Provided for non-commercial research and educational use.

 Not for reproduction, distribution or commercial use.
PLISKA
 STUDIA MATHEMATICA BULGARICA

 ПЛИСКА БЪЛГАРСКИ МАТЕМАТИЧЕСКИ СТУДИИThe attached copy is furnished for non-commercial research and education use only. Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to third party websites are prohibited.

For further information on
Pliska Studia Mathematica Bulgarica
visit the website of the journal http://www.math.bas.bg/~pliska/
or contact: Editorial Office
Pliska Studia Mathematica Bulgarica
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: pliska@math.bas.bg

CONCERNING TRIVIAL MAXIMAL ABELIAN SUBALGEBRAS OF $\boldsymbol{B}(X)$

W . ŻELAZKO

To the memory of Y. A. Tagamlitzki
We call a complex or real Banach algebra trivial, if it is either a Banach space with trivial (zero) multiplication or it is the unitization of such an algebra. Thus a trivial algebra is always commutative and in the case of an algebra with unit element it is a local ring, i. e. it has exactly one maximal ideal equal to its radical. In this paper we prove that for any real or complex Banach space X the algebra $B(X)$ of all its continuous endomorphisms has always a trivial maximal Abelian subalgebra and we give description of all such subalgebras.

Let X be a real or complex Banach space. For a non-void subset S of $B(X)$ denote by S^{\prime} its commutant, i. e. the set

$$
S^{\prime}=\{T \in B(X): T A=A T \text { for all } A \text { in } S\} .
$$

It is a closed subalgebra of $B(X)$ containing its unity I, and in case when S consists of mutually commuting operators we have

$$
S^{\prime}=\cup\{\mathscr{A}: \mathscr{A} \text { is a maximal Abelian subalgebra of } B(X) \text { with } S \subset \mathscr{A}\} .
$$

This implies that S^{\prime} is a maximal Abelian subalgebra of $B(X)$, provided it is commutative. This simple remark will be used in the proof of our theorem.

In the sequel we denote by X^{*} the conjugate space of a Banach space X and by T^{*} the conjugate operator of an element T in $B(X)$. We put also rad \mathscr{A} for the radical of a commutative Banach algebra \mathscr{A}. Thus in case of a trivial algebra \mathscr{A} with unit element we have $\mathscr{A}=\operatorname{rad} \mathscr{A} \oplus K I$, where K is the field of scalars ($K=\mathrm{C}$ or $K=\mathrm{R}$) and $K I$ is the one-dimensional subspace of \mathscr{A} spanned by the unit element I.

Since for $\operatorname{dim} X \leq 1$ the whole algebra $B(X)$ is commutative and trivial, we assume in our result that $\operatorname{dim} X>1$. In this case we say that a closed linear subspace X_{0} of X is proper, of $\{0\} \neq X_{0} \neq X$. For an operator A in $B(X)$ denote by ker A its kernel and by im A its range, i. e. the sets $\operatorname{ker} A=\{x \in X: A x=0\}$ and $\operatorname{im} A=\{A x: x \in X\}$. Our result reads as follows

Theorem. Let X be a real or complex Banach space with dim $X>1$ and let X_{0} be a proper closed linear subspace of X. Then the set

$$
\begin{equation*}
\left\{A \in B(X): \operatorname{im} A \subset X_{0} \text { and } X_{0} \subset \operatorname{ker} A\right\} \tag{1}
\end{equation*}
$$

is a trivial Abelian subalgebra of $B\left(X^{\prime}\right)$ and its unitization \mathscr{A} is a trivial maximal Abelian subalgebra of $B(X)$.

Conversely, if \mathscr{A} is a trivial maximal Abelian subalgebra of $B(X)$, then its radical radd is of the form (1), where

$$
\begin{equation*}
X_{0}=\cap\{\operatorname{ker} A: A \in \operatorname{rad} \mathscr{A}\} . \tag{2}
\end{equation*}
$$

Proof. Denote by M the set (1). Obviously, it is a trivial subalgebra of $B(X)$. Let T be an operator in the commutant M^{\prime}. For a functional f in X^{*}
with $X_{0} \Subset \operatorname{ker} f$ and for an element z in X_{0} denote by $A(f, z)$ the one-dimensional operator given by $A(f, z) x=f(x) z$, this operator is clearly in M and so it commutes with T. Thus, for all x in X, all z in X_{0} and all f in X^{*} with $X_{0} \subset \operatorname{ker} f$ we have

$$
\begin{equation*}
f(T x) z=f(x) T z \tag{3}
\end{equation*}
$$

Choosing $f_{0} \neq 0$ with $X_{0} \subset \operatorname{ker} f_{0}$ and substituting for x in (3) an element x_{0} in X with $f_{0}\left(x_{0}\right)=1$ we obtain

