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ON THE PYTHAGOREAN THEOREM AND THE TRIANGLE INEQUALITY

G. BALEY PRICE

1 Introduction. The Pythagorean proposition states that

(N (ap)2+(PoP29= (n s a,

if and only if the vectors PoP1 and PoP2 are orthogonal. If PoPIt.. PoP3s
are orthogonal, then the areas of the faces of PLP\PZPz satisfy the following
equation: ,

@) (AW ?2*)* + (3173 ) 2+ (POP2P3)2: ( 1§ 23)2;

however, examples show that (2) may hold even if PoPIt..., P(P3 are not
mutually orthogonal. The triangle inequality states Jhat (PiP2)<{PqP\+ (PoP2)*
and that the equality holds, if and only if Po is a point in the segment PrP 2
Similarly, ! |

A3) (PNIP3LWL PoP )+ (POPXPr)+ (SoPoP3).

and the equality holds, if and only if Po is a point in the triangle PX2P"
There are generalizations of all these results for the /Asimplex in Rn, and this
note uses known theorems, especially theorems on determinants, to establish
them.

2. The 3-simplex. Let Ph: (n;*,.. ., at"), &= 0,1,... , 3, be points in Rny
and let vkywith components {x\—ijcJ, .. ., xg), be the vectors from Po to
P\* P* Ps-Let (vh vj) denote the inner product of vt and Vj, and let (PiP2Ph)
denote the area of the face P"PbP3 °f Po -- - Ps3-

Theorem 1 If Po... P3 is the simplex just described, then

(v2, Z3)(v2 v3 (vx vj (vu vy (vit V,)(VU v9
2% (V3 Voyms, V3 T (vs VI) (V3 v3 T (V2 V] (V2 V2
4, K- ~3) (V2 v,)(v2 v?
ere (D77 g viyva vy D o wy
(vu vj)(vit v2
(v3 v,)(va, v2

Proof. The proof will be given first for a simplex p, P3 if] /73
The methods are completely general, however, and they can be used to prove
the theorem in Rn Let the points be Pk: (xk yk zK, k=0, 1, 2, 3. Then
[1, p. 167, 171j

@ (P.AM)3

+ (e

sy 19 Xix 12 yixg 2
(5) (P.PPaja= o4 x2¥a 1 + X2221 + y2z21

*s Ya 1 X3 z3 1 Y3 z3 1
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By an elementary property of determinants,

ye 1 + o Yx-Yo 1
(6) X2y2 1 = Xg Xo y,.y, 1
x3¥3 1 X3—Xo y3-yg 1

Expand the determinant on the right in (6) by minors of elements in the third
column. Similar transformations of the other two determinants in (5) show

that

K Xa y 2-~10 Xi—Xa yr-ryo
@) (P,P2a)» -
-(21) =T Ji~-1 Fsa—Xo y3.y,
X\ — Xq "IXq Xq Z2—Zo X\ Xq Zi—2Zo
+
o Y2 Yol 1]2(3 x0 Z3—Zo X3—Xq Z3 Zq

*1—*0 Z1-~0112 j Y2 Y0 Z2 Z0
X2—x0 *2- 3 | +i Y3-Yo Zq g
y\-vyo 2A—2Z20 [Vr—Yo Zi~z0
fi-10 Z2—Za Ty, vo 22-7 0
Square the expressions as indicated in (7) and collect the results in six braces.
There are three similar expressions, the first of which is
J JIX2 X0 ¥Y2—y o XQ—X0 z2—z03 \y2-Jo Z$ -
6) @y IUs—xo0 y3—, ;Xx3—x0 z3—z0 1-Y3— 0 23—:rf-
There are three other similar expressions, the first of which is

2(_i|j;4:2'(|x3—x0 Y2-Yo\\x1—Xo yl—Yo
Xi—Xo Y3—Yo\\x3—x0 Y¥Y3—Yo

9
X2—Xq Zg—Zo Xi—Xq Zq PR z22—120 ~ Vo — 11

g o Z3—Z0o x3 =0 Z*—Zq ¥3 Yo z3—zO0 Y3-VYo Z3-Zqg\\

Use the Binet-Cauchy multiplication theorem for determinants [1, pp. 589-591]
to write (8) in the following form:

(v2, V3 (v2 V3
(10) (20~ (Vs, V3 (V3 V3

There are similar determinants for the two expressions similar to (8). Use the
Binet-Cauchy multiplication theorem for determinants again to represent (9) as
follows
2(—pF2 (va vy (VaF V3

) @18 (3 Al (23 v3
There are similar determinants for the two expressions similar to (9). Equation
(7) and the results indicated in (10) and (11) show that (4) is true, and the
proof of Theorem 1 is complete for POP\PgP3 in /7?3

The formula in (4) does not contain the dimension of the space in which
PO, PIt Pg, P3 are located. A review of the proof of the formula shows that
it is valid in the form (4), if PoPXPgP3 is in Rn a
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Corollary 1 /fvlf vA vs in Theorem | ate mutually orthogonal vec-
tors, then

(12) -(A14243)2 = (PoP1P2)2+ (Po
Proof. If vis v2 v3 are mutually orthogonal, then

(13) (vv v —o, (vv v3=0J (V2 v3=o.

