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STUDIA MATHEMATICA

BULGARICA

ON A STOCHASTIC PARTIAL DIFFERENTIAL EQUATION
WITH A NOISY TERM

Ekaterina T. Kolkovska

We review results obtained in [13] and [14] on a one-dimensional Burgers-
type stochastic differential equation involving fractional power of the Lapla-
cian in its linear part, perturbed by a white noise term, with Dirichlet bound-
ary conditions. We discuss existence of weak solutions and regularity of
solutions.

1. Introduction

We consider the stochastic partial differential equation

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) + f(t, x, u(t, x)) +

∂

∂x
g(t, x, u(t, x))

+ σ(t, x, u(t, x))
∂2

∂t∂x
W (t, x)

with Dirichlet boundary conditions

u(t, 0) = u(t, 1) = 0, t ≥ 0

and initial condition

u(0, x) = u0(x), x ∈ [0, 1],
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where ∂2

∂t∂xW (t, x) is a space-time white noise (see [21] for the definition and
properties of white noise), u0 ∈ L2([0, 1]) and f ≡ f(t, x, y), g ≡ g(t, x, y),
σ ≡ σ(t, x, y) are Borel-measurable functions on R+ × [0, 1] × R. A solution of
the above equation is an L2([0, 1])-valued continuous process, adapted to the
filtration generated by the white noise, which solves the equation in a weak sense
(see below).

When f = σ = 0 and g(t, x, y) = y2/2 the above equation is called Burgers
equation. It has been proposed as a model for turbulent fluid motion (see [4, 5,
11]). When g = 0 the equation is a stochastic reaction-diffusion equation which
has been studied intensively (see e.g. [8, 21, 3, 15] and the references therein).

When f = 0, g(t, x, y) = y2/2 and σ 6= 0, we obtain the Burgers equation
perturbed by a space-time white noise. It has been studied by several authors
under Lipschitz conditions on σ (see e.g. [1, 7, 6, 10] and the references therein).

Burgers equation involving fractional powers ∆α := −(−∆)α/2, α ∈ (0, 2], of
the Laplacian in its linear part has also been studied in connection with models
of several hydrodynamical phenomena (see e.g. [20], [9], [6] and the references
therein for applications).

In [6] Biller, Funaki and Woyczynski studied existence, uniqueness, regularity
and asymptotic behavior of solutions of the multidimensional fractal Burgers-type
equation

∂

∂t
u(t, x) = ν∆αu(t, x) − a∇ur(t, x),(1)

where x ∈ R
d, d ≥ 1, α ∈ (0, 2], r ≥ 1, and a ∈ R

d is a fixed vector. For α > 3/2
and d = 1 they proved existence of a unique regular weak solution of (1) with
initial conditions in H1(R).

In [13] it is proved existence of a weak solution of the one-dimensional stochas-
tic Burgers equation perturbed by a white noise term with a non-Lipschitz coef-
ficient

∂

∂t
u(t, x) = ∆u(t, x) + λ∇u2(t, x) + γ

√

u(t, x)(1 − u(t, x))
∂2

∂t∂x
W (t, x),

u(t, 0) = u(t, 1) = 0,

u(0, x) = f(x), x ∈ [0, 1],(2)

where f : [0, 1] → [0, 1] is continuous and ∂2

∂t∂xW (t, x) is the space-time white
noise. Equation (2) is interpreted in the weak sense, which means that for each
ϕ ∈ C2([0, 1]),

∫

[0,1]
u(t, x)ϕ(x) dx =

∫

[0,1]
u(0, x)ϕ(x) dx +

∫

[0,1]
u(t, x)ϕ′′(x) dx−(3)
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−λ
∫ t

0

∫

[0,1]
u2(s, x)ϕ′(x) dx ds+ γ

∫ t

0

∫

[0,1]

√

u(s, x)(1 − u(s, x))ϕ(x)W (ds, dx).

The method of proof in [13] consists in approximating (2) by finite systems
of stochastic differential equations possessing a unique strong solution. Using
bounds for the fundamental solution of the discrete Laplacian, it is shown tight-
ness of the approximating systems, and that each weak limit is a weak solution
of (2).