$$
T z=\alpha_{T} z
$$

for all z in X_{0}, where α_{T} is the scalar given by $\alpha_{T}=f_{0}\left(T x_{0}\right)$. Put $T_{1}=T-\alpha_{T} I$. We have $T_{1} \in M^{\prime}$ and $X_{0} \subset \operatorname{ker} T_{1}$. We shall show that the operator T_{1} is in M, i. e. im $T_{1} \subset X_{0}$. If not, then there is an element u_{0} in X with $T_{1} u_{0} \notin X_{0}$ and we can find an element A in M with $A T_{1} u_{0}=0$ (A can be chosen to be of the form $A(f, z)$). But this is impossible, since $A T_{1} u_{0}=T_{1} A u_{0}$ and $A u_{0} \in X_{0}^{*}$ $\subset \operatorname{ker} T_{1}$. Thus, T_{1} is in M and so T is in its unitization \mathscr{A} which is a commutative algebra and thus a maximal Abelian subalgebra of $B(X)$ since it equals M^{\prime}.

Conversely, suppose that \mathscr{A} is a trivial maximal Abelian subalgebra of $B(X)$ and put $M=\operatorname{rad} \mathscr{A}$. For any two operators T_{1} and T_{2} in M we have $\operatorname{im} T_{1} \subset \operatorname{ker} T_{2}$, and so im $T_{1} \subset X_{0}$, where X_{0} is given by (2). Since $X_{0} \subset \operatorname{ker} T_{1}$ and T_{1} is an arbitrary element of M, it follows that M is contained in the set (1). By the maximality of $\mathscr{A} M$ equals to this set, and so rad \mathscr{A} is of the form (1). The conclusion follows.

Corollary 1. Any subset S of $B(X)$ consisting of mutually annihilating operators (i. e. $T_{1} T_{2}=0$ for all T_{i} in $S, i=1,2$) is contained in some trivial maximal Abelian subalgebra of $B(X)$. In particular, any trivial subalgebra of $B(X)$ is contained in a trivial maximal Abelian subalgebra of $B(X)$.

Denote by $\mathscr{A}\left(X_{0}\right)$ the trivial maximal Abelian subalgebra of $B(X)$ whose radical is (1).

Corollary 2. The algebra $\mathscr{A}\left(X_{0}\right)$ is isomorphic as a Banach space to the space $B\left(X / X_{0}, X_{0}\right) \oplus K$, where $B(U, V)$ denotes the Banach space of all continuous linear operators from a Banach space U to a Banach space V and K is the field of scalars (the one-dimensional Banach space).

Examples. Taking as X_{0} any subspace of X of codimension one, we obtain a trivial maximal Abelian subalgebra $\mathscr{A}\left(X_{0}\right)$ isomorphic as a Banach space to the space X. Its radical consists of one-dimensional operators of the form $A\left(f_{0}, z\right)$, where f_{0} is a fixed functional in X with $\operatorname{ker} f_{0}=X_{0}$ and $z \in X_{0}$. The isomorphism between $\mathscr{A}\left(X_{0}\right)$ and X is given by

$$
A\left(f_{0}, z\right)+\lambda I \leftrightarrow z+\lambda e_{0},
$$

where e_{0} is a fixed element in X with $f_{0}\left(e_{0}\right)=1$.
Similarly, taking as X_{0} a linear subspace of X of dimension one $X_{0}=K x_{0}$ with $x_{0} \in X$ and $\left\|X_{0}\right\|=1$, we obtain an algebra $\mathscr{A}\left(X_{0}\right)$ isomorphic as a Banach space to the conjugate space X^{*}. It consists of all operators of the form $A\left(f, x_{0}\right)+\lambda I$, where $f \in X^{*}$ with $x_{0} \in \operatorname{ker} f$ and $\lambda \in K$. The Banach space isomorphism between $\mathscr{A}\left(x_{0}\right)$ and X^{*} is given by

$$
A\left(f, x_{0}\right)+\lambda I \leftrightarrow f+\lambda f_{0}
$$

where f_{0} is a fixed element in X^{*} with $f_{0}\left(x_{0}\right)=1$.
In case when the space X has a direct sum decomposition $X=X_{0} \oplus X_{1}$, where X_{1} is isomorphic to X_{0}, then the algebra $\mathscr{A}\left(X_{0}\right)$ is isomorphic as a Banach space to the space $B\left(X_{0}\right)$. In particular when $X=H-$ an infinite.
dimensional Hilbert space, then H can be orthogonally decomposed as $H=H_{0}$ $\oplus H_{1}$, where H_{0} and H_{1} are isometrically isomorphic to H. In this case the algebra $\mathscr{A}\left(H_{0}\right)$ is isomorphic as a Banach space to the space $B(H)$. It can be proved that in this case the operators in $\mathscr{A}\left(H_{0}\right)$ are of the following form. Let R be a partiai isometry on H, which maps H_{1} isometrically onto H_{0} and maps H_{0} onto $\{0\}$. Then

