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The main problem of this European wine project (WINE-DB) is the identifi-

cation of the geographical origin based on chemico-analytical measurements.
At first the type of data collected in preparation of this project will be anal-
ysed.

Then different procedures of Discriminant analysis are described. Our
special attention will be focused to some new techniques as Support Vector
Mashines (also known as Kernel Mashines) — procedures from the field of
Mashine Learning.

We test traditional techniques of Linear, Quadratic and Nonparametric
Discriminant Analysis as well as the Support Vector Mashines on the base
of our data and comment the results.

1. Introduction

The wine controlling authorities often are confronted with products which are not
correctly marked with regard to their origin, vintages and quality parameters.
In order to discover such adulterations of wines, the identification of their
correct geographical origin is of great interest to wine consumers and producers.
Consequently diverse wines were measured and the possibility of recognition
had to be tested statistically.
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2. Description of data

East European wines
The first data set consisted of 144 different wine samples from five East European
countries and 82 analytical parameters. The data were analysed by methods
of variance, correlation, factor and discriminant analysis [Romisch et al., 2001],
[Rémisch et al., 2002].

Most of the data (80%) were lognormally distributed, they were transformed.
The others could be assumed as normally distributed.

The number of missing values was partially high — only for 21% of observations
all variables were measured. These missing values were filled with within groups
means.

Some variables and cases were to be deleted:
e Variables which were calculated from other variables (6 var.),

e Variables without significant mean differences between the countries (Vari-
ance Analysis, Multiple Box- and Whisker Plots and Multiple Comparisons)
(21 var.),

e Variables which were highly correlated with others (Correlation and Factor
Analysis) (11 var.) and

e Variables which were considered not so important by the wine specialists
(13 var.).

e Some wines were to be deleted from the data matrix which were outside
the quality standards (outliers) (10 wine samples).

In this way the data matrix could be reduced to 33 variables and to 134 wine
samples.

On the base of this data set, 96 % of the wines could be classified correctly
by a linear discriminant analysis model with 17 variables. The models for red
and white wines were different and of less stability.

The goodness of the discriminant model was tested by a new data set of ten
wines. Eight of these wines could be classified correctly by the obtained model.
Subsequently all wine data were used to fit a new discriminant model with 19
variables and a correct classification rate of 94 %.

Finally we came to a total data set consisting of 144 wines (73 red, 62 white
and 9 rosé wines) with 33 variables from 5 countries: Bulgaria (38), Romania (28),
Hungary(39), Macedonia (29) and Moldova (10). This set was used to compare
different methods of Discriminant Analysis.
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”Oversea” wines
The ”Oversea” data set consisted of 140 wines from 5 countries with 77 analytical
variables.

This set was without missing data. The data set was reduced and transformed
in the same way as in the case of East European wines described. The resulted
set consisted of 137 wines (89 red, 47 white and 1 rosé) from California (25),
South Africa (28), Australia (28), Chile (28), Argentina (28).

This set likewise was used in the comparison of methods for discrimination.

3. Traditional Methods of DA

Here a short overview of older and well known methods working in the space of
parameters will be given.

3.1. Linear and Quadratic DA

Linear and Quadratic methods are based on the assumption of Gauss distribution
for the observed continuous variables. In [D. Vandev, 2003] a short overview
about these methods as well as a description of the program used in our tests can
be found.

3.2. Nonparametric DA
If the distributions of the observed varibles are not of Gauss type the densities
can be estimated by nonparametric methods.

Indeed, recently much attention has been concentrated on the application
of nonparametric methods in classification problems, including methods such as
neural networks (Ripley, 1994), classification and regression trees (Breiman et
al., 1984), flexible discriminant analysis (Hastie, Tibshirani and Buja (1994))
and multivariate adaptive regression splines (Friedman (1991)).

3.3. Independent Component Discriminant Analysis

[Amato et al., 2002, Alfano et al., 2002] proposed so called ICDA — a nonpara-
metric discriminant analysis method that is a simple generalization of the model
assumed by linear and quadratic discriminant analysis. This generalization re-
lies upon a transformation of the data based on independent component analysis
(ICA), a statistical method for transforming an observed multivariate vector into
components that are stochastically as independent as possible from each other.
ICA was proposed in [Hyvérinen, 1997] and an algorithm in [Hyvérinen, 1999].
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4. Features space

This section (see [Navarrete and del Solar, 2002]) is focused on the so called fea-
tures space and methods connected with its use.

