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O N  T H E  P Y T H A G O R E A N  T H E O R E M  A ND T H E  T R IA N G L E  IN EQ U ALITY

G. BALEY PRICE

1. I n t r o d u c t i o n .  The Pythagorean proposition states that

( l )  ( а д ) 2+ (Р о Р 2)9= ( л я 2)а,

if and only if the vectors P 0P 1 and P 0P 2 are orthogonal. If P 0P l t .. P 0P 3

are orthogonal, then the areas of the faces of P LP\P2Pz satisfy the following 
equation: ,

(2) (A W ?*)* +  ( З Д Р 3 ) 2 +  (P0P2P3)2 ≈  ( Л Я 2Р з ) 2;

however, examples show that (2) may hold even if P 0P l t . . . , Р 0Рз are not 
mutually orthogonal. The triangle inequality states Jhat (P iP 2)≤ {P q P \) +  (P 0P 2)* 
and that the equality holds, if and only if P 0 is a point in the segment Р гР 2- 
Similarly, ' I

(3) ( Р Л Р з Ш Р о Р Л )  +  (РоРхРг) +  (ЯоРоРз).

and the equality holds, if and only if P 0 is a point in the triangle P XP 2P^ 
There are generalizations of all these results for the //г-simplex in R n, and this 
note uses known theorems, especially theorems on determinants, to establish 
them.

2. T h e  3- s im p l e x .  Let P h: (л;*,.. . , at"), & =  0, 1, . . .  , 3, be  points in Rny
and let vky with components {x\—jcJ, .. . , xg), be the vectors from P 0 to
P\* P *  Ps∙ Let (vh vj) denote the inner product of vt and Vj, and let (P iP 2Pb)
denote the area of the face Р^РъРз ° f  Po ∙ ∙ ∙ Рз-

T h e o r e m  1. I f  P 0 . . .  P 3 is the simplex just described, then

(4) ( Р . Я Л ) 3: (2!)* +
(vx, v j  (vu vs) 

(vS. Vt) (v3, v3) +

(2∙|)2 ( - 1)1 + 2 +  ( - l ) 1+3

(v2, Z'3) (v2, v3)
(v3, V9)(г » з , v3)

K ∙  ^ 3)
(v3, Vi)(V3, vs)

(vu vj) (v lt v2)
(v3, v,)(va, v2)

P r o o f .  The proof will be given first for a simplex p,

(vlt V,)(VU v9) 
(v2, V j  (V2, V2)

(v2, v,)(v2, v2) 

(г»з. ^x)(^3. Щ)

+ (_1)2 + 3

P 3 i∏ /?3.
The methods are completely general, however, and they can be used to prove 
the theorem in R n. Let the points be P k: (xk, yk, zk), k≈O, 1, 2, 3. Then 
[1, p. 167, 171j

(5) (P .P2Pa)a = (21)4

*1 У1 1 9 Xi Zx 1 2 У i * i  i 2 “

x 2 Уя 1 + x 2 z2 1 + y 2 z 2 1

- *s Уя 1 x 3 z 3 1 Уз z3 1
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By an elementary property of determinants,

(6)
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Expand the determinant on the right in (6) by minors of elements in the third 
column. Similar transformations of the other two determinants in (5) show 
that

У х 1 01rH У х - У о 1

x 2 y 2 1 = Хд Х0 У 2 - У 0 1

x 3 У з 1 Хз — Х0 У з - У о 1

(7) ( Р , Р 2Я а ) »
- ( 2 1') [{|

J I Х д  X q У  2-~ У о X i — Xq У г - г У о
* СО 1 о* У з ~ - У о Х 3 — Х 0 У з - У о

+
X \ — X q ' I Хд X q Z2 — Z0 Х\ X q Z i — Zo

* 1
с У 2 У 0 1 ) 1. 1 Х3 х 0 Z3 —Z0 X 3— X q Z3 Zq

+
*1—*0 
x 2— x 0

У \ - У о

У з - У о

1-^o112 j
2- J l  + i

z 

*2 
Z\ — Z0 
Z* — Zq

+

У  2 У  0 Z2 Z0

У з-У о  Zq Zq 
[ У г —У о  Z i ~ z 0 

I У 2 У о  Z2 - Z 0 ∏
Square the expressions as indicated in (7) and collect the results in six braces. 
There are three similar expressions, the first of which is