$$
\mathscr{A}\left(H_{0}\right)=\{R A+A R: A \in B(H) \text { and } R A R=\alpha(A) R\},
$$

where $\alpha(A)$ is a scalar depending upon A. It can be shown that if $R A+A R$ $=R A_{1}+A_{1} R$, then $\alpha(A)=\alpha\left(A_{1}\right)$ and so it defines on $\mathscr{A}\left(H_{0}\right)$ a functional f given by $f(R A+A R)=\alpha(A)$. It is a multiplicative linear functional on $\mathscr{A}\left(H_{0}\right)$ and its kernel equals to rad $\mathscr{A}\left(H_{0}\right)$ (we have $\alpha\left(R^{*}\right)=1$ and $\left.R^{*} R+R R^{*}=I\right)$.

If $\operatorname{dim} X=n<\infty$, then b_{j} Corollary 2 the possible dimensions of algebras $\mathscr{A}\left(X_{0}\right)$ are $(n-k) . k+1, k=1,2, \ldots, n-1$, and so there are $\left[\frac{n}{2}\right]$ non-isomorphic trivial maximal Abelian subalgebras of $B(X)$, where $[r]$ is the integral part of a number r. The largest possible dimension of $\mathscr{A}\left(X_{0}\right)$ is in this case $\left[\frac{n^{2}}{4}\right]+1$ and the smallest dimension is n. All these results in the case of finite dimensional spaces are well known even for more general scalars (cf. [2, Chapt. $2, \S 3]$), however, in the case of real or complex scalars our reasoning seems to be shorter. In case when X is a Hilbert space the maximal Abelian subalgebras of $B(X)$ which are local rings are known in the literature (cf. [1], or [3, p. 81, proposition 4.4]), however, the existence of such trivial algebras seems to be new and somewhat surprising. We finish this paper with some simple results on invariant subspaces for algebras $\mathscr{A}\left(X_{0}\right)$. In the sequel we denote by lin (X) the family of all closed linear subspaces of a Banach space X, and for a subset S of $B(\mathrm{X})$ we denote by lat (S) the set (it has a structure of a lattice) of all subspaces in $\operatorname{lin}(X)$ which are invariant with respect to all operators in S. In case when S consists of a single operator T we simply write lat (T).

Proposition 1. Let X be a Banach space with dim $X>1$. Then

$$
\begin{equation*}
\text { lat }\left(\mathscr{A}\left(X_{0}\right)\right)=\left\{Y \in \mathrm{Iin}(\mathrm{X}): \text { e ither } X_{0} \subset Y \text {, or } Y \subset X_{0}\right\}, \tag{4}
\end{equation*}
$$

where X_{0} is a proper linear subspace of X.
Proof. It is clear that all subspaces in the family (4) are invariant with respect to all operators in $\mathscr{A}\left(X_{0}\right)$. On the other hand, if Y is a closed linear subspace of X which contains some element $x_{0} \notin X_{0}$ and does not contain some element $z_{0} \in X_{0}$, then it cannot be invariant with respect to all elements in $\mathscr{A}\left(X_{0}\right)$, since there always exists an operator of the form $A\left(f, z_{0}\right)$ which sends x_{0} to z_{0}. The conclusion follows.

A subalgebra \mathscr{A} of $B(X)$ is said to be reflexive (sf. [3]), if the condition $\operatorname{lat}(\mathscr{A}) \subset \operatorname{lat}(T)$ implies $T \in \mathscr{A}$.

Proposition 2. Let H be a Hilbert space, $\operatorname{dim} H>1$, then no trivial maximal Abelian subalgebra of $B(H)$ is reflexive.

Proof. For a closed proper linear subspace H_{0} of H denote by $P\left(H_{0}\right)$ the orthogonal projection of H onto H_{0}. Clearly, we have lat $\left(\mathscr{A}\left(H_{0}\right)\right) \subset \operatorname{lat}\left(P\left(H_{0}\right)\right)$ and $P\left(H_{0}\right) \notin\left(H_{0}\right)$. The conclusion follows.

REFERENCES

1. E. Albrecht. Maximal Abelian quasinilpotent subalgebras of $B(H)$. Mathematisches Forschungsinstitut Oberwolfach, Tagungsbericht, 10, 1985.
2. D. A. Suprunenko, R. I. Tyshkevich. Commutative Matrices. New York, 1968.
3. H. Radjavi, P. Rosenthal. Invariant Subspaces. Berlin - Heidelberg - New York, 1973.

Mathematical Institute,
Polish Academy of Sciences
00-950 Warszawa Sniadeckich 8