4.1. Kernels approach and features space

The set of vectors 1, ...,Z, € R", (our observations) is mapped into a feature
space F' by a set of functions {®;(Z),j = 1,..., M}. One considers such functions
that are eigenfunctions of a given kernel (i.e. satisfy the Mercer’s condition).

We suppose that M > p. That means that the number of parameters should
increase. In fact, this is an important purpose of kernel machines in order to give
a good generalization ability to the system [Vapnik, 1995].

In the most cases, the dimensionality of the feature space, M = dim(F), is
prohibitive for computational purposes, and it could be even infinite. For this
reason, any vector or matrix that have at least one of its dimensions equals to
M, is said to be uncomputable. Otherwise the vector or matrix is said to be
computable.

The aim of kernel machines is to work with a set of mapped vectors: ®(z;).
Denote the matrix composed by them ® = {®(&),...,P(Z,)}. Then the corre-
lation matrix of vectors ® is defined as:

1
n—1

(1) R= il

The Fundamental Correlation Problem (FCP) for the matrix R consists in
solving the eigensystem:

(2) Rwy, = Mpwg,  ||wgl| =1, k=1,...,M.

However, R is an uncomputable matrix and then (2) cannot be solved. In this
situation we need to introduce the Dual form of the Fundamental Correlation
Problem for R:

(3) K'I}kZAkvk, Hka:L k=1,...,n,
where K is the so called kernel matrix:
I
(4) K= o0,
n—1

This can be shown by pre-multiplying (3) by ®, and using (4).
The kernel function k(Z,Z’) specifies an inner product in the feature space

O(2).0(2) = k(T, 7).
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If we want to compute the solutions for which Ay > 0,k = 1, ..., we can go
further and write the expression:
(5) L o, k=1
w = ———=duy, =1,...,q.
k SVICESEY k q

It can be seen that the solution of a general kind of kernel machines can be
rewritten in terms of K. That is why this property is called Fundamental Kernel
Matrix (FKM).

Dual FCP (2) is also an ill-posed problem that requires some kind of regu-
larization as well. For the same reason the eigenvalues of R will decay gradually
to zero, and then we need some criterion in order to determine q. An appropri-
ate criterion is to choose g such that the sum of the unused eigenvalues is less
than some fixed percentage (e.g. 5%) of the sum of the entire set (residual mean
square error). Then, using (5), the set of primal eigenvectors R W € MM*4 can
be written as:

(6) g

VA2
n—1 ’

where the matrix V' and the diagonal matrix A are g-truncated.

4.2. Support Vector Classification
The support vector machine [Boser et al., 1992, Cortes and Vapnik, 1995], given
labelled training data

D= {(Z,y)}l,, TZieXCRY ye¥={-1+1}

constructs a maximal margin linear classifier in a high dimensional feature space,
& (%), defined by a positive definite kernel function. A common kernel is the
Gauss radial basis function (RBF),

k@), By) = e IB-BI/207,
The function implemented by a support vector machine is given by

(7) f(@) = {Z aiyik(fiaf)} —b.
i=1

That is: if we consider the two classes [ = {i:y; =1} and I = {i:y; = —1}
the equation (7) may be rewritten as definition of two functions (”densities”):

f](f) = {Z Ozlk(.’fz, f)}

iel
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fj(f) = Z Ozik(fi, f)
i€l
Thus the problem is similar to nonparametric DA. The observation is classified
into the class with higher ”density”.
To find the optimal coefficients @ of the expansion (7), it is sufficient to
maximise the functional

" - 1< -
(8) W(a) = Zai — 5 Z yiyjaiajk(azi,a:j)
i=1 i,j=1
in the non-negative quadrant 0 < a; < C,i =1,...,n, subject to the constraint

Yoimq aqy; = 0. C'is aregularisation parameter, controlling a compromise between
maximising the margin and minimising the number of training set errors.

Note that in general only a limited number of Lagrange multipliers & will
have non-zero values; the corresponding input patterns are known as support
vectors. Let Z be the sets of indices of patterns corresponding to non-zero La-
grange multipliers,

I={i:0<a)<C}.

Equation (7) then can be written as an expansion over support vectors,

o) 1@ = { Skt | -t

i€l
For a full exposition of the support vector method, see any of the excellent books
[Vapnik, 1995, Vapnik, 1998, Cristianini and Shawe-Taylor, 2000].