(8) (2
- У  о  

У  о

J_J I X2 X0 У2—.
')* l U s — x 0 y3— 

r simil

D,+2 j  
\

XQ — X0 z2— z0
; x 3— x 0 z 3— z0

3 \ У 2 - У о  Z$ ∙ 

I-Уз—У о  z 3-:rf∙
There are three other similar expressions, the first of which is

2 ( _ i ) , +-: I I X3 — x 0 У 2 - У о \ \ х 1— Хо у  I — Уо
X i— Xo У з—Уо\\х3— х 0 Уз— Уо

(9)

Use the Binet-Cauchy multiplication theorem for determinants [1, pp. 589-591] 
to write (8) in the following form:

X 2 — Xq Zg —  Z0 X i  — X q Zq

h _
_ »0

1 £ z 2— z 0 0
 

>
>1

—  1 1

01 004

Z3 — Z0 x 3 * 0 Z * — Zq 1 У з  У о z 3— z 0 У з - У о Z 3 - Z q \ \

(10)
(2 0 *

('V2, V2) ( v 2, V3)
(Vs, V2)  (V3, V3)

There are similar determinants for the two expressions similar to (8). Use the 
Binet-Cauchy multiplication theorem for determinants again to represent (9) as 
follows

(И )
2(—-1),1 + 2

(2 I)8

(V2t V x)  (V2f V 3) 

( 3̂* ^l) (^3. v3)
There are similar determinants for the two expressions similar to (9). Equation
(7) and the results indicated in (10) and (11) show that (4) is true, and the 
proof of Theorem 1 is complete for P 0P\PgP3 in /?3.

The formula in (4) does not contain the dimension of the space in which 
P 0, P lt Pg, P 3 are located. A review of the proof of the formula shows that 
it is valid in the form (4), if Р 0Р хРдР3 is in R n. □
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C o r o l l a r y  1. /f v lf v2i v 3 in Theorem I  ate mutually orthogonal vec
tors, then

(12) -  (Я 1Я2Я 3)2 =  (P 0P 1P 2 ) 2 +  (P 0P 1P 3 )2 +  (Р 0Я 2Р 3)2.
P r o o f .  If v l9 v2, v 3 are mutually orthogonal, then

(13) (vv v2) — 0 , (vv v3) =  0J (v2, v 3) =  0 .

Then, the last three determinants on the right in (4) are each equal to zero 
because each contains a row of zeros. Also [1, p. 167],

(14) ( n p p )3_  Va) (v* ' z’3)
( o 2 3 )  ”  (2 D* I (г/3, Щ) (v3, v3)

and the second and third determinants on the right in (4) have similar inter
pretations. Thus, if v lf v2, v3 are mutually orthogonal, (4) is equivalent to 
(12). ' ' □

3. The w-simplex in R n. The methods employed in Section 2 can be 
extended without change to treat a m-simplex in R n. Let P k: (x\>. x nk), 
k =  0, 1 ,. . .  , m, be the vertices of a simplex P 0Pi . . . P m in R n, and let vk be 
the vector whose components are ( * * —aTq. . . . , x tlk—x£).

T h e o r e m  2. I f  v lt .. . , vm are the vectors related to the simplex 
P 0P i  . . yPm as just described, the volume (Я, . . .  P m) o f P x . . .  P m is given 
by the following formula

(15) ( P l - - . Р т Г - йг ∑ det

v x Vi

V i Vi

_  - 1

5&
1

Vl Vt

+  K m -i )V  ^ ( — l ) l+/det Vj

_ Vm _ V m _

'A n  explanation of fhe notation in (15) is necessary. The superscript T 
denotes the transpose of the matrix on which it is placed. A circumflex ^  over 
a symbol means that the symbol is omitted from the sequence in which it 
occurs. The second summation in (15) is extended over all /, j  such that 
1 ≤ ∙ i c j ≤ m .  Finally,

v x v x T -  ( v t , v j  ••■ ∙ ( V v  v j )  ∙ • ∙ v m )

(16) det V i Vj =  det ( v t , t ' j )  ∙ ∙ • ( v ^  V j )  •• ■ ( v „  v j

1 .

