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ON  T H E  S T R O N G  A S Y M P T O T IC  B EH A V IO R  O F  A SY M P T O T IC A L L Y  

N O N E X P A N S IV E  S E M I-G R O U P S  IN BA N A C H  S PA C E S

ISAO M1YADERA

Dedicated to the late Y. A. Tagamlitzki

1. I n t r o d u c t io n .  Throughout this paper X  denotes a uniformly convex 
Banach space and С is a nonempty closed subset of X. Let f  be an unbounded 
subset of [0, oo) satisfying

(1.1) t + s ^ J  for every t t s i j  
and

(1.2) t - s t J  for every t, J with t > s .
A family {T(t): t^ j)  of T(t) : C—*C is called an a s y m p t o t i c a l l y  

n о n e X p a n s i V e s e m i - g r o u p  on C, if

1.3) T(t+s)== T(t)T(s) for every t , s ^ j

and there exists a function a(∙): /-*[0, co) with lim/_*ooa(^)= 1 such that

(1.4) ' II T(t)x— T(t)y \\≤a(t) У л:—у  || for every x , y \ C  and t£J.
In particular, if a(t)≡≡ 1, then { T(t): t^J)  is called a n o n e x p a n s i v e  s e m i ­
g r o u p  on C. The set of fixed points of {T(t): t^J)  will be denoted by F
i. e. F={x( ;C :  T(t)x =  x  for every t {J} .

The purpose of this note is to investigate the strong convergence of 
T(t)x (x£C)  as t — >oo. The main result is stated as follows.

T h e o r e m  1. Let {T(t)\ t^J} be an asymptotically nonexpansvpe semi­
group on С and let x^C- Then the conditions (i) and (ii) are equivalent:

(i) T(t)x,t(;Jt converges strongly as t—+ oo.

(ii) lim^ooll T(t-\-h)x— T(t)x\\ = 0  for  every h i  J and there exists a
x0(;F such that

(1.5) lim inf/,5-*oo(lim inf/^∞l\T(t +  h)x-\- T(s-[-h)x—2x0\\)
≤ l im  inf/^ооЦГ^) x-\- T(s)x—2x0\\.

As a direct consequence of Theorem 1 we obtain the following theorem 
which has been proved by Taniguti, Takahashi and Abe [3].

T h e o r e m  2. Let { T(t) :  t i j )  be an asymptotically nonexpansive semi­
group on С and let x^C. Suppose that

(aj) there exist x0(;F, <p(Cn  [0,. oo), \|/(C[0, oo) and a nonnegative func­
tion b defined on J with lirn^oo b(h)= 1 such that

Ф(|| T (h )u + T (h )v ~ 2 x 0 \)≤y{b{k)\\u +  v —2x0\\)

+  Vv{b(h) II u—x0 II)—v(|| T(h)u—x0 ||)-Ьу(6(й)'|| v —x 01|)—v|/(|| T(h)v x01|) ] 
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tor every uy v i { T ( t ) x :  t^J} and h^Jt where c „ [ 0 .  oo) denotes the set of 
increasing continuous functions defined on [0, со), and

(a2) lim/_»oo|| T(t +  h )x— Г(фе|| =  0 for every h^J.

Then T(t )xy t£J, converges strongly as t—+oo (to an element of F). 
R e m a r k s .  1) Suppose that T :  C—+C is nonexpansive, 0 £ С, Г0 =  0 and 

there is a c > 0  such that >

(1.6) \\Tu+Tv\\*^\\u +  v\\s +  C(\\u\\*--\\ 7^|i»+||«r||— II 7^||2)

for every u, v^C. Then, the nonexpansive semi-group {T n: n ≈  1, 2 . . . }  satis­
fies condition (ax) in Theorem 2 with л;0 =  0, ф(£) =  £9, \\i(t) — ct2 and b(ri)≡≡ 1. 
Condition (1.6) has been considered in [2], and note that (1.6) with c =  0 is 
satisfied, if T  is odd, i. e. C ≈ —C and T (—u )=  — Tu for u^C.

2) See [3] for applications of Theorem 2.
2. P r o o f s  o f  t h e  T h e o r e m s .  We start with the
P r o o f  o f  T h e o r e m  1. First, suppose that (/) holds. Let lim/-*«, T(t)x =  u. 

