Provided for non-commercial research and educational use.

 Not for reproduction, distribution or commercial use.
PLISKA
 STUDIA MATHEMATICA BULGARICA

 ПЛИСКА БЪЛГАРСКИ МАТЕМАТИЧЕСКИ СТУДИИThe attached copy is furnished for non-commercial research and education use only. Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to third party websites are prohibited.

For further information on
Pliska Studia Mathematica Bulgarica
visit the website of the journal http://www.math.bas.bg/~pliska/
or contact: Editorial Office
Pliska Studia Mathematica Bulgarica
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: pliska@math.bas.bg

ON GENERALIZED ORLICZ SEQUENCE SPACES OF FOURIER COEFFICIENTS FOR TRIGONOMETRIC GAP SERIES. I

J. MUSIELAK

To the memory of
Y. A. Tagamlitzki

Abstract

We investigate the operator associating with a function $f \in L_{2 \pi}^{p}, 1<p \leq 2$, the sequence of Fourier cocfficients of f with respect to a trigonometric gap system, as well as an operator from a modular space $X_{\rho_{s}}{ }_{(\varphi)}$ to the generalized Orlicz sequence space l^{φ}.

1. Let $\left(n_{k}\right)$ be an increasing sequence of positive integers. We take an increasing function $l(x), x \geqq 0$ such that $l(k)=n_{k}$ for $k=1,2, \ldots$, and we denote by $m(x)$ the inverse function of l. We write $A_{v}=\left\{k \in N: 2^{v-1} \pi \leq n_{k}<2^{v} \pi\right\}$, $v=1,2,3, \ldots$, and we put $k_{0}=[m(\pi)]+1$, where $[x]$ denotes the integer part of x. Then, $n_{k_{0}}$ is the least integer in A_{1}. Let $\left|A_{v}\right|$ be the number of elements of A_{v}; then, $\left|A_{v}\right|<\left[m\left(2^{v} \pi\right)-m\left(2^{v-1} \pi\right)\right]+1=N_{v}$ for $v \in N$.

Let

$$
\sum_{k=1}^{\infty}\left(a_{k}(f) \cos n_{k} x+b_{k}(f) \sin n_{k} x\right)
$$

be the Fourier series of a function $f \in L_{2 \pi}^{p}, 1<p \leq 2$, with respect to the trigonometric gap system $\cos n_{1} x, \sin n_{1} x, \cos n_{2} x, \sin n_{2} x, \ldots$ in $\langle 0,2 \pi\rangle$. With every $f \in L_{2 \pi}^{p}$ we associate the sequence $c(f)=a_{k_{0}}(f), b_{k_{0}}(f), a_{k_{0}+1}(f), b_{k_{0}+1}(f), \ldots$ with some fixed index k_{0}. We shall investigate the linear operator $c: f \rightarrow c(f)$ as an operator from some modular space $X_{\rho_{\varphi}}^{(s)}$ to a generalized Orlicz sequence space l^{φ}, generated by a sequence $\varphi=\left(\varphi_{n}\right)_{n=1}^{\infty}$ of φ-functions φ_{n} (for the tet. minology, see [2]), i. e. the space of sequences $c=\left(c_{k}\right)_{k=k_{0}}^{\infty}$ such that $\rho(\lambda c)$ $=\Sigma_{n} \varphi_{n}\left(\lambda\left|c_{n}\right|\right)<\infty$ for a $\lambda>0$.

The following assumptions on the sequence φ will be fundamental.
A.1. There exists a constant $C \geqq 1$ and a sequence of integers $(m(v))$ with $m(v) \in A_{v}$ such that $\varphi_{v}(u) \leqq C \varphi_{m(v)}(u)$ for $u \geq 0$ and $v \in A_{v}$;
A.2. The functions $\overline{\varphi_{n}}(u)=\varphi_{n}\left(u^{1 / q}\right), u \geq 0$, where $1 / p+1 / q=1$, are concave-

Let us remark that A. 1 is certainly satisfied, if $\left(\varphi_{n}(u)\right)_{n=1}^{\infty}$ is an increasing (decreasing) sequence for all $u \geq 0$. Moreover, it is easily observed that if φ satisfies A.2, then

$$
\begin{equation*}
\varphi_{n}(2 u) \leq 2^{1 / q} \varphi_{n}(u) \text { for } u \geq 0, n \in N . \tag{*}
\end{equation*}
$$