_  Vm _
_  Vm _ ( v m . ® l j  ∙ •∙ ( v m , v j )  ■■ ■ ( v m , V m )  _
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P r o o f  o f  T h e o r e m  2. The volume (P i . . . P m) is given by the follow
ing formula [1, Exercise 20.6, p. 171]

(17) (P i - ∙ ∙ Pm )*=
1

[(ttz —  1) !J5 ∑

x\\ ■. .  X ™ - 1

i
V 1 ∙Л т • ∙ X ™ - 1 m

The summation in (17) extends over all sets {i1% . , ., im_ i }  such that l ≤ / 1</2 
. . . < i m__1 ≤ n .  Multiply the last column of the determinant in (17) by x *  and

substract it from the first column : multiply the last column by x£  and subt
ract it from the second column; and so forth. Then expand each determinant 
by minors of elements in the last column. By using the Binet-Cauchy multi
plication theorem for determinants as in Section 2, the resulting expression 
can be transformed into the formula in (15). □

The formula in (15), in the special case in which m — 2, is the Law of 
Cosines in trigonometry. j

4. The Pythagorean theorem. Let P 0P XP 2 be a triangle in R n. The Pytha
gorean proposition states that

(18) {P iP 2 )2 =  (PoPi )2 +  (PoP2)2>
if and only if the vectors P QP X and P 0Po are orthogonal. The next theorem 
contains this theorem and its (partial) generalization for simplexes Po^i ∙ ∙ ∙ P m 
with m >2.

T h e o r e m  3. Let P 0 P V . . ., P m, m^≥2, be the simplex in Section 3. I f  
v v . .  ., vm are mutually orthogonal, then

(19) ( Л . . . я т )9=  ∑ (P0P i . . . P , . . . P m)*.
/=I

I f  m =  2, then (19) holds only i f  and v 2 are orthogonal\ but i f  m > 2, 
then (19) holds in many cases in which v lf ..  . vm are not mutually ortho
gonal.

P r o o f .  The statement in (19) will be proved by showing that each deter
minant in the second summation in (15) is sero, if v lt . .. , vm are mutually 
orthogonal. Since 1 ≤ i <  j ≤ m y then (16) shows that

(20)

contains the row

(21) (vj, Vj),

det

Vl

Vi Vi

Vj Vj

- V m _ - V m _

. (Vj, V, ) ............ (∙Vj, V j ) ................. (Vj, Vm).

If v l9. . .  , vm are mutually orthogonal, then this row consists entirely of zeros 
and (20) equals zero. Thus, (19) is true, if vJf. . .  , vm are mutually orthogonal.
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If m ≈  2, the second summation in (15)* contains the single term (vx> v2). Thus,
(19) holds for t n ≈ 2, if and only if v L and v 2 are orthogonal.

The proof of Theorem 3 will now be completed by constructing an example 
co show that* if m > 2, then (19) may be true even if v l 9 .. . ,  vm are not 
mutually orthogonal. Let P 0,. . . , P 3 be the following points:

(22) P0: (0, 0, 0), P x: (1, 0, 0), P 2: (0, 1, 0), P 3: (x, y, z))>

Assume that

(23) xy — x —y — 0.
Then
(24) *> i= (l, 0» 0), ^ 2  =  (0, 1, 0), v 3 ==(x, y, z),

and a straightforward calculation shows that the second summation in (15) is

(25) — det
v 2

v 3

Vl
Vs

det
3 j

V\
v 2

-det
iVs

Vx
L^2 J

=  xy- -y≈O .