4.3. Multiclass Strategies in SVM
For the multiclass discriminant analysis problems the two—class solution given
above has to be extended.

e One-against-all: The earliest used implementation for SVM multiclass clas-
sication is probably the one-against-all method (e.g.
[Bottou et al., 1994]). It constructs G SVM models where G is the number
of classes. The i-th SVM is trained with all samples in the i-th class with
positive labels and all samples with negative labels.

e One-against-one: For each pair of classes ¢ and j a classification model is
created. Then for the test sample the class with the largest number of votes
wins.
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Table 1: Comparision of discriminant analysis models of East European wine data by

Interactive Stepwise Discriminant Analysis (Program: ldagui)

Models for all wines

Models for red wines

Models for white wines

@ 0 .012  .081 .081 .105 | O 0 322 .322 | O 0 .058  .058
No. of variables 33 19 17 15 14 11 15 7 12 11 14 7 11
Histamine x X X

Ethanolamine x x x x

Ethylamine x x

Tyramine x x b'q b'q b'q

Phenylethylamine x x x x X x x
Putrescine x x x x x

Cadaverine x x x x x x x x x x

Alkalinity x x x x

K x X 'S X X
Na x x x x X x x x x

Ca x

Y x x x x x x x
Ce x x X X X

Nd x x

Eu x x

Yb x x

Er x 'S X

Tb x x x X
Ethanol (D/H)I X X x x x x

Ethanol (D/H)II x x x x x x x x

Ethanol ¢3C x X x x

Wine ¢80 x X x x x X x X x
Ethanol(D/H)I (af) X x x X X X x
Ethanol(D/H)II (af) | x x x x x
Ethanol o'3C (af) x X x x x x x x
Alcohol x X x x x

Invert sugar x x x x x x x x x
Free SO2 x X x x X X

Total acidity x x X
L-Malic acid x x X x x x x

Phosphate x x X X x x x x X X x x
Butanediol x x x x x x x
Gluconic acid X X X X X x x

Classification (%) 4.17 0 0 0 0 0 0 0 0 0 0 0
Test error (%) 1.9 0.6 0.9 2.24 1.84 3.02 1.06 7.42 1.46 2.28 1.12 3.78 0.72
Leave one out (%) 631 34 25 25 43 56 12 23 15 32 11 43 29

5.

Software used
e LDAgui for Linear and Quadratic DA (LQDA) , [D. Vandev, 2003]

o Generalised DA (GDA) [Baudat and Anouar, 2000] using PCA in the fea-

ture space.
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e Support Vector Machine Toolbox (SVM) with renewed QP optimizer
[Gunn, 1998]

e LS-SVM Library (LSVM) [Chang and Lin, 2001] with One-To-One stra-
tegy for combining outputs of binary classifying.

6. Results and conclusion

We present in Table 1 several models obtained using QLDA implemented in
[D. Vandev, 2003]. The parameter o was chosen by hand so that all models have
0 errors when applied to the training data sets. The theoretical error is estimated
using large (6000 by group) simulated according the model data sample. The
Leave-One-Out (L-O-0O) error was obtained as proportion (in %) of all errors to
the size of training sample.

All programs were feed with exactly the same training and test data sets.
While QLDA has 4-5% — errors over the test set, they achieved a minimum

Table 2: Comparision of discriminant analysis models of ”Oversea” wine data by
Interactive Stepwise Discriminant Analysis (Program: ldagui)

Models for all wines Models for red wines Models for white wines
« 0 0 .215 0 0 .684 .684 0 0 .405 .405
No. of variables 11 14 8 8 9 6 8 6 8 5 9
Ethanol (D/H)I x x x x x x x x x
Ethanol (D/H)II x x x
Ethanol o3C X X x x
Wine o180 X x
Histamine x x
Ethylamine b'q b'q
Phenylethylamine
K x x X
Na x x x x x x x x x x
Mg 'S x x
Y x
Alcohol x x x
Total extract x x x
Invert sugar
Total acid x x x
Sulfate x x x
Chloride x x x x x x x x x x
Butanediol x x x x x
Tartaric acid X x
Shikimi acid x
Nitrate x x X x x x
Propanol-1 x X X X X X
Classification (%) .73 0 0 0 0 0 0 0 0 0 0
Test error (%) 2,32 1,48 1,16 .88 .6 2,02 .88 2,7 1,16 2,88 .56
Leave one out (%) 142 14,6 4 27 2 2 1 8 10 14 6
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of 17%. The reason for such unexpectedly bad result may be in the fact that the
test sets were generated with a model exactly the same as the model produced
by QLDA.

The pure LDA and QDA behave better especially in the case of well bal-
anced second data set. However, the number of parameters needed to achieve 0%
classification error is bigger.
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