In the following, we denote by ω_{p} the p-th modulus of continuity of f in $L_{2 \pi}^{p}$, i. e.

$$
\omega_{p}(f, \delta)=\sup _{|h| \leq \delta}\left(\int_{0}^{2 \pi}|f(x+h)-f(x)|^{p} d x\right)^{1 / p}
$$

PLISKA Studia mathematica bulgarica, Vol. 11, 1991, p. 57-60.
2. We prove now the following:

Theorem 1. Let $\varphi=\left(\varphi_{n}\right)_{n=1}^{\infty}$, satisfy A.1 and A.2. Then, for every $f \in L_{2 \pi}^{p}, 1<p \leq 2$, there holds the inequality

$$
\rho(c(f)) \leq \sum_{k=1}^{\infty} \rho_{k}^{(\varphi)}(f)=\rho_{s}^{(\varphi)}(f),
$$

where

$$
\rho_{v}^{(\varphi)}(f)=2 C N_{v} \varphi_{m(v)}\left\{N^{-1 / q} \omega_{p}\left(\frac{1}{4} f, \frac{1}{2^{v}}\right)\right\}
$$

or $v \in N$, with $1 / p+1 / q=1$.
Proof. Applying the Hausdorff-Young inequality to the function $F_{h}(x)=f(x+h)-f(x-h)$ and taking into account the formulae

$$
a_{k}\left(F_{h}\right)=2 b_{k}(f) \sin n_{k} h, \quad b_{k}\left(F_{h}\right)=-2 a_{k}(f) \sin n_{k} h,
$$

we obtain the inequality

$$
\left\{\sum_{k=1}^{\infty}\left(\left|a_{k}(f)\right|^{q}+\left|b_{k}(f)\right|^{q}\right)\left|\sin n_{k} h\right|^{q\}^{1 / q}} \leq \frac{1}{2}\left\{\frac{1}{\pi} \int_{0}^{2 \pi}\left|F_{h}(x)\right|^{p} d x\right\}^{1 / p} .\right.
$$

Restricting the summation on the left-hand side to $k \in A_{v}$ and observing that $\left|\sin n_{k} 2^{-v-1}\right| \geqq 2^{-1 / 2}$ for $k \in A_{v}$, we obtain

$$
\begin{gather*}
\left\{\underset{k \in A_{v}}{\sum}\left(\left|a_{k}(f)\right|^{q}+\left|b_{k}(f)\right|^{q}\right)\right\}^{1 / q^{\prime}} \tag{**}\\
\leq \frac{1}{\sqrt{2}}\left\{\frac{1}{\pi} \int_{0}^{2 \pi}\left|F_{2}^{-v-1}(x)\right|^{p} d x\right\}^{1 / p} \leq \frac{1}{\sqrt{2}} \frac{1}{\pi^{1 / p}} \omega_{p}\left(f, \frac{1}{2^{v}}\right) .
\end{gather*}
$$

Now, we have by Jensen's inequality for concave functions

$$
\begin{gathered}
\sum_{k \in A_{v}}^{\sum}\left(\varphi_{k}\left(\left|a_{k}(f)\right|\right)+\varphi_{k}\left(\left|b_{k}(f)\right|\right)\right) \\
\leq C_{k \in A_{v}}^{\Sigma}\left(\bar{\varphi}_{m(k)}\left(\left|a_{k}(f)\right|\right)+\bar{\varphi}_{m(k)}\left(\left|b_{k}(f)\right|\right)\right) \\
\leq 2 C\left|A_{v}\right| \bar{\varphi}_{m(v)}\left\{\frac{1}{2\left|A_{v}\right|} \sum_{k \in A_{v}}\left(\left|a_{k}(f)\right|^{\eta}+\left|b_{k}(f)\right|^{q}\right)\right\} \\
\leq 2 C\left|A_{v}\right| \bar{\varphi}_{m(v)}\left\{\frac{1}{2\left|A_{v}\right|} \frac{1}{\sqrt{2^{q}}} \frac{1}{\pi^{q / p}} \omega_{o}^{q}\left(f, \frac{1}{2^{v}}\right)\right\} \\
\leq 2 C\left|\dot{A}_{v}\right| \bar{\varphi}_{m(v)}\left\{\frac{1}{\left|A_{v}\right|} \omega_{p}^{q}\left(\frac{1}{4} f, \frac{1}{2^{v}}\right)\right\} .
\end{gathered}
$$