The equation in (23) is satisfied, if x  =  0 and y =  0, and in this case v l9 v2> v 3 

are mutually orthogonal. In all other cases, v 3 is not orthogonal to ^  and ; 
nevertheless, the relation (19) holds for P 0P i . . . P 3.

5. The triangle inequality. The following lemma is needed in the proof 
of the general case of the triangle inequality.

L e m m a  1. Let P 0Pi ∙ ∙ ∙ P,n be the simplex in Section 3. Then

!( V i

(26) abs. val.
•

det Vi

I _ vm

vj

vn

\

det

V,

V ;

v n

Vi T 1/2

f Vi Vi T '

Vi
.

! det V j Vj

Vm J1 _  Vm _ v m _

1/2

P r o o f .  By the Binet-Cauchy multiplication theorem for determinants, the 
determinant on the left in (26) can be written as a sum of products of deter
minants (compare (8), . . . ,  (11)]. Apply the Schwarz inequality [1, p. 606] to 
this sum of products. Then use the Binet-Cauchy multiplication theorem again, 
in order to state the result in the form shown in (26). □

T h e o r e m  4. Let P 0Pi ∙ . . P m, m ^2, be the simplex in Section 2 . Then

(27) (P i ∙ ∙ ∙ Pm) ∑ (PQP X . . . P, 
/= 1 P J ∙

P r o o f .  By (15), ( P , . i . P m)2 is equal to or less than the sum o f the abso' 
lute values of all the terms on the right. Apply Lemma 1. It is known [1, Ex∙ 
20.6, p. 171] that
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(28) (PoPi Pi ••• P m)2 =

G. Pric 

1
[(/Я-1)!]*» det

‘Z'l vx

v t

_ Vm _ _

Thus, the inequality obtained from (15) can be written as'follows
m ^  ^  ^

(29) (P x ••• P J ’ ≤  ∑ (P 0 ■■■ P , ■■■ P m)2 +  2 ∑ ( P 0 P ,  ■■■ P J (P o  ■■■ P y  P J .
1 =  1

The second sura on the right is extended over all /, j  such that 1 ≤ i < j ≤ m ∙  
Thus,

(30) (A  ••• P J 9 < {  ∑^ (P0 ∙ P i  ∙ : ∙ P J }2>

and (30) is equivalent to (27). □
We now investigate conditions under which the equality holds in (27). 

The following lemma is needed.

L e m m a  2. Let P k : (л: ,̂ x ”), k ≈ l ,  ••• , my be points in R n> m— \ ≤ n y
and let

\n
P 0≈ (  ∑ thx\, ••• , ∑ tkx$> ∑ tM≈  1.

A ≈l  * = 1 k ≈ l
(31)

Then

(32)

Furthermore, i f  P 0 is a point o f  the form  (31), then

(33)

i f  and only i f

(34)

∑ (Р0Р , - - '  Pt ∙ ∙ ∙  Pm) =  ( ∑  1 М М Л  ••• Pm)∙/=x 1 *=1

( P , . . . p m) =  ∑ (P 0 P ^ ∙ - P i . . .  p m),
/=1

0 ≤ * * < 1 ,  ∑ =  1;
A -1 ̂ ,

/Aatf /5, (33) holds, */ only i f  P 0 is a point in P x ∙ ∙ ∙ P m. 
P r o o f .  Formula (17) shows that

V ∙ ∙ ∙ ∙ V * “ 1 1

1
[(m— 1) Ija x [l ••• л:/*“ 1 1

•kJ1 ••• x * m~ l 1
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Multiply the row corresponding to Р» ь = \ .........A ∙.  . rn, by tk and sub.
tract it from the first row. The result shows that (P0P X ••• P, ∙ ∙ ∙ Pm) — IU l(Pi
• •• Pm), and (32) follows. Now (32) shows that

m л  »
(35) ∑) (P0PX ••• Pt . . .  P J X P i  ••• P J .

unless ∑J'=1 |^ |  =  1, and this equation is true, if and only if (34) is satisfied. 
Now P0 in (31) is in P x ••• Pm, if and only if (34) holds. Thus, (35) holds if 
P0 in (31) is not in Px •••P m, and (33) holds if P0 is in P xv ∙  Pm∙ □

T h e o r e m  5. Let P x . . .  Pm be a simplex in R n, m—l≤n ,  such that
(36) (Px -.. Pm) >0.