By \\T(t-\-s)x— T(s)u\\≤a(s)\\T(t)x—u\\% we obtain that T{s)u =  u for every 
i. e. u^F  so that /74=0. Clearly, lim/.*«, || T{t-\-h)x— T{t)x || =  0 for every 

h \ j  and (1.5) is satisfied for every x 0 ^F.
Next, suppose that (it) holds. We note that | T (t )x—x Q\\ is convergent as 

t-+oo* In fact, II T ( t + h )x —x о\\≈\T(h)T(t)x— T(h)x0 \\≤a(h)\\ T ( t ) x - x 0\\. Letting 
h —> oo, we have

lim sup/_»oo II T (t )x— x 0 (I ≈  lim sup*.»«*, || T(t +  k )x—x 0 1|≤|| T(t)x—x 0\\

for every t^ J  and hence, lim sup/_»oo || T{t )x—x 0 1| ≤ l im  inf/-»« || T(£)x—лг0Ц.
Set d =  lim/_*∞ || Г(£)лг—x 0 l|. Now

(2.1) 2 II T{t +  h )x—x0\\≤\ T(t +  h ) x - T ( s  +  h)x |j +  || T ( t + h )x +  T (s +  h) x - 2 x 0 1|

for every t , s and h in J. Since

lim/,.,« у T ( t+ h )x — T(s -\-h)x || =  0 for every t , s £j

(by the assumption lim/-»«, \[ T(t +  h )x— T(t)x || =  0 for h^J)y by taking the lim inf 
as h—+oо in (2.1) we obtain

2 < ^ l im  in f*-,«  II T(t +  h ) x+  T(s +  h)x—2x01| fo r every U s i J .

Hence, by (1.5) \
\, .

2rf≤ lim  inf/,5-400 И T ( t ) x +  T(s)x—2x 0 ||<£lim sup/,*.*« || T(t)x-\- T(s)x—2x 0 || 

'<lini/,5-»oo [|| T( t )x—x 0 \-h|| T(s)x—x 0 \ \ ] ≈ 2d.

Consequently,

lim/,s-*oo II (T ( t )x—x 0 ) 4-(T(s)x— x0) || =  2d.

So, by uniform convexity of X  and lim/_»oo || T (t )x—x 0 || =  d, we have

lim/.^oo у T (t )x— T(s) X И ≈lim/,5-,oo II ( T ( t ) x - x 0 ) - ( T ( s ) x - x 0) j =0 .

Hence, T(t)x  converges strongly as t—>oo. This completes the proof.
P r o o f  o f  T h e o r e m  2. It is sufficient to show that (1.5) is satisfied. 

It follows from (aA) that

<P(|| T ( t + h )x +  T ( s + k )x - 2 x 0 II )≤<p(b(h) II T (t )x +  T (s )x -2 x 0 1|)
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+  [v(6(A) И T ( t ) x - x о ||)-v( И T(t +  h )x—x 0 1|) +  ≠b (h )  II T(s)x—x 0 ||)

—V(|| T(s +  h )x— x 0 II)]

for every t, s and h in J. As shown in the proof of Theorem 1, || T (t )x—x 0 || 
is convergent as t - * oo. Set lim/_*∞|| T (t )x—л ;0 1 =d. Letting h->co in the 
inequality above, we have

(2.2) <p(lim inf/,_„ || T{t +  h)x-\- T(s +  h)x—2xü ||)<<p(|| T(t)x-}~ T(s)x—2x0 Ц)

+  M I I  T( t )x -X о ID— 1| /(d )-m k  II T (s )x -x 0 II)-v(d)]  

for every t , Now, by taking the lim inf as t , s-г-юо in (2.2), we obtain

<p(lim i n f / , ( l i m  inf/*-*«*, || T ( t+h)x+  T(s-\-h)x—2x0 ||))
≤ lim  inf /.j-,«, ф(!| T (s )x—2x0\\) =  <p(lim inf,,*_♦«> || T (t )x +  T (s)x—2x0 1|).

Therefore,
lim inf^oo(lim inf^oo [| T(t +  h )x 4- T(s +  h )x—2x0 1| )

≤[\m inf/f5_oo|| T(t)x-j-T (s)x— 2^0 II,

. e. (1.5) is satisfied. This completes the proof.
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