Since $\bar{\varphi}_{m(v)}$ are concave, then $\bar{\varphi}_{m(v)}(u) / u$ are nonincreasing. Hence,

$$
\underset{k \in A_{v}}{\Sigma}\left(\varphi_{k}\left(\left|a_{k}(f)\right|\right)+\varphi_{k}\left(\left|b_{k}(f)\right|\right)\right) \leq 2 C N_{v} \varphi_{m(v)}\left\{N^{-1 / q} \omega_{p}\left(\frac{1}{4} f, \frac{1}{2^{v}}\right)\right\}=\rho_{v}^{(\varphi)}(f) .
$$

This gives

$$
\rho(c(f))=\sum_{v=1}^{\infty} \underset{k \in A_{v}}{\sum}\left(\varphi_{k}\left(\left|a_{k}(f)\right|\right)+\varphi_{k}\left(\left|b_{k}(f)\right|\right)\right) \leq \sum_{v=1}^{\infty} \rho_{v}^{(\varphi)}(f)=\rho_{s}^{(\varphi)}(f) .
$$

Taking as a special case $\varphi_{n}(u)=n^{\beta}|u|^{\gamma}$ with any real β and for $0<\gamma \leq q$, we obtain from Theorem 1 the following

Corollary 1. If $0<\gamma \leq q, \beta$ real and

$$
\sum_{v=1}^{\infty} m(v)^{\beta} N_{v}^{1-\gamma / q} \omega_{p}^{\gamma}\left(f, \frac{1}{2^{v}}\right)<\infty,
$$

then

$$
\sum_{n=1}^{\infty} n^{\beta}\left(\left|a_{n}(f)\right|^{\gamma}+\left|b_{n}(f)\right|^{\gamma}\right)<\infty .
$$

This Corollary generalizes a number of well-known results on Fourier series (see e. g. [4, Chapter VI, § 3]; also [1, p. 149, Theorem 3.1]).

Following [1], one may consider also special cases with $k^{r}=O\left(n_{k}\right)$ for an $r>0$ and $k \in N$, or $n_{k+1} / n_{k} \geq \alpha>1$ for $k \in N$.
3. We are going to apply Theorem 1 in order to investigate the continuity of the linear operator $c: f \rightarrow c(f)$. Obviously, $\rho_{s}^{(\varphi)}$ is a pseudomodular in the space $L_{2 \pi}^{p}$, thus generating the modular space

$$
X_{\rho_{s}^{(\varphi)}}=\left\{f \in L_{2 \pi}^{p}: \rho_{s}^{(\varphi)}(\lambda, f) \longrightarrow 0 \text { as } \lambda \rightarrow 0+\right\}
$$

(see [2, Def. 1.4]).
The following results is obtained applying Theorem 1, immediately:
Theorem 2. Under assumptions A.1 and A.2, $c: f \rightarrow c(f)$ is a linear operator, continuous from $X_{p_{s}}^{(\varphi)}$ to l^{φ}.

Let us remark that due to the inequalities (*), modular convergence and norm convergence are equivalent in both spaces $X_{\rho_{s}}^{(\rho)}$ and l^{φ}, so there is no need to distinguish between them.

Theorem 2 generalizes results of [3] concerning trigonometric Fourier series, if we put $n_{k}=k$.
4. Now, let $\varphi=\left(\varphi_{n}\right)_{n=1}^{\infty}$ and $\psi=\left(\psi_{n}\right)_{n=1}^{\infty}$ be two sequences of φ-functions satisfying A. 1 with the same $m(v)$. Let us consider the following assumption (see [2, 8.1]):
A.3. There exist positive numbers δ, K_{1}, K_{2} and a sequence $\left(\varepsilon_{k}\right)$ with $\varepsilon_{k} \geq 0, \quad \sum_{1}^{\infty} \varepsilon_{k}<\infty$ such that for every $u \geq 0$ and $k \in N$ the inequality $\varphi_{k}(u)<\delta$ implies

$$
\psi_{k}(u) \leq K_{1} \varphi_{k}\left(K_{9} u\right) .
$$

Let us note that A. 3 is the necessary and sufficient condition, in order that $l^{\varphi} \subset l^{\psi}$ continuously (see [2, Theorem 8.5]).