If P0 is in P x . . .  Pm% then

(37) (Pt . ∙ .  P J  =  ∑ (PoPi ••• Я, ••• P J ;
i = 1

/ /  Po ^  not in P x Pm, then
m ^

(38) ( P f ∙ P J <  ∑ (PoP, ∙ P ,  ••• P J ∙
/'= 1

Pr o o f .  Lemma 2 has shown that (37) is true, if P0 is in Pj . . .  Pm, 
and that (38) is true, if P0 is a point of the form shown in (31) but not in 
P x . . .  Pm. The proof of Theorem 5 can be completed by showing that (38)
is true for all points P0l which cannot be represented as shown in (31). The
proof proceeds as follows: Let P0 : (*J,. . . ,  jcg) be a point in /?", which is 
not in the plane of Px , . .  Pm, and let h : (A1, . . . ,  hn) be the foot of the 
perpendicular from P0 onto the plane of P x . . .  Pm. Then

(39) (tfP, ••• P x ••• P J < ( P 0P 1 ∙∙ .  P / ∙ ∙ ∙ P J ,  / =  1.
m л  /и л

(40) ∑ (HPX. . . P I . . .  Pm) <  ∑ (PoP, ••• P, ••• P J .
/= 1 /=*=0

If H  is in P| ∙ ∙ - Pm, the sum on the left in (40) equals (Px ••• P J  by Lemma 2, 
and (38) follows. If H  is not in P x ••• Pm, then

m ^

(41) ( P i ∙ ∙ ∙  P J <  ∑ ( W P j ∙ ∙ ∙ ^ ∙ ∙ ∙ P J
1 = 1

again by Lemma 2, and (38) follows from (40) and (41). The proofs of these 
statements follow.

Let vk: (v\, , i>J), k = 0 ,  2, ••• , m, be the vector with components
(*J—x\, ••• , x nk—•*?). For every point (лг1, ••• , xn) in the plane of P x ••• Pm 
there are numbers tit ∙ ∙ ∙ , tm in R such that



6 8 G. Price

(42) (x\ ••• , X") =  (x\, ••• , * » )  +  ∑ tkvk

The altitude is a vector from (x 1, ••• , xu) to (л:}, ••• , x") +  v0∙, it is the vector

m
(43) v0=  ∑ tkv h.

The vector in (43) is an altitude from the plane of P x ••• P m to P 0> if and 
only if it is orthogonal to each vector v2, ∙ ∙ ∙ , vm. Thus, if •** » *т satisfy 
the following equations, then (x \ ••• , л:") in (42) is И : (A1, •••, Aw), the foot 
of the altitude from P 0 to ••• :

(44)

(г/* г/2)г<2+  ••• Н-(г/т , г/2)/т =  (г/0, г»а), 

(г/g, г/т )/!24- ••• +  (vm, vm)tm =  (г/0, лгт ).

Hypothesis (36) shows that the determinant of the coefficients in (44) is not 
zero (compare (28); [1, p. 167-170]), thus (44) has a unique solution for t2t ••• , tm. 
Henceforth, let t2, ∙ ∙ ∙ , denote this solution. The altitude from И  to P 0 has 
components (x^—A1, ∙ ∙ , x%—hn) ; denote it by w: (w1, ••• , tön). Now by (17),