Then, the last three determinants on the right in (4) are each equal to zero

because each contains a row of zeros. Also [1, p. 167],

(14) (08 8)% ek 1) va va

and the second and third determinants on the right in (4) have similar inter-
pretations. Thus, if vIf v2 va are mutually orthogonal, (4) is equivalent to

(22). O

3. The w-simplex in Rn The methods employed in Section 2 can be
extended without change to treat a m-simplex in Rn Let Pk: (x\>. X R),
k=10, 1,. .., m, be the vertices of a simplex POPi ...Pmin Rn,and let vkbe
the vector whose components are (**—afg ..., Xk—Xx£).

Theorem 2 If vit.. ., vmare the vectors related to the simplex
PCQPi ..yPm as just described, the volume (4, ... Pm) of Px... Pm s given
by the following formula

V X Vi
(15) (PI--.p1T- w Yy det Vi Vi
QOUT
VI Vt
. Vij
+ Km-i)V 2 (—I)I+/det
Vim _Vm _

'An explanation of fhe notation in (15) is necessary. The superscript T
denotes the transpose of the matrix on which it is placed. A circumflex ~ over
a symbol means that the symbol is omitted from the sequence in which it
occurs. The second summation in (15) is extended over all / j such that
1<-icjs<m. Finally,

vV X vV X - (vt V] eem (Vv Vi) ... v m)

(16)  det i Vj = det (VLD s (vhVI) a(v, v

vm - vVm _ (vm. ®1j - (vm, vj) EE(vm, Vm) _
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Proof of Theorem 2 The volume (Pi...Pm is given by the follow-
ing formula [1, Exercise 20.6, p. 171]
X\\ m. X ™1
a7 (Pi--- Pm)*= [(ttz—ll) P2
Ml. o X -1
The summation in (17) extends over all sets {i®., ., im i} such that I</1</2

.<im_.<n. Multiply the last column of the determinant in (17) by Xx* and

substract it from the first column : multiply the last column by x£ and subt-
ract it from the second column; and so forth. Then expand each determinant
by minors of elements in the last column. By using the Binet-Cauchy multi-
plication theorem for determinants as in Section 2, the resulting expression
can be transformed into the formula in (15). O

The formula in (15), in the special case in which m—2, is the Law of

Cosines in trigonometry. j

4. The Pythagorean theorem. Let PoP X2 be atriangle in Rn The Pytha-
gorean proposition states that
(18) {PiP2)2= (PoPiy2+ (PoP2)2
if and only if the vectors P@ Xand PCOPo are orthogonal. The next theorem
contains this theorem and its (partial) generalization for simplexes Po”™i - - Pm
with m>2.

Theorem 3. Let PoPV..., Pm m”™>2, be the simplex in Section 3. If
VvV .. ., vm are mutually orthogonal, then
(19) (N ...aT1)9= /zl (PCPi ...P,...P m*

If m=2, then (19) holds only if and vz are orthogonal\ but if m>2,
then (19) holds in many cases in which vIf .. . vm are not mutually ortho-
gonal.

Proof. The statement in (19) will be proved by showing that each deter-
minant in the second summation in (15) is sero, if vlt..., vmare mutually
orthogonal. Since 1<i< j<m ythen (16) shows that

VI

Vi Vi
(20) det

Vj Vj

V.m _ Vm _
contains the row
(21) (vj, Vi), c(Vis V) Vi, V), (Vji, vm.
If vI9... , vm are mutually orthogonal, then this row consists entirely of zeros

and (20) equals zero. Thus, (19) is true, if vJf... , vm are mutually orthogonal.
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If m= 2, the second summation in (15)* contains the single term (v v2. Thus,
(19) holds for tn=2, if and only if vL and v2 are orthogonal.
The proof of Theorem 3 will now be completed by constructing an example

co show that* if m>2, then (19) may be true even if viso.. ., vm are not

mutually orthogonal. Let PO,. .., P3 be the following points:

(22) PO: (0, 0, 0), Px: (4, 0, 0), P2: (O, 1 0), P3: (X, Yy, z)»

Assume that

(23) Xy —x —y —O0.