Theorem 3. If A.3 holds, then $X_{\rho s}(\varphi) \subset X_{\rho_{s}(\Psi)}$, and this imbedding is continuous both with respect to the modular convergencies, as well as to norm convergencies.

Proof. Let $f \in X_{\rho_{s}^{(p)}}$, then $\rho_{s}^{(\varphi)}(\lambda f) \rightarrow 0$ as $\lambda \rightarrow 0+$, whence $\rho_{s}^{(\varphi)}(\lambda f)<\delta$ for $0<\lambda<\lambda_{1}$ with some $\lambda_{1}>0$. Hence, $\rho_{v}^{(\varphi)}(\lambda f)<\delta$ for $0<\lambda<\lambda_{1}, v \in N$, and so

$$
\varphi_{m(v)}\left\{N_{v}^{-1 / q} \omega_{p}\left(\cdot \frac{1}{4} \lambda f, \frac{1}{2^{v}}\right)\right\}<\delta .
$$

By A.3,

$$
\psi_{m(v)}\left\{N_{v}^{-1 / q} \omega_{p}\left(\frac{1}{4} \lambda f, \frac{1}{2^{v}}\right)\right\} \leq K_{1} \varphi_{m(v)}\left\{K_{2} N_{v}^{-1 / q} \omega_{p}\left(\frac{1}{4} \lambda f, \frac{1}{2^{v}}\right)\right\}
$$

for $v \in N, 0<\lambda<\lambda_{1}$. Thus $\rho_{s}^{(\psi)}(\lambda f) \leq K_{1} \rho_{s}^{(\varphi)}\left(K_{2} \lambda f\right)$ for $0<\lambda<\lambda_{1}$, which shows that $f \in X_{\rho_{s}}^{(\varphi)}$. Now, let $f_{n} \in X_{\rho_{s}^{(\varphi)}}, f_{n} \rightarrow 0$ in $X_{\rho_{s}}^{(\varphi)}$ in the sense of modular convergence (resp. norm convergence). Fromi $f_{n} \rightarrow 0$ it follows that $\rho_{s}^{(\varphi)}\left(K_{2} \lambda f_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ for some $\lambda>0$ (resp. for every $\lambda>0$). Taking such a $\lambda>0$ fixed, we choose an index N such that $\rho_{s}^{(\rho)}\left(\lambda f_{n}\right)<\delta$ for $n \geq N$. Arguing as above, we obtain $\rho_{s}^{(\psi)}\left(\lambda f_{n}\right) \leq K_{1} \rho_{s}^{(\rho)}\left(K_{2} \lambda f_{n}\right)$ for $n \geq N$. Hence, $\rho_{s}^{(\psi)}\left(\lambda f_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ for a $\lambda>0$ (resp. for all $\lambda>0$). This means that $f_{n} \rightarrow 0$ in $X_{p_{s}}(\psi)$ in the sense of modular convergence (resp. norm convergence).

Remark 1. From Theorems 2 and 3 and from [2, Theorem 8.5], we may put our results together in the form of the following diagram:

Remark 2. All the above results may be extended to the case of almost periodic functions, taking noninteger values of n_{k} (see [1]).

REFERENCES

1. J Musielak. On absolute convergence of Fourier series of some almost periodic functions. Annales Polonici Mathematic, 6, 1959, 145-156.
2. J. Musielak. Orlicz spaces and modular spaces. Lecture Notes in Math., 1034, 1983.
3. J. Musielak. On generalized Orlicz sequence spaces of Fourier coefficients for Haar and trigonometric systems. Colloquia Math. Soc.János Bolyai, 49, 1987. Alfred Haar Memorial Conference (Budapest, 1985), 641-649.
4. A. Zigmund. Trigonometric series. Vol. 1. Cambridge, 1959.