In this paper we concentrate mainly on the one-dimensional fractal Burgers
equation

∂

∂t
u(t, x) = ∆αu(t, x) + λ∇u2(t, x) + γ

√

u(t, x)(1 − u(t, x))
∂2

∂t∂x
W (t, x),

u(t, 0) = u(t, 1) = 0, x ∈ [0, 1],(4)

where the random positive initial condition u(0, x) is bounded by 1.
Due to the presence of non-Lipschitz coefficients, existence and uniqueness

of a weak solution of (4) cannot be achieved by classical results. Following the
method of proof of [13], in this paper we consider a discrete version of (4). Using
the method of [13], we prove existence of a strong solution of the corresponding
finite system of SDEs. We discuss also existence and regularity properties of a
weak solutuons proved in [14].

2. Notations and basic results

We recall some notations from [2]. Let S = [0, 1) and let T denote the quotient
space obtained from [0, 1] by identifying 0 and 1. We put ϕ0(x) = 1 for x ∈ [0, 1],
and

ϕn(x) =
√

2 cos(πnx), ψn(x) =
√

2 sin(πnx), x ∈ [0, 1], n = 2, 4, . . . .

This system of functions, which we also denote by em, m = 0, 1, 2, ..., is the usual
orthonormal basis in L2([0, 1]). Moreover, for all n, ∆en = −π2n2en. For any
β ∈ R we define Hβ as the Hilbert space obtained from L2(S) by completion
with respect to the norm

|f |β =
(

∑

〈f, em〉2(1 + π2m2)β
)1/2

,

where 〈·, ·〉 denotes the usual inner product in L2(S).
For any integer N ≥ 1, let H(N) denote the set of functions f : [0, 1] → R

which are constant on [ k
N ,

k+1
N ) for k = 0, 1, 2, ..., N −1. Clearly we have H(N) ⊂

L2([0, 1]).
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Without loss of generality we assume that λ = γ = 1.
Let us fix a positive integer N , and consider the discretized version of (4),

namely the system

∂

∂t
XN (t, r) = ∆N,αX

N (t, r) + ∇NX
N (t, r)2 +

+
√

NXN (t, r)(1 −XN (t, r)) dBN (t, r),

XN (0, r) = X(0, r), r = 0, 1
N , ...,

N−1
N , t ≥ 0,(5)

where ∆N,α is the fractional power of the discrete Laplacian, and {BN (t, r)}r

is a sequence of independent Brownian motions. Our results are the following
theorems.

Theorem 1. (a) For any positive initial random condition XN (0) bounded
by 1, there exists a unique strong solution XN (t) of (5) in the space
C([0,∞), L2([0, 1]).

(b) The distributions of {XN} are relatively compact on C((0,∞) : Hβ) if
β ≤ 0, α > β + 3/2, and on C([0,∞) : Hβ) for α > β + 3/2, β < −1/2.

(c) For any α > 3/2, equation (4) has a weak solution in the space C((0,∞),
L2([0, 1])).

Remark 1. Theorem 1 is consistent with results obtained in [6] for the case
γ = 0.

Theorem 2. The weak solution X(t) in Theorem 1 has a modification which
is Holder continuous in time: it satisfies

P

(

sup
0<s0≤s<t≤T

|X(t) −X(s)|β
|t− s|δ <∞

)

= 1

for each 0 < δ < [(2α − 2β − 3)/(2α)] ∧ 1/2, 3/2 < α ≤ 2, and β < (2α − 3)/2.

Remark 2.In particular, when α = 2 and 0 ≤ β < 1/2, we can take 0 < δ <
1−2β

4 , and obtain

P (X ∈ C((0,∞) : Hβ)) = 1.

Thus X(t) is smoother than an L2([0, 1]) function for t > 0. This is due to the
regularization property of the Laplacian.

Remark 3.We are going to prove only part (a) of Theorem 1. The remaining
results, including Theorem 2, are proved in [14].
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3. Proof of Theorem 1(a)

Let us write xN
r (t) = XN (t, r). The system (5) then can be written in the more

compact form

dxN
i (t) =





N
∑

j=1

aN
ijx

N
j (t) + bNijx

N
j (t)2



 dt+
√

NxN
i (t)

(

1 − xN
i (t)

)

dBi(t)(6)

where

bNij =







N if j = i+ 1,
−N if j = i,
0 otherwise,

and aN
ij are the coefficients of ∆N,α.

For example, in the case α = 2, (5) takes the form:

∂

∂t
XN

(

t,
k

N

)

= ∆NX
N

(

t,
k

N

)

+ ∇N

(

XN

(

t,
k

N

)2
)

(7)

+

√

NXN

(

t,
k

N

)(

1 −XN

(

t,
k

N

))

dBk(t),

1 ≤ k ≤ N, t ≥ 0.

Here {Bk(t)}1≤k≤N is an infinite system of independent one-dimensional Brow-
nian motions and ∇N and ∆N are, respectively, the discrete approximations of
the first and second derivative with respect to the variable x:

∆NX
N

(

t,
k

N

)

=
XN

(

t, k+1
N

)

− 2XN
(

t, k
N

)

+XN
(

t, k−1
N

)

1
N2

,

∇N h

(

s,
k

N

)

=
h
(

s, k+1
N

)

− h
(

s, k
N

)

1
N

, 1 ≤ k ≤ N.

Substituting the above expressions in equation (7), we obtain the finite-dimensio-
nal system of stochastic differential equations

dxN
i (t) = N2

[

xN
i+1(t) − 2xN

i (t) + xN
i−1(t)

]

+NxN
i+1(t)

2 −NxN
i (t)2

+
√

NxN
i (t)

(

1 − xN
i (t)

)

dBi(t), i = 1, ..., N,
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which can be written as (6) with with

aN
ij =







N2 if j = i+ 1, i − 1,

−2N2 if j = i,
0 otherwise

and

bNij =







N if j = i+ 1,
−N if j = i,
0 otherwise.

In the general case 0 < α ≤ 2 we also will have
∑

i a
N
ij = 0 because the operator

∆N,α is symmetric.
Note that for system (6) we cannot apply standard results on existence and

uniqueness of solution because Lipschitz assumptions on the drift and diffusion
coefficients fail. We prove the following result.

Lemma 1. For any initial random condition XN (0) = (xN
1 , ..., x

N
N ) ∈ [0, 1]N ,

the system

dxN
i (t) =





∑

j

aN
ijx

N
j (t) +

∑

j

bNijx
N
j (t)2



 dt+(8)

+
√

NxN
i (t)(1 − xN

i (t)) dBi(t)

xN
i (0) = xi, i = 1, ..., N,

admits a unique strong solution XN (t) = (xN
1 (t), . . . , xN

N (t)) ∈ C([0,∞), [0, 1]N ).

P r o o f. Let us consider the re-scaled system

dxN
i (t) =





∑

j

aN
ijx

N
j (t) +

∑

j

bNijx
N
j (t)2



 dt+
√

g(xN
i (t)) dBi(t)(9)

xN
i (0) = xi, i = 1, ..., N,

where g : R → R is defined by g(x) = Nx(1 − x) for 0 ≤ x ≤ 1, and g(x) = 0
otherwise. Since the coefficients of (9) are continuous, by Skorohod’s existence
theorem ([19, 12]) we conclude that on some probability space there exists a
weak solution XN (t) of (9). We will prove that each weak solution XN (t) =
(xN

1 (t), . . . , xN
N (t)) of this system is bounded: xN

i (t) ∈ [0, 1] for all i = 1, . . . , N
and t ≥ 0, thus showing that XN (t) also solves (8).
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First we show that xN
i (t) ≥ 0 for each i = 1 . . . , N . Since the coefficients of

the system are non-Lipschitz, the solution may explode in finite time. Let τ1 ≤ ∞
denote the explosion time of the solution. If some of the solution coordinates are
negative, then there exists a random time 0 < τ2 ≤ ∞ such that for 0 < t ≤ τ2
all such coordinates are between −1 and 0. This is so because there is only finite
number of coordinates, and they are continuous.

In order to obtain pathwise uniqueness of weak solutions we shall use the
local time techniques of Le Gall combined by the classical method of Ikeda and
Watanabe (see e.g. [18], Chapter V, §43) We state the following result of Le Gall
([16]).

Lemma 2. Let Z ≡ {Z(t), t ≥ 0} be a real-valued semimartingale. Suppose
that there exists a function ρ : [0,∞) → [0,∞) such that

∫ ε
0

du
ρ(u) = +∞ for all

ε > 0, and
∫ t
0

1{Zs>0}

ρ(Zs) d〈Z〉s <∞ for all t > 0 a.s. Then the local time at zero of

Z, L0
t (Z), is identically zero for all t a.s.

Applying Lemma 2 to xN
i (t) with ρ(u) = u, and using the Tanaka’s formula

(see [17]), after summation we obtain for xN
i (t)

−
:= max[0,−xN

i (t)],

N
∑

i=1

xN
i (t)− = −

∫ t

0

N
∑

i=1

1xN
i

(s)<0

N
∑

j=1

(aN
ijxj(s) + bNijxj(s)

2) ds

≤
∫ t

0

N
∑

i,j=1

1xN
i

(s)<0a
N
ijxj(s)− ds+N

∫ t

0

N
∑

i=1

1xN
i

(s)<0xi(s)
2 ds

≤
∫ t

0

N
∑

i,j=1

aN
ijxj(s)− ds+N

∫ t

0

N
∑

i=1

xN
i (s)− ds

= N

∫ t

0

N
∑

i=1

xN
i (s)− ds,

where we used that
∑

i a
N
ij = 0 to obtain the last equality. Then by Gronwall’s

lemma we obtain that
∑N

i=1 x
N
i (t)

−
= 0, and hence that the solution is non-

negative for each t ≥ 0. By a similar argument applied to (1−xN
i (t))−, it follows

that xN
i (t) ≤ 1 for each 1 ≤ i ≤ N.

Let X1,N = (x1,N
1 , . . . , x1,N

N ) and X2,N = (x2,N
1 , . . . , x2,N

N ) be two weak so-
lutions of (8) with the same initial conditions and the same Brownian motions.
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Then,

x1,N
i (t) − x2,N

i (t) =

=

∫ t

0





∑

j

aN
ij

(

x1,N
j (s) − x2,N

j (s)
)

+ bNij

(

x1,N
j (s)2 − x2,N

j (s)2
)



 ds+

+

∫ t

0

[
√

Nx1,N
i (s)(1 − x1,N

i (s)) −
√

Nx2,N
i (s)(1 − x2,N

i )(s)

]

dBi(s),

i = 1, . . . , N.

Since

〈X〉t =

∫ t

0

[
√

Nx1,N
i (s)(1 − x1,N

i (s)) −
√

Nx2,N
i (s)(1 − x2,N

i )(s)

]2

ds

and

∫ t

0

[

√

Nx1,N
i (s)(1 − x1,N

i (s)) −
√

Nx2,N
i (s)(1 − x2,N

i )(s)

]2

x1,N
i (s) − x2,N

i (s)
×

×1
x1,N

i
(s)−x2,N

i
(s)>0

ds ≤
∫ t

0
2N1

x1,N

i
(s)−x2,N

i
(s)>0

ds < 2Nt

(where we used that (
√

x(1 − x) −
√

y(1 − y) )/(x − y) < 2 for x, y ∈ [0, 1],
x > y, which follows from L’Hospital rule), we can apply Lemma 3.2 to Z(t) =

x1,N
i (t) − x2,N

i (t) with ρ(x) = x. Therefore, L0
t

(

x1,N
i (s) − x2,N

i (s)
)

= 0 for all

i ∈ {1, . . . , N}.
Applying Tanaka’s formula again,

∣

∣

∣x
1,N
i (t) − x2,N

i (t)
∣

∣

∣ =

∫ t

0
sgn

(

x1,N
i (s) − x2,N

i (s)
)

×

×





∑

j

aN
ij

(

x1,N
j (s) − x2,N

j (s)
)

+ bNij

(

x1,N
j (s)2 − x2,N

j (s)2
)



 ds+

+

∫ t

0
sgn

(

x1,N
i (s) − x2,N

i (s)
)

[

√

Nx1,N
i (s)

(

1 − x1,N
i (s)

)

−

−
√

Nx2,N
i (s)

(

1 − x2,N
i (s)

)

]

· dBi(s), i = 1, . . . , N.
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Since aN
ij and bNij are bounded, it follows that

E

N
∑

i=1

∣

∣

∣
x1,N

i (t) − x2,N
i (t)

∣

∣

∣

≤
∫ t

0
E

N
∑

i=1

∣

∣

∣

∣

∣

∣

∑

j

aN
ij

(

x1,N
j (s) − x2,N

j (s)
)

+ bNij

(

x1,N
j (s)2 − x2,N

j (s)2
)

∣

∣

∣

∣

∣

∣

ds

≤
∫ t

0
K(N) E

N
∑

i=1

∣

∣

∣
x1,N

i (s) − x2,N
i (s)

∣

∣

∣
ds,

where K(N) is a constant depending on N. From Gronwall’s inequality we con-
clude that

E

d
∑

i=1

∣

∣

∣x
1,N
i (t) − x2,N

i (t)
∣

∣

∣ = 0

for all t ≥ 0, thus proving pathwise uniqueness.

By a classical theorem of Yamada and Watanabe [22], this is sufficient for
existence of a unique strong solution of (8).
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