
Serdica J. Computing 8 (2014), No 4, 389–408 Serdica
Journal of Computing

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics

VISIBLEZ: A MAINFRAME ARCHITECTURE EMULATOR

FOR COMPUTING EDUCATION

David Woolbright, Vladimir Zanev, Neal Rogers

Abstract. This paper describes a PC-based mainframe computer emulator
called VisibleZ and its use in teaching mainframe Computer Organization
and Assembly Programming classes. VisibleZ models IBM’s z/Architecture
and allows direct interpretation of mainframe assembly language object
code in a graphical user interface environment that was developed in Java.
The VisibleZ emulator acts as an interactive visualization tool to simulate
enterprise computer architecture. The provided architectural components
include main storage, CPU, registers, Program Status Word (PSW), and
I/O Channels. Particular attention is given to providing visual clues to
the user by color-coding screen components, machine instruction execution,
and animation of the machine architecture components. Students interact
with VisibleZ by executing machine instructions in a step-by-step mode, si-
multaneously observing the contents of memory, registers, and changes in
the PSW during the fetch-decode-execute machine instruction cycle. The
object-oriented design and implementation of VisibleZ allows students to
develop their own instruction semantics by coding Java for existing specific
z/Architecture machine instructions or design and implement new machine

ACM Computing Classification System (1998): C.0, K.3.2.
Key words: Mainframe architecture emulator, visualization, computer organization, assembly

language, computing education.

390 David Woolbright, Vladimir Zanev, Neal Rogers

instructions. The use of VisibleZ in lectures, labs, and assignments is de-
scribed in the paper and supported by a website that hosts an extensive
collection of related materials. VisibleZ has been proven a useful tool in
mainframe Assembly Language Programming and Computer Organization
classes. Using VisibleZ, students develop a better understanding of main-
frame concepts, components, and how the mainframe computer works.

1. Introduction. Columbus State University offers mainframe-related
courses for students in the Enterprise track of our BS in Computer Science. Stu-
dents can select classes in mainframe Computer Organization, JCL, Assembly
Language, Cobol, DB2, CICS, and IMS. For many years, hundreds of enterprises
have based their business information technologies on IBM mainframe platforms,
and since the introduction of the IBM 360 in 1964, millions of lines of code in
Assembler and Cobol have been written by a generation of mainframe program-
mers. This code is still valuable and drives the transaction systems of many of
the largest enterprises around the world, particularly in banking and insurance.
As older mainframe programmers have retired, a growing demand for new main-
frame programmers and software developers has appeared. There is a particular
demand for students with enterprise programming skills – programmers who can
help maintain, and extend this legacy software. The IBM mainframe architecture
has not only endured, but is growing in popularity as a platform of choice for
new information technologies in the areas of virtualization, visualization, Web
applications, and cloud computing.

The mainframe courses we offer are attractive to students because they
provide students unique skills and employment opportunities in a growing mar-
ket. As a result, we have a stable enrolment in these courses each semester. We
teach mainframe-related courses in a traditional way - with lectures, textbooks,
slides, assignments, projects, labs, quizzes, and exams. Under the IBM Academic
Initiative we have access to a virtual machine hosted on an IBM System/z lo-
cated in Dallas, Texas. On the client side, our lab computers use IBM’s Personal
Communications software to connect and work with mainframe applications in
Assembler, Cobol, DB2, CICS, and IMS. Students have twenty-four hour access
to this machine both locally and off-campus.

Teaching mainframe courses with full access to a real mainframe is criti-
cal for developing student understanding of the operating system, and promotes
the necessary skills for working as a programmer and developer. In delivering
these courses, particularly in teaching assembly language and computer organi-
zation, we have found that students are often challenged by the complexity of

VisibleZ: A Mainframe Architecture Emulator for Computing Education 391

the machine. Learning any assembly language is a complex process that requires
a broad knowledge of a machine’s architecture and instruction set. Topics that
are addressed in these two courses include main memory content (data represen-
tation and machine instructions), general purpose and floating point registers,
the Program Status Word (PSW), machine instruction address schema, the fetch-
decode-execute cycle, I/O channel programs, supervisor calls, reading memory
dumps and debugging.

In seeking ways to improve how we teach mainframe assembly language,
architecture and concepts, we considered the advantages of using modeling and
simulation tools with visualization and animation capabilities to help improve
student outcomes and performance. One important consideration was the fact
that our students come into these courses with strong backgrounds in Java (CS1,
CS2 and Data Structures), and we wanted to leverage their Java skills as a way
of approaching mainframe assembly language and machine organization.

2. Mainframe Simulation and Modeling for Assembly Lan-

guage and Computer Organization. The growing diversity and complexity
of enterprise computer system hardware presents certain challenges and problems
for students in Computer Organization and Assembly classes. Many instructors
have turned to computer modeling and simulation tools as teaching aids for these
classes. Some good Computer Organization and Assembly textbooks [15] come
with embedded or additionally developed computer simulators [22], [23]. Com-
puter simulators are very useful from a pedagogical point of view because students
can become familiar with different computer components, their properties, func-
tions, and relationships. Using a simulator, students can refine their computer
system knowledge while developing a deeper cognitive understanding of an entire
system. Simulation with visualization and animation promotes comprehension of
system objects, phenomena, and processes in a way that is difficult to replicate
with traditional teaching techniques.

We surveyed the literature, including currently published textbooks, as
well as the Internet for existing computer simulators used for teaching a class in
Computer Organization or Assembly language programming.

We had two goals: 1) To find mainframe computer simulators we can use
in our Computer Organization and Assembly courses, and 2) To explore function-
ality, visualization and the interfaces of the simulators.

Two back-to-back issues of the Journal of Educational Resources in Com-
puting (JERIