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BRANCHING PARTICLE REPRESENTATION OF A CLASS

OF SEMILINEAR EQUATIONS

José Alfredo López-Mimbela

We review several probabilistic techniques that were developed in a series of
papers to study blowup properties of positive (mild) solutions of semilinear
equations of the form ∂u(t, x)/∂t = Au(t, x)+uβ(t, x), u(0, x) = f(x), where
A is the generator of a strong Markov process in a locally compact space
S, β > 1 is an integer, and f : S → [0, +∞) is bounded and measurable.
The emphasis is on probabilistic representations of positive solutions, and
on qualitative properties of solutions.

1. Introduction

This paper constitutes a report on probabilistic methods that were developed
in [6], [7], [8] and [9] to study blow-up properties of semilinear equations of the
prototype

∂ut

∂t
= Aut + V uβ

t , u0 = f,(1)

where A denotes the infinitesimal generator of a strong Markov process in a state
space S, V > 0 and β > 1 are constants, and the initial condition f : S → [0,+∞)
is bounded and measurable. Reaction-diffusion equations of the form (1) are
related to important questions of qualitative nature in many fields of application,
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and have been studied intensively in the last three decades because of the rich
mathematical structure associated with their qualitative behavior. See [5], [12],
[14] or [15] for surveys.

Under appropriate conditions on S there exists an extended real number
Tf > 0 such that (1) has a unique solution u on S × [0, Tf ) which is bounded on
S × [0, T ] for any 0 < T < Tf , and if Tf < ∞, then ‖ut‖∞ → +∞ as t ↑ Tf .
When Tf = +∞ we say that u is a global solution, and when Tf < +∞ we say
that u blows up in finite time, or that u is nonglobal.

In his pioneering paper [3] Fujita showed, initially for the case S = Rd (where
Rd is d-dimensional Euclidean space), A = ∆ :=

∑d
i=1 ∂2/∂x2

i and V = 1, that
the spatial dimension d and the exponent β in the nonlinearity play a crucial
role in the asymptotic behavior of positive solutions of (1). His results state that
if d(β − 1)/2 > 1, then Equation (1) admits both global and nonglobal positive
solutions, and that if 0 < d(β−1)/2 < 1, then (1) has no nontrivial global positive
solution.

The probabilistic counterpart to Fujita’s results appeared soon after the pub-
lication of [3]. In [13] Nagasawa and Sirao expounded a probabilistic method,
based on the theory of semigroups with the branching property that was devel-
oped in [4], that allowed them to re-discover Fujita’s results in the case of integral
exponents β ≥ 2, and a generator A of a Markovian migration in a compact space.
Later, the present author introduced in [6] a probabilistic representation of mild
solutions of (1), and extended the results on existence of global solutions in [13]
to certain systems of semilinear equations. The blowup of systems of equations
was treated probabilistically later on, in the papers [8] and [9]. By combining
analytic and probabilistic tools, a Dirichlet boundary value problem related to
(1) was studied in [7].

A common characteristic of the probabilistic approaches developed in these
papers (with the exception of [7]) is the use of Markov branching processes to
represent positive mild solutions of (1) as expectation functionals. This feature
restricts their scope to semilinear equations with integer exponents β ≥ 2 in
the nonlinearities. However, they provide a way by which one can explain in
a transparent and intuitive probabilistic manner why blowup occurs under cer-
tain constellations of parameters. Moreover, by considering multitype branching
systems, one can easily extend the analysis to systems of equations.

Our purpose in this work is to review the main results in [6, 7, 8] and [13] in
a reasonably unified context. In Section 2 we briefly recall the construction of a
Markov branching process introduced by Ikeda, Nagasawa and Watanabe. After-
ward, in Section 3, we give a probabilistic representation of mild solutions of (1)
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which is used through sections 4 and 5 to derive sufficient conditions for blowup
and for existence of global solutions. Section 6 deals with systems of semilinear
equations. Section 7 constitutes an attempt to interpret blowup for the Dirichlet
boundary value problem in terms of our branching process representations.

2. Markov Branching processes

Let us describe the Markov branching processes by means of which we are going
to represent solutions of (1). We refer to [4] for a complete presentation of this
topic.

Let S be a Hausdorff, locally compact, second countable topological space.
Let us denote by Nf(S) the space of finite counting measures on S, endowed
with the topology of vague convergence. We write supp(µ) for the support of
µ ∈ Nf(S). The space of bounded, Borel measurable functions f : S → R+

(where R+ := [0,∞)) will be denoted by B(S). We also write B(E) for the Borel
σ-algebra in a topological space E.

To each f ∈ B(S) we associate a new measurable function f̂ : Nf(S) → R+,
defined by

f̂(µ) =
∏

x∈ supp(µ)

f(x), µ ∈ Nf(S).

Let π(x,B) be a function defined on S × B(Nf(S)) having the properties:

π(·, B) is B(S)-measurable for each B ∈ B(Nf(S)) ,(2)

π(x, ·) is a probability measure on B(Nf(S)) for any x ∈ S ,(3)

π(x,N[1]) = 0 for each x ∈ S,(4)

where N[n] ⊂ Nf(S) consists of the measures having exactly n atoms, n = 1, 2, . . ..

Given a strong Markov process W =: {Wt, t ≥ 0} with values in S and
a bounded, measurable function V : S → (0,∞), there exists a unique Markov
process X := {Xt, t ≥ 0} with state space Nf(S) whose paths are right continuous
and have limits on the left at any point t > 0, and such that

Eµ[f̂(Xt)] =
∏

x∈supp(µ)

Ex[f̂(Xt)], f ∈ B(S), µ ∈ Nf(S),(5)

{Xt, t < T, }
d
= {Yt, t < T},(6)

(
d
= meaning equality in distribution), where Y := {Yt, t ≥ 0} is a Markov process

with state space S ∪ {†} († being an extra point), whose lifetime is T , has † as
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its terminal point, and obeys

Px[Yt ∈ B ] = Ex[e
−

� t

0
V (Ws) ds,Wt ∈ B], x ∈ S.

Moreover, for any λ ≥ 0,

Ex[ e−λT , XT ∈ B |XT− ] = Ex[ e
−λT |XT− ]π(XT− , B) a.s. on {T < ∞}(7)

for any B ∈ B(Nf(S)) and x ∈ S. Here Eµ and Pµ denote, respectively, condi-
tional expectation and probability given that X0 = µ. In case of µ = δx we
write simply Ex and Px.

The process X is termed a “Markov branching process” [4]. Property (5) is
usually referred to as the branching property. The process {Yt , t ≥ 0} in (6) is
the non-branching part of X, and the function π satisfying (2)-(4) and (7) is the
branching law of X.

The process X starting in X0 = δx describes the evolution of a population
in S whose space-time behavior can be explained intuitively in the following
way. Initially (i.e., at time t = 0) there is an individual at position x that
migrates following the process W . After an exponentially distributed lifetime of
parameter V it branches, originating an offspring with distribution π. The new
particles evolve independently following the same rules. The random measure Xt

represents the population configuration at time t ≥ 0.

3. Representation of solutions

Let us consider the branching population defined in the previous section. In order
to represent positive mild solutions of

∂ut(x)

∂t
= Aut(x) + V uβ

t (x), t > 0, u0(x) = f(x), x ∈ S,(8)

we take a constant function V (x) ≡ V > 0, a conservative Markov process
{Wt, t ≥ 0} with values in S having infinitesimal generator A and semigroup
{Tt, t ≥ 0} given by

Ttf(x) := Ex[f(Wt)] =

∫
f(y) qt(x, dy), t ≥ 0, x ∈ S, f ∈ Bb(S),

where {qt(x, dy), t > 0} is a family of transition kernels of {Wt , t ≥ 0}. The
branching law is given by π(x, dµ) = δβδx

(dµ), x ∈ S, where β ≥ 2 is an
integral constant. For f ∈ B(S) we define

wt(µ) = Eµ

[
eSt f̂(Xt)

]
, µ ∈ Nf(S), t ≥ 0,
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where St denotes the “weighted occupation time”

St = V

∫ t

0

∫

S
Xs(dx) ds = V

∫ t

0
Ns ds, t ≥ 0,

Nt being defined as the number of individuals in the population at time t. When
V = 1, St coincides with the time length of the ancestor’s offspring tree up to
time t.

Theorem 1. Let

ut(x) := E x

[
eSt f̂(Xt)

]
, t ≥ 0, x ∈ S.(9)

Then ut is the mild solution of the initial value problem

∂ut(x)

∂t
= Aut(x) + V uβ

t (x), t > 0,(10)

u0 = f, f ∈ B(S).

P r o o f. Let X0 = µ =
∑n

i=1 δxi
be the initial populaton of the branching

system. Then the first branching time σ has exponential distribution of parameter
nV . The law of total probability gives

wt(µ) = e−nV tEµ

[
eSt f̂(Xt)

∣∣∣ σ > t
]

+

∫ t

0
nV e−nV sEµ

[
eSt f̂(Xt)

∣∣∣ σ = s
]

ds.

Given that σ ≥ s, the evolution of the population up to time s follows a stochastic
translation originated by the motions of particles, hence the occupation time
Ss equals

∫ s
0 nV dr = nV s. Noting that any given particle performs the first

branching with probability 1/n, it follows that

wt(µ) = e−nV te
� t

0 nV dr
n∏

i=1

Ttf(xi) +

+V
n∑

i=1

∫ t

0
e−nV se

� s

0 nV drTs

(∫
wt−s(ν)π(·)(dν)

)
(xi)

n∏

l=1,l 6=i

Ttwt−s(xl) ds,

where π(z)(dν) = δβδz
(dν), z ∈ S. Therefore,

wt(µ) =

n∏

i=1

Ttf(xi) + V

n∑

i=1

∫ t

0
Ts

(∫
wt−s(ν)π(·)(dν)

)
(xi)

n∏

l=1,l 6=i

Ttwt−s(xl) ds.

Putting µ = δx and ut(x) := wt(δx) yields

ut(x) = Ttf(x) + V

∫ t

0
Ts

(
uβ

t−s

)
(x) ds, x ∈ S, t ≥ 0,

which is the integral form of (10). �
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4. Existence of global solutions

For any measurable function v : Nf(S) → R+ we define the kernel Ψ by

∫

Nf(S)
v(ν)Ψ(µ, ds dν) = V

n∑

i=1

Ts

(∫
v(ν)π(·)(dν)

)
(xi)

n∏

l=1
l6=i

Tsv(xl) ds,

µ =
n∑

i=1

δxi
∈ Nf(S).

In terms of our branching model, Ψ(µ, ds dν) represents a dynamics in which the
“initial population” µ is transformed into a new one, ν, by a branching at time s
of the ith particle, i = 1, . . . , n. The remaining particles δxl

, l 6= i, do not branch,
but develop independent motions according to the semigroup {Tr, r ≥ 0}.

Let ut(x) be the function defined by (9). Then ût = wt, t ≥ 0, and, for any
f ∈ B(S),

ût(µ) = T̂tf(µ) +

∫ t

0

∫

Nf(Rd)
ût−s(ν)Ψ(µ, ds dν).

Plugging the expression for ût into the integrals of the right-hand side of the
above equality renders

ût(µ) =

∞∑

k=0

uk(t, µ), µ ∈ Nf(S), t ≥ 0,(11)

where u0(t, µ) = T̂tf(µ) and

uk+1(t, µ) =

∫ t

0

∫

Nf(Rd)
uk(t − s, ν)Ψ(µ, ds dν), k = 0, 1, . . . .

Notice that uk(t, µ) = Eµ

[
eSt f̂(Xt);κt = k

]
, k = 0, 1, . . ., where κt denotes the

number of branchings occurred up to time t. Hence, if µ =
∑n

i=1 δxi
,

u1(t, µ) = V

∫ t

0

n∑

i=1

Ts

(∫
T̂t−sf(ν)π(·)(dν)

)
(xi)

n∏

l=1
l6=i

TsT̂t−sf(xl)

≤ V n

n∏

l=1

Ttf(xl)

∫ t

0

(
sup
z∈S

Tsf(z)

)β−1

ds,
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where we have used that T̂rf(δz) = Trf(z), z ∈ S, t ≥ 0. Therefore,

u1(t, µ) ≤ V nT̂tf(µ)

∫ t

0

(
sup
z∈S

Tsf(z)

)β−1

ds, µ =
n∑

i=1

δxi
, t ≥ 0.

Using induction, it can easily be verified that for any k ≥ 1, µ =
∑n

i=1 δxi
and

t ≥ 0,

uk(t, µ) ≤
V k

k!

k−1∏

i=0

(n + i(β − 1))

[∫ t

0

(
sup
z∈S

Tsf(z)

)β−1

ds

]k

T̂tf(µ).(12)

This and (11) yield the following theorem.

Theorem 2. The mild solution ut(x) of Equation (10) satisfies

ut(x) ≤ Ttf(x)

(
1 +

∞∑

k=1

vk(t)

)
, x ∈ S, t ≥ 0,

where

vk(t) =

∏k−1
i=0 (1 + i(β − 1))

k!

[
V

∫ t

0

(
sup
z∈S

Tsf(z)

)β−1

ds

]k

.

In particular, for any f ∈ B(S) satisfying

(β − 1)V

∫ ∞

0

(
sup
z∈S

Tsf(z)

)β−1

ds < 1,(13)

the corresponding solution of (10) is global, and

ut(x) ≤ Const. Ttf(x), x ∈ S, t ≥ 0.

P r o o f. The assertion follows from (12) and the fact that
∑∞

k=1 vk(t) < ∞
uniformly in t ≥ 0 due to (13). �

5. Finite time blowup

Lemma 1. Let K > 0, and let

w̃t(µ) := Eµ

[
eStKNt

]
, t ≥ 0,
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where µ =
∑n

i=1 δxi
∈ Nf(S). Then,

w̃t(µ) = Kn

[
1 +

∞∑

k=1

(
k∏

i=1

(n + (i − 1)(β − 1))

) (
V tKβ−1

)k

k!

]
, n = 1, 2, . . . .

In particular, w̃t(δx) = ∞ for any x ∈ S provided that K ≥
(

1
V t(β−1)

) 1
β−1

.

P r o o f. Notice that both St and Nt are independent of the space variable.
Hence, if µ =

∑n
i=1 δxi

, then

w̃t(µ) = ũt(n) := E

[
eS

(n)
t KN

(n)
t

]
,

where S
(n)
t and N

(n)
t denote, respectively, the quantities St and Nt corresponding

to an initial configuration consisting of n ≥ 1 particles. As before, conditioning
on the first branching time we obtain

E

[
eS

(n)
t KN

(n)
t

]
= e−nV tenV tKn +V

∫ t

0
ds e−nV senV s

n∑

i=1

E

[
eS

(n+β−1)
t−s KN

(n+β−1)
t−s

]
,

namely,

ũt(n) = Kn + nV

∫ t

0
ũs(n + β − 1) ds, n = 1, 2, . . . .(14)

By iteration of (14) we find that ũt(n) admits the series expansion

ũt(n) = u
(0)
t (n) + u

(1)
t (n) + · · · ,(15)

where u
(0)
t (n) = Kn and u

(k+1)
t (n) = nV

∫ t
0 u

(k)
s (n + β − 1) ds, n ≥ 1. Therefore,

ũt(n) = Kn

[
1 +

∞∑

k=1

(
k∏

i=1

(n + (i − 1)(β − 1))

) (
V tKβ−1

)k

k!

]
, n = 1, 2, . . . .

Taking n = 1 in the above expression and using that β ≥ 2, we obtain

E
[
eStKNt

]
≥ K

[
1 +

∞∑

k=1

(β − 1)k−1(k − 1)!

(
V tKβ−1

)k

k!

]

= K

[
1 + V tKβ−1

∞∑

k=1

(
V t(β − 1)Kβ−1

)k−1

k

]
.



Branching representation of a semilinear equations 109

The right-hand side of the last equality is infinite for K ≥
(

1
V t(β−1)

) 1
β−1

. �

Thus, in the absence of motion, Eq. (10) always blows up in finite time if
f ≥ 0 and f 6≡ 0. This follows by a direct verification, or from Lemma 1 and the
fact that

ht ≡ E
[
eStfNt

]
= f + V

∫ t

0
hβ

r dr, t ≥ 0,

is the mild solution of
∂ht

∂t
= V hβ

t , h0 = f,

which blows up at t0 = V (β − 1)−1K1−β provided K := f(x) > 0.

Lemma 2. Let T ≡ {Tt, t ≥ 0} be the offspring tree of an ancestor δx, and
let f ∈ B(S). For any realization τ of T and t ≥ 0,

E x[f̂(Xt) | Tt = τt] ≥ (Ttf(x))N
τt
t ,

where N τ
t denotes the number of individuals at the top of τt.

P r o o f. We use induction over the number of edges of τt. If τt consists of a
single edge, then N τt

t = 1 and

E x

[
f̂ (Xt)

∣∣∣ Tt = τt

]
=

∫
f(y) qt(x, dy) = (Ttf(x))N

τt
t ,

where qt(x, dy), t ≥ 0, are the transition kernels of the particle migration process.
If τt has two or more edges, let t1 < t denote the length of the edge containing
the root, and let τ (1), . . . , τ (β) be the subtrees of τt that stem from the first

branching point of τt. Then we have N τt
t = N

τ
(1)
t−t1

t−t1 + · · · + N
τ
(β)
t−t1

t−t1 , and, using
the branching property, the induction hypothesis and Jensen’s inequality,

E x

[
f̂ (Xt)

∣∣∣ Tt = τt

]

=

∫
E z

[
f̂ (Xt−t1)

∣∣∣ Tt−t1 = τ
(1)
t−t1

]
· · ·E z

[
f̂ (Xt−t1)

∣∣∣ Tt−t1 = τ
(β)
t−t1

]
qt1(x, dz)

≥

∫
(Tt−t1f(z))

N
τ
(1)
t−t1

t−t1 · · · (Tt−t1f(z))
N

τ
(β)
t−t1

t−t1 qt1(x, dz)

=

∫
(Tt−t1f(z))N

τt
t qt1(x, dz)

≥ (Ttf(x))N
τt
t .

�
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Theorem 3. Let ut(x), t ≥ 0, x ∈ S be the mild solution of the Fujita
equation (10), with u0 ≥ 0 bounded and measurable. If for some t > 0 and x ∈ S,

Ttu0(x) ≥ (V t(β − 1))−1/(β−1),

then u blows up at x in finite time.

P r o o f. From Theorem 1 we know that ut(x) = Ex[e
St f̂(Xt)], where

Ex[eSt f̂(Xt)] = Ex[Ex[eSt f̂(Xt) | Tt] ] = Ex[eStEx[f̂(Xt) | Tt] ].

The proof is finished by applying the lemmas 1 and 2. �

6. Global solutions and finite-time blow up of systems of Fujita

equations

In this section we consider systems of semilinear equations. For simplicity, we
restrict ourselves to systems of the form

∂ut

∂t
= A1ut + V1u

β11
t vβ12

t , t > 0,

∂vt

∂t
= A2vt + V2u

β21
t vβ22

t , t > 0,(16)

u0 = f, v0 = g,

where Ai is the generator of a strong Markov process in S with transition semi-
group {T i

t , t ≥ 0}, Vi > 0 and βij ∈ {1, 2, . . .} are constants, i, j = 1, 2, and
f, g ∈ B(S). The probabilistic representation of system (16), as well as its blowup
properties, are derived in a manner similar to the univariate case, employing a
multitype branching population instead of the monotype one that we used in pre-
ceding sections. To be precise, let us consider a population living in S, consisting
of individuals of types 1 and 2. Any individual of type i lives an exponential
lifetime of parameter Vi during which it develops a Markov motion with genera-
tor Ai. At the end of its life it branches, leaving an offspring constituted by βi1

individuals of type 1 and βi2 individuals of type 2. The newborns appear where
the parent individual died and evolve independently in the same fashion.

We denote by Xt the configuration at time t ≥ 0 of the two-type population
described above. Note that Xt takes values in the space Nf(S × {1, 2}) of finite
counting measures on S × {1, 2}, where the first component of a point (x, i) ∈
S × {1, 2} stands for the position, and the second component for the type of an
individual δ(x,i). Recall that

St = V1

∫ t

0
Ns,1 ds + V2

∫ t

0
Ns,2 ds, t ≥ 0,
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represents the (weighted) length of the ancestor’s offspring tree, where Nt,i is
the number of individuals of type i in Xt. We define Nt := Nt,1 + Nt,2, t ≥ 0.

6.1. Existence of global solutions

Theorem 4. Let (ut, vt) be the mild solution of System (16), and let ϕ :
S × {1, 2} → R+ be defined by ϕ(x, 1) = f(x), ϕ(x, 2) = g(x). Then (ut, vt)
admits the representation

ut(x) = Eδ(x,1)

[
eStϕ̂ (Xt)

]
, vt(x) = Eδ(x,2)

[
eStϕ̂ (Xt)

]
, t ≥ 0, x ∈ S.(17)

Moreover, if ϕ is bounded by 1, then the mild solution of (16) satisfies

ut(x) ≤ T 1
t f(x)

(
1 +

∞∑

k=1

vk(t)

)
,

vt(x) ≤ T 2
t g(x)

(
1 +

∞∑

k=1

vk(t)

)
,

where

vk(t) =

∏k−1
i=0 (1 + i(β∗ − 1))

k!

[
V

∫ t

0

(
sup
z∈S

Tsϕ(z)

)β∗−1

ds

]k

,

with V = V1∨V2, β∗ = (β11 +β12)∧(β21+β22), and β∗ = (β11 +β12)∨(β21+β22).
In particular, if ϕ is bounded by 1 and satisfies

(µ∗ − 1)V

∫ ∞

0

(
sup
z∈S

Tsϕ(z)

)µ∗−1

ds < 1,(18)

then the corresponding mild solution of system (16) is global.

P r o o f. The proof of (17) is very similar to that of Theorem 1 and will not be
given here. To prove the remaining assertions let us define the kernels Ψ1 and
Ψ2 by

∫

Nf(S×{1,2})
Ψ1(µ, ds dν)v(ν) = (1 − δn0)V1 ds

n∑

i=1

T 1
s

(∫
v(ν)π(·,1)(dν)

)
(xi)

×
n∏

l=1
l6=i

T 1
s v(xl)

m∏

h=1

T 2
s v(yh),
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∫

Nf(S×{1,2})
Ψ2(µ, ds dν)v(ν) = (1 − δm0)V2 ds

m∑

j=1

T 2
s

(∫
v(ν)π(·,2)(dν)

)
(yj)

×
n∏

l=1

T 1
s v(xl)

m∏

h=1
h6=j

T 2
s v(yh)

for µ =
∑n

i=1 δ(xi,1)+
∑m

j=1 δ(yj ,2) ∈ Nf(S×{1, 2}), where v : Nf(S×{1, 2}) → R+

is measurable and

π(z,i)(dν) := δβi1δ(z,1)+βi2δ(z,2)
(dν), (z, i) ∈ S × {1, 2}.

If µ =
∑n

i=1 δ(xi,1) +
∑m

j=1 δ(yj ,2), then

Eµ

[
eSt ϕ̂ (Xt)

]
=

n∏

i=1

T 1
t f(xi)

m∏

j=1

T 2
t g(yj) +

∫ t

0

∫

Nf(S×{1,2})
Ψ1(µ, ds dν)Eν

[
eSt−sϕ̂ (Xt−s)

]

+

∫ t

0

∫

Nf(S×{1,2})
Ψ2(µ, ds dν)Eν

[
eSt−sϕ̂ (Xt−s)

]
.

Hence, Eµ

[
eStϕ̂ (Xt)

]
can be expanded as Eµ

[
eStϕ̂ (Xt)

]
=
∑∞

k=0 uk(t, µ), where
u0(t, µ) =

∏n
i=1 T 1

t f(xi)
∏m

j=1 T 2
t g(yj), and

uk+1(t, µ) =

∫ t

0

∫

Nf(S×{1,2})
Ψ1(µ, ds dν)uk(t − s, ν)

+

∫ t

0

∫

Nf(S×{1,2})
Ψ2(µ, ds dν)uk(t − s, ν), k = 0, 1, . . . .

Using induction one can prove that for t ≥ 0, µ =
∑n

i=1 δ(xi,1) +
∑m

j=1 δ(yj ,2) and
k = 0, 1, . . . ,

uk(t, µ)≤
V k

k!

k−1∏

i=0

(n+m+i(β∗−1))

[∫ t

0

(
sup
z∈S

Tsϕ(z)

)β∗−1

ds

]k n∏

i=1

T 1
t f(xi)

m∏

j=1

T 2
t g(yj).

From here the proof proceeds as in the monotype case. �

6.2. A sufficient condition for blowup

Let E[n,m] denote expectation when the initial two-type population consists of n
type-1 and m type-2 individuals. We put β1 := β11 + β12, β2 := β21 + β22, and
define

u
[n,m]
t (K) := E[n,m][e

StKNt ], t ≥ 0, K ≥ 0, n,m ∈ {0, 1, . . .}.
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Lemma 3. For any t ≥ 0, K ≥ 0, and n,m ∈ {0, 1, . . .},

u
[n,m]
t (K)≥Kn+m


1 +

∞∑

l=1

(V∗t)
l

l!

∑

(γ1,...,γl)∈{1,2}l

Kθl(γ1,...,γl)
l∏

i=1


ηγi

+

i−1∑

j=1

(βγjγi
− δγjγi

)




 ,

(19)

where θl(γ1, . . . , γl) = (l −
∑l

i=1(γi − 1))(β1 − 1) +
∑l

i=1(γi − 1)(β2 − 1) ,
η1 = n and η2 = m .

The proof of (19) follows closely the method of proof of Lemma 1, and will not
be developed here. The details appear in [8].

Corollary 1. Assume that 2 ≤ β1 ≤ β2 .

(a) If β1 = β2 or β11 ≥ 2 , then E[1,0][e
StKNt ] = ∞ for K ≥ ct

− 1
β1−1 ,

t > 0 .

(b) If β11 = β22 = 0 , then E[1,0][e
StKNt] = ∞ for K ≥ c′t

− 2
β12+β21−2 ,

t > 0 .
Here c y c′ are constants that may depend on βij and V∗ := V1 ∧ V2 but

not on t .

P r o o f. If β1 = β2 consider a monotype population with exponential life-
times of parameter V∗ and branching numbers β := β1. The first assertion in (a)
then follows from the results in Section 5. For the proof of the second assertion
in (a) we use Lemma 3. Indeed, it suffices to keep in the right side of (19) only
those terms Kθl(γ1,...,γl)

∏l
i=1(ηγi

+
∑i−1

j=1(βγjγi
− δγjγi

)) for which (γ1, . . . , γl) is
of the form (1, . . . , 1). Lemma 3 renders

u
[n,m]
t (K) ≥ Kn+m

[
1 +

∞∑

l=1

l∏

i=1

(n + (i − 1)(β11 − 1))
(V∗tK

β1−1)l

l!

]
.

Hence, if t > 0 and K ≥ (V∗t(β11 − 1))
− 1

(β1−1) , then (V∗tK
β1−1)l ≥ 1

(β11−1)l

and therefore

l∏

i=1

(n + (i − 1)(β11 − 1))
(V∗tK

β1−1)l

l!
≥

1

l!

l∏

i=1

(
n

β11 − 1
+ i − 1

)
≥

n

β11 − 1

1

l
.

It follows that for any t > 0 and K ≥ (V∗t(β11 − 1))
− 1

β1−1 , u
[n,m]
t (K) = ∞

for all n ≥ 1 and m ≥ 0. The proof of (b) is similar. �
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The extension of Theorem 3 to systems of equations is more delicate. We are
not aware of a multivariate version of Lemma 2 in the generality of our setting.
For this reason, in the remaining of this section we restrict ourselves to the
particular case S = Rd. Moreover, we assume that the motion process of particles
of type i has transition densities {qi

t(x, y), t > 0}, where qi
t(x, y) = qi

t(x− y) and
qi
t(·) is symmetric unimodal, i = 1, 2. Spherically symmetric stable processes,

and continuous-time random walks with symmetric unimodal jump distributions
meet these assumptions.

Suppose {Xt, t ≥ 0} starts with an ancestor δz and let T = {Tt, t ≥ 0}
denote its offspring tree. For each fixed realization τ of T let us denote by ∂τt

the set of branches of τt , where by a branch we understand a set of edges leading
from the root to an individual in the top of τt . Notice that the edges of τ are
of types 1 and 2; we denote by e the type of edge e. For any branch bt ∈ ∂τt let
{W x,bt

s , 0 ≤ s ≤ t} be the process starting in x ∈ Rd which follows the motion

with generator Ae along the edge e of bt, where W x,bt
· , bt ∈ ∂τt, are assumed to

be independent. We denote by {X τ,x
t , t ≥ 0} the branching population in Rd

indexed by τ , starting with an ancestor at position x ∈ Rd, and whose individuals
follow the motion of generator Ae along the edge e of τ . Using induction on the
number of edges of τ and our assumptions on {qi

t(x − y), t > 0}, one can show
that for any symmetric and unimodal f ∈ B(Rd), the function

x → E[f̂(Xτ,x
t )], x ∈ Rd,

is symmetric and unimodal as well. Since the convolution of symmetric unimodal
functions is again symmetric and unimodal (see [10], page 98), similarly as in the
proof of Lemma 2 it follows that

Lemma 4. For any symmetric unimodal f ∈ B(Rd) and any realization τ of
T ,

E

[
f̂ (Xτ,x

t )
]
≥
∏

bt∈∂τt

E

[
f
(
W x,bt

t

)]
, x ∈ Rd, t ≥ 0.

Therefore E[1,0]

[
eSt f̂

(
XT ,x

t

)]
= E[1,0]

[
eStE[1,0]

[
f̂
(
XT ,x

t

)∣∣∣ T
]]

≥ E[1,0]

[
eStKNt

]
.

This renders the following result.

Proposition 1. Let {W 1
t , t ≥ 0} and {W 2

t , t ≥ 0} be independent processes
in Rd with generators A1 and A2 respectively, both initiating in the origin. Let
f ∈ B(Rd) be symmetric and unimodal. If for some x ∈ Rd and t > 0 the number

K := inf
0≤r≤t

E
[
f(x + W 1

r + W 2
t−r)

]
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satisfies the conditions of Corollary 1 (a) or (b), then E[1,0]

[
eSt f̂

(
XT ,x

t

)]
= ∞ .

A criterion for blowup of System (16), similar to Theorem 3, can be proved
provided the initial values in (16) satisfy f ∧ g ≥ h, where h 6≡ 0 is nonnegative,
symmetric and unimodal. Alternatively, if in addition to our assumptions on the
transition densities {qi

t(x − y), t > 0} we suppose that qi
t(·) is strictly positive

and continuous for each t > 0, i = 1, 2, then there exist t0 > 0 such that f ∧ g
is bounded from below on the unit ball by a positive constant k. Restarting
the system at time t0 if necessary, we can assume f ∧ f ≥ k1B1(0) := h, where

B1(0) ⊂ Rd denotes the unit ball centered at the origin. This, combined with
Proposition 1 proves the following theorem.

Theorem 5. Suppose that for any ball B ⊂ Rd centered at the origin, the
number K := inf0≤r≤t P

[
W 1

r + W 2
t−r ∈ B

]
satisfies the conditions of Corollary 1

(a) or (b), where {W 1
t , t ≥ 0} and {W 2

t , t ≥ 0} denote independent processes in
Rd with generators A1 and A2 respectively, with W 1

0 = W 2
0 = 0. If the transition

densities {qi
t, t ≥ 0} of {W i

t , t ≥ 0} satisfy

(a) qi
t(x, y) = qi

t(x − y), x, y ∈ Rd, and qi
t(·) is symmetric unimodal,

(b) qi
t(·) is contiuous and satisfies qi

t(x) > 0, x ∈ Rd

for i = 1, 2 and all t > 0, then the mild solution of System (16) blows up in finite
time for all initial values (f, g) satisfying f(x) ≥ k1 1B(x), g(x) ≥ k2 1B′(x),
x ∈ Rd, for some constants k1, k2 > 0 and balls B,B ′ ⊂ Rd.

7. Blow up of the Dirichlet boundary value problem

In this section we are interested in blowup of mild solutions of the Dirichlet
boundary value problem

∂u

∂t
= ∆u + V uβ , t > 0, u(0, x) = f(x), x ∈ G, u|∂G ≡ 0,(20)

where G ⊂ Rd is a bounded domain. Let B ≡ (Bt) be the Brownian motion in Rd

with variance parameter two, and let {Tt, t ≥ 0} denote the strongly continuous
semigroup in L2(G) corresponding to the process B killed at τ := inf{t > 0|Bt ∈
∂G}. Suppose that G is regular in the sense that B hits the complement of G
immediately after time zero when started from any point in ∂G. Then one can
show that the semigroup {Tt, t ≥ 0} is strongly continuous in the space C0(G)
of continuous functions on G vanishing at ∂G.
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Let {ϕn}
∞
n=0 ⊂ C0(G) and 0 < λ0 < λ1 ≤ · · · be the nontrivial solutions of

the eigenvalue problem

∆ϕ(x) + λϕ(x) = 0, x ∈ G, ϕ(x) = 0, x ∈ ∂G,

where ϕn is normalized by ‖ϕn‖2 = 1 (here ‖ · ‖p stands for the norm in Lp). It
is well known that the eigenvalue λ0 has multiplicity one and that the function
ϕ0 is strictly positive on G. Moreover, for any t > 0 and any f ∈ C0(G),

Ttf(x) =

∞∑

n=0

e−λntϕn(x)

∫

G
f(y)ϕn(y) dy, t > 0, x ∈ G.(21)

We say that (Tt) is intrinsically ultracontractive (IUC) provided that for all
t > 0 there exists a positive constant ct such that

|Ttf(x)| ≤ ct‖f‖2ϕ0(x), x ∈ G, f ∈ C0(G).(22)

The following assertions have been proved in [2].

Proposition 2. If G obeys both an exterior and an interior cone conditions,
then G is regular and (Tt) is IUC.

In [1] it is proved that the IUC property holds for a large class of domains G.
The following theorem, where V > 0 and β > 1 are constants, is proved in [7].

Theorem 6. Assume that {Tt, t ≥ 0} is IUC and let f ∈ C0(G) be nonneg-
ative. If

〈f, ϕ0〉L2
>

(
λ0

V

)1/(β−1)

‖ϕ0‖1,(23)

then the mild solution u(t, x) of (20) blows up in finite time.

A probabilistic interpretation of blowup of mild solutions of (20) is as follows.
Let

Qtg(x) = eλ0tϕ−1
0 (x)Tt(gϕ0)(x), x ∈ G, g ∈ Cb(G).

Then {Qt, t ≥ 0} is a strongly continuous contraction semigroup on Cb(G) having
ϕ2

0(x) dx as its (unique) invariant measure. In fact, for any g ∈ Cb(G) and
f ≡ gϕ0,

sup
x∈G

|Qtg(x) − g(x)| ≤
∞∑

n=1

(
1 − e−(λn−λ0)t

)
sup
x∈G

∣∣∣∣
ϕn(x)

ϕ0(x)

∣∣∣∣ |〈f, ϕn〉|
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by (21), and the series in the last inequality goes to 0 as t ↓ 0 due to IUC of
{Tt, t ≥ 0}. The generator H of {Qt, t ≥ 0} is given by

Hg = ϕ−1
0 (∆G + λ0)(gϕ0), g ∈ Dom(H) := {g ∈ Cb(G) : gϕ0 ∈ Dom(∆G)},

where ∆G is the generator of the killed Brownian motion. From the self-adjoint-
ness of ∆G it follows that

∫
Hg(x)ϕ(x)20 dx = 0 for each g ∈ Dom(H), which yields

the Qt-invariance of ϕ2(x) dx. Writing E[g] :=
∫

g(x)ϕ2
0(x) dx, we conclude that

E[Qtg] = E[g], t ≥ 0, g ∈ Cb(G).
We define

w(t, x) = eλ0t u(t, x)

ϕ0(x)
and z(t, x) = e−λ0tϕ0(x), x ∈ G, t ≥ 0,(24)

where

u(t) = Ttf + V

∫ t

0
Tsu(t − s)β ds, t ≥ 0,(25)

is the mild solution of (20). Multiplying both sides of (25) by ϕ−1
0 (x)eλ0t yields

w(t, x) = Qtg(x) + V

∫ t

0
Qsw(t − s, ·)βz(t − s, ·)β−1(x) ds, x ∈ G, t ≥ 0.(26)

If β > 1 is an integer it is possible to represent the solution of Equation (26)
as an expectation functional of a related branching particle system, similarly as
we did in theorems 1 and 4. Indeed, consider a two-type population in G with
the individuals evolving independently in the following way: a particle of type 1
lives an exponential lifetime of mean 1/V during which it moves according to the
semigroup {Qt, t ≥ 0}. At the end of its life it branches producing β individuals
of type 1 and β − 1 individuals of type 2, all appearing at the mother’s death
position. The particles of type 2 develop independent killed Brownian motions
and do not branch. For i = 1, 2, let Xx

t,i denote the random finite point measure
on G representing the population of type-i individuals present at time t ≥ 0,
starting with an ancestor of type 1 at position x ∈ G. Then the solution w(t, x)
of (26) is given by

w(t, x) = E


eSx

t

∏

z∈supp(Xx
t,1)

g(z)
∏

z∈supp(Xx
t,2)

ϕ0(z)


 , t ≥ 0, x ∈ G,(27)

where V −1Sx
t =:

∫ t
0

∫
Xx

s,i(dy) ds represents the total time length of the family

tree of type 1 up to time t. Since ϕ2
0(x) dx is the invariant measure of {Qt, t ≥ 0},
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if ϕ0 decays sufficiently fast near ∂G and the points x ∈ G for which g(x) ≡
f(x)/ϕ0(x) is large lie on regions where ϕ2

0(x) dx puts little mass (equivalently,
if 〈f, ϕ0〉 is small), then the decay of

∏
z∈suppXx

t,2
ϕ0(z) when t → ∞ is able to

counteract the contribution of the factor eSx
t
∏

z∈suppXx
t,1

g(z) to the expectation

in (27), thus preventing blowup of w(t) and hence of u(t).
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Centro de Investigación en Matemáticas
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