(45) (P 0P X * ∙. P, ... 2) I]2

i ∕  1 . X m—1Л о* o '  • •

л/ c ∙
х,У • • . X  P 1 i  1

i i
X  * ∙ *∙m . . X 1m

Since 1 — 1 + 0  and

(46) (*o’ ∙ ‘ ∙ ∙ x f t ≈ ih '  +  w1, . .  . , hn +  wn),

the determinant in (45) equals

(47)

h ' 1 ■ h ‘m- x 1 'l
W  ∙ *

im .
• ге/ 0

x t •• • X ™ - 1 1 + ∙ ∙
- M—1• л . Г

* : i ∙TTl -  *mm~1 1m ∙m m l

Replace the determinant in (45) by its value in (47), and square the terms as 
indicated. The sum of the squares of the first terms gives ( h P Y ••• Pt —  Pm)2 
by (17) or (45). Except for a constant factor, the sum of the middle terms is 
a sum of products of the two determinants in (47). As a matter of notation, 
let uk: («J, * ∙ * , uty be the vector such that
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( 4 8 ) (u\, ••• , u”)≈(.x\—hl, ∙ ∙ , x nk—hn), k ≈ l ,  2, .. m.

In the first determinant in (47), subtract the first row from each of the other, 
rows and expand by minors of elements in the last column; in the second 
determinant in (47), subtract the second row from each row which follows it 
and then expand by minors of elements in the last column. Thus, the sum of 
middle terms becomes, except for a constant multiplier, the following:

(49)

u[l ■ • u[m~l

U 2 ■
im ,

u } .

O ’ ■∙ w«m_1 m

W  ∙

^ ∙ ■

■ v\m- x

V,n .. v ‘m - 1m

By the Binet-Cauchy multiplication theorem for determinants, the sum in (49) 
equals

(50} d e l

и 1
u2

Ui

w

V2

Vi

V m

Now uv . . .  , um lie in the plane of P x . .. P m, and w is a normal to this 
plane. Thus, (//£, w) ≈ 0 for k ≈ l , . . . ,  m and the determinant in (50) is zero 
Finally, a similar analysis shows that the sum of squares of the second deter
minant in (47) is

(51) det

W w

v 4 V*

Vi Vi

Vm _ _  v m

_ T

Now v2, . . ., vm are in the plane of P i . . .  P nv and w is normal to this 
plane; thus, (vk% w )≈  0 for k =  2t . . . ,  m. Therefore, the determinant in (51) 
simplifies to
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(52) (■w, ze>)det

V2 V2

Vi Vi

_ V m _
-  Vm ^

Collect results, beginning with (45); the analysis has shown that 

(53) (P0P, P, • • / > * ) • - ( « > ,  ∙ ■ ■ P t ■ ■ ∙ P m)> +  - f e ?( « - ! ) •

X
1

:

1

T

 ̂ det[(m — 2) ! ]2 Qel

_  Vm _ 1

£

1

for i== 2 , . . . ,  m. Now (wt w )> 0  since, by hypothesis, P 0 is not in the plane 
of P 1 . ..  Py. Also (compare (28); [1, p. 167-170]), the expression in the 
curly braces in (53) is the square of the measure (area, volume, etc.) of Р ХР 9 
... p. ... p nr Now (P iP 2 ••• P w) equals the product of l/ (m —  1), the length of 
the altitude from P { to the plane of P x ∙ * ∙ P t ••• P nV and the square root of 
the expression in the braces in (53); therefore, the hypothesis in (36) that 
(Px ••• P , „ )> 0 shows that the expression in the braces is positive. Thus, (53) 
shows that (H P X ∙ ∙ ∙ P t ∙ ∙ ∙ P nl) <  (P0P i ∙ ∙ ∙ P/ ∙ ∙ * P m) for /= 2,. .. , /n. A  similar 
analysis shows that the same inequality holds for i ≈  1. Finally, (39), (40) and (41) 
show that (38) is true as stated, and the proof of Theorem 5 is complete. □  

Another statement of the general triangle inequality is the following: If 
P\ * ∙∙ P m is a simplex in R n such that (P x ••• P m) > 0, then ∑J” j (P0Pi ••• P/ 
••• P w), considered as a function of P 0, takes on its minimum value at each 
point of P x ••• P m% and this minimum value is (Pj ••• P m).
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