Then

(24) *>ji=(l, O 0), ~2= (0, 1, 0), va==(X, Y, 2),

and a straightforward calculation shows that the second summation in (15) is
V2 oy A%\ VX

(25) —det det . -det = Xy- -y=0.
V3 Vs 3j v iVs "2

The equation in (23) is satisfied, if x=0 and y =0, and in this case vis v2>v3
are mutually orthogonal. In all other cases, vz is not orthogonal to ~ and ;

nevertheless, the relation (19) holds for PCOPi ...P3

5. The triangle inequality. The following lemma is needed in the proof
of the general case of the triangle inequality.

Lemma 1 Let POPi ---P,n be the simplex in Section 3. Then

( Vi \

(26) . abs. val. det Vi \Y|
| _vm vn
V, Vi T 172 f Vi Vi T 12
det v: Vi ldet Vj Vj
vn vm Jl vim vm _

Proof. By the Binet-Cauchy multiplication theorem for determinants, the
determinant on the left in (26) can be written as a sum of products of deter-

minants (compare (8), ..., (11)]. Apply the Schwarz inequality [1, p. 606] to
this sum of products. Then use the Binet-Cauchy multiplication theorem again,
in order to state the result in the form shown in (26). O
Theorem 4. Let PCPi -..Pm m~2, be the simplex in Section 2. Then
27 i P@X...P, .
(27) (Pi pm) x,(P® PJ
Proof. By (15), (P,.i.Pm2 is equal to or less than the sum of the abso

lute values of all the terms on the right. Apply Lemma 1 It is known [1, Ex-
20.6, p. 171] that
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Zl VX

Vm

Thus, the inequality obtained from (15) can be written as'follows
m N N N

(29) (PXxeeePJ’<s 5 (POwmP, mmPm2+ 25 (PO P, mmPJ(Po mmPy PJ.
1

1=

The second sura on the right is extended over all / j such that 1<i<j<m -
Thus,

(30) (A s+ PJ9<{ 3~ (PO- Pi-:-PJ}2>

and (30) is equivalent to (27). O
We now investigate conditions under which the equality holds in (27).
The following lemma is needed.

Lemma 2. Let Pk: (mn xX"), k=1, eee | my be points in Rn>m—\<ny
and let
\n
31 P O= thx\, eee , thx$> tM= L
1) (g the == 3t 7
Then
(32) 2y (POP,-=" Ptee Pm= (3, 1IMMI <= Pn)

Furthermore, if Po is a point of the form (31), then

(33) (P,...pm = ;:l(PoP"--Pi... pm,

if and only if

(34) . O0<**<1, Agl = 1;

/Aatf /5, (33) holds, */ only if Po is a point in Px--- Pm

Proof. Formula (17) shows that

V.oV *e1 1

1
[(m—1) lja X[l eee ni/* 1 1

ekJl eee X*m~1 1
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Multiply the row corresponding to P» b=\........ A-..m, by tk and sub.

tract it from the first row. The result shows that (POPXeeeP, --- Pm—IU I(Pi
e« Pm), and (32) follows. Now (32) shows that

m n »
(35) 3) (POPXses Pt... PIXPi oo PJ.

unless J=1 || = 1, and this equation is true, if and only if (34) is satisfied.
Now PO in (31) is in Pxeee Pm if and only if (34) holds. Thus, (35) holds if

POin (31) is not in PxesePm and (33) holds if PO is in Pxv-: Pm ]
Theorem 5 Let Px... Pm be a simplex in Rn m—I<n, such that
(36) (Px-.. Pm>0.

If POis in Px... Prothen

(37) (Pt... PJ = 5 (POPi ess 5 o PJ;
/l Po ™ not in Px Pm then
(38) (Pf-PJ< Z:(pop, P e PJ.

Proof. Lemma 2 has shown that (37) is true, if POis in Pj... Pm

and that (38) is true, if PO is a point of the form shown in (31) but not in
Px... Pm The proof of Theorem 5 can be completed by showing that (38)
is true for all points P which cannot be represented as shownin (31). The

proof proceeds as follows: Let PO: (*J,..., jog) be a point in /?"", which is
not in the plane of Px,.. Pm and let h : (AL ..., hn) be the foot of the
perpendicular from PO onto the plane of Px... Pm Then
(39) (tfP, ese Pxoee PIJ<(POPL1--. P/---PJ, /=1

m n Mm n
(40) ;:]_(HPXPI Pn)< ;gO(POP’ oo F’7 eee P J.

If H is in P| --- Pm the sum on the left in (40) equals (Pxe PJ by Lemma 2,
and (38) follows. If H is not in Pxeee Pm then

(41) (Pi-- PJ< gl(WPj---;\---PJ

again by Lemma 2, and (38) follows from (40) and (41). The proofs of these
statements follow.
Let vk: (W\, , i>J), k=0, 2, s« , m, be the vector with components

(*J—x\, eee , Xk—**?). For every point (Tl se= , xn) in the plane of Pxee Pm
there are numbers tit ---, tmin R such that
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(42) (X\ oo | X") = (X\, ee= , *») + 5 thkvk

The altitude is a vector from (X1 eee , XU) to (1}, *e= , X")+ vO, it is the vector
m

(43) vO= S tkvh

The vector in (43) is an altitude from the plane of PXeee Pmto PO>if and
only if it is orthogonal to each vector v2 ---, vm Thus, if o » *T satisfy
the following equations, then (X\ eee | 1:") in (42) is N : (Al ==, AW, the foot
of the altitude from PO to ooe :

(r/* t/Ar2+ eee H-(r/T, 1/2/T = (I/0, Ma),
(44)
(ry /T )24 eee + (vm, vmtm= (I/0, nrT).

Hypothesis (36) shows that the determinant of the coefficients in (44) is not
zero (compare (28); [1, p. 167-170]), thus (44) has a unique solution for tZ eee , tm

Henceforth, let t2 --- , denote this solution. The altitude from W to Po has
components (X*—A1 - -, x%—hn ; denote it by w: (w1 ees , tér). Now by (17),
i 1
*0', - )(d’n—l
n/ . c-
(45) (PoP X*-. P, ... 212 XY e XPL i 1
i
xm* .. Xm 1

Since 1—1+0 and

(46) (*o' -+ - xft=ih'+ w1, .. ., hn+ wn),
the determinant in (45) equals
I im .
h't vh‘m-x 1 W .*ere/ 0
(47) Xt eee Xm.1 1 4 ,_on'.M_l r
*Th .- *ram-1 1 m- m '

Replace the determinant in (45) by its value in (47), and square the terms as
indicated. The sum of the squares of the first terms gives (hPYeee Pt— Pm)2
by (17) or (45). Except for a constant factor, the sum of the middle terms is
a sum of products of the two determinants in (47). As a matter of notation,
let uk: («J, **, uty be the vector such that
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(48) U\, s , U)=(.x\—hl, - -, xk—hn), k=I, 2,.. m

In the first determinant in (47), subtract the first row from each of the other,
rows and expand by minors of elements in the last column; in the second
determinant in (47), subtract the second row from each row which follows it
and then expand by minors of elements in the last column. Thus, the sum of
middle terms becomes, except for a constant multiplier, the following:

ufl meufm-I w
im ,
U2 = h u
(49)
u}. V\m X
O 'mwml vn o Vol

By the Binet-Cauchy multiplication theorem for determinants, the sum in (49)
equals

ni w
u2 V2
(50} del
Ui Vi
vm
Now uv ... , umlie in the plane of Px... Pm and w is a normal to this
plane. Thus, (//£ w)=0 for k=1,..., m and the determinant in (50) is zero

Finally, a similar analysis shows that the sum of squares of the second deter-
minant in (47) is

T
W w -
va V*
(51) det )
Vi Vi
vm _ _ vm
Now v2 ..., vmare in the plane of Pi... Prv and w is normal to this
plane; thus, (viRow )= 0 for k= 2t..., m. Therefore, the determinant in (51)

simplifies to
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v2 v2
(52) @, ze>)det Vi
~Vm _ . vm A

Collect results, beginning with (45); the analysis has shown that

(53) (POP, P,ee/>%)e-(«>, i Pt P>+ -fe 3,

- - T

th

_vm _ =
for i=2,..., m. Now (wt w)>0 since, by hypothesis, PO is not in the plane
of P1 ... Py. Also (compare (28); [1, p. 167-170]), the expression in the

curly braces in (53) is the square of the measure (area, volume, etc.) of PX9
... P. ... pnr Now (PiP2eee Pw) equals the product of 1I/(m— 1), the length of
the altitude from P{ to the plane of PXx-*-Pteee Priv and the square root of
the expression in the braces in (53); therefore, the hypothesis in (36) that
(Px eee P,,)>0 shows that the expression in the braces is positive. Thus, (53)
shows that (HPX--- Pt --- Pr)< (POPi --- P/ --*Pm) for /=2,. .. , /n A similar
analysis shows that the same inequality holds for i= 1. Finally, (39), (40) and (41)
show that (38) is true as stated, and the proof of Theorem 5 is complete. O

Another statement of the general triangle inequality is the following: If
P\ *.. Pm is a simplex in Rn such that (Pxeee Pn)> 0, then }J j(POPi e P/
eee Pw), considered as a function of PO, takes on its minimum value at each
point of PX eee Pn% and this minimum value is (Pj <= Pn)j.
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