it is not smooth and not sensitive enough to local
properties of the density p(x). The kernel method overcomes this disadvantage
of the histogram method.

Let K(x) be a function that satisfies the conditions:

K(x) ≥ 0,

∫ b

a
K(x)dx = 1.

Then the kernel density estimator with kernel K(x) is defined by

p̂Ker(x) =
1

λN

N
∑

i=1

K

(

x − ξi

λ

)

,

where λ is the bandwidth (smoothing parameter, window width).

4. Numerical Results

In this section the numerical results from the testing of described methods for
probability density estimation are presented. The results are given as a function
of the sample size N and the step of the mesh h. The sample is obtained using
a pseudorandom generator. Absolute error in every point of mesh is computed.

The described algorithms are tested with different sample sizes for two dif-
ferent distribution-exponential and normal. The numerical results in all tables
have been computed by using Matlab 6. In Tables 1 and 3 we summarize what is
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known about the samples for considered distributions. Tables 2 and 4 show the
error dependence of the sample size and the step of the mesh. When the number
of the realizations increases the probable error decreases correspondingly. In view
of the nature of the exponential distribution the step of the mesh increases with
the increase of the number of realizations of the random variable but the Eu-

Table 1: Characteristics of the sample for exponential distribution.

Number of Min value in Max value in Probable
realizations realization realization error

100 0.00179 6.16620 0.00837

1 000 0.00098 6.33561 0.00279

10 000 3.39e-05 9.37242 0.00050

100 000 8.52e-06 13.14216 0.00009

Table 2: The Euclidean norm of the absolute error from exponential density
reconstruction with Monte Carlo method and histogram method. The number of
the intervals on the mesh is equal to 25.

Number of realizations 100 1 000 10 000 100 000

Step of the mesh 0.24657 0.25338 0.37489 0.52568

Monte Carlo method 0.37057 0.08860 0.09599 0.00696

Histogram method 0.31275 0.19913 0.22882 0.27470

clidean norm of the error decreases. The results for normal density reconstruction
are similar to the previous but the desired accuracy is achieved slower.

The accuracy of the described Monte Carlo method for reconstruction of
densities is compared with other statistical methods as histograms and kernel
density estimation. From Table 2 it is clear that Monte Carlo method is more
precise than the histogram method. For normal density reconstruction Monte
Carlo method gives accuracy of the same order with comparison of the used
statistical methods.

Graphic presentation of the density function is shown in case of exponential
distribution (left-hand plots) and normal distribution (right-hand plots) of Figure
1. The true density is represented by a solid line on Figure 1 and 2. The stars
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Table 3: Characteristics of the sample for normal distribution.

Number of Min value in Max value in Probable
realizations realization realization error

100 -2.04589 3.01190 0.01855

1 000 -3.88507 3.01190 0.00422

10 000 -3.88507 3.44948 0.00123

100 000 -4.02841 3.98811 0.00034

Table 4: The Euclidean norm of the absolute error from normal density recon-
struction with Monte Carlo method, histogram method and kernel density esti-
mation. The number of the intervals on the mesh is equal to 50.

Number of realizations 100 1 000 10 000 100 000

Step of the mesh 0.10115 0.13793 0.14669 0.16033

Monte Carlo method 1.19988 0.16516 0.04508 0.01765

Histogram method 0.97351 0.23474 0.07544 0.07355

Kernel density estimation 0.14004 0.07344 0.03231 0.01403

represent results obtained using Monte Carlo method. It is obvious from figures
that with increasing the number of realizations the reconstructed values fit better
to the corresponding density curve for all considered methods. This clearly shows
that high accuracy can only be obtained using sufficiently large samples.

5. Conclusion

In the present paper a Monte Carlo method and non-parametric methods for
density reconstruction are considered. Their accuracy in solving the investigated
problem is compared. The obtained results show that the considered algorithm
using Monte Carlo method gives the same accuracy with some advantage with
comparison of the other mentioned methods for fixed number of realizations of
random variable and fixed step of mesh.
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Figure 1: Exponential/normal density estimation with Monte Carlo method and
histogram method. Sample sizes N = 100, 1 000, 10 000. Number of intervals is:
25 (exponential distribution) and 50 (normal distribution).
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Figure 2: Normal density estimation with Monte Carlo method and kernel den-
sity estimation. Sample sizes N = 100, 1 000, 10 000, 100 000. Number of inter-
vals is 50.



64 S. Ivanovska

REFERE NCES

[1] I. Dimov, A.Karaivanova. Overconvergent Monte Carlo Methods for
Density-function Modelling Using B-Splines, Advances in Numerical Meth-
ods and Appl., World Scientific, pp. 85–93, 1994.

[2] J.M.Hammersley, D.C.Handscomb. Monte Carlo Methods, Jonh Wiley
& Sons, inc., New York, London, Methuen, 1964.

[3] W.L.Martinez, A.R.Martinez. Computational Statistics Handbook
with MATLAB, Chapman & Hall/CRC, 2002.

[4] B.W.Silverman. Density Estimation for Statistics and Data Analysis,
Chapman and Hall, London, 1986.

[5] I.M. Sobol. Monte Carlo Numerical Methods, Nauka, Moscow, 1973, (in
Russian).

Sofiya Ivanovska

Central Laboratory for Parallel Processing

Bulgarian Academy of Sciences

Acad. G. Bontchev St., Bl.25A

1113 Sofia, Bulgaria

e-mail: sofia@copern.bas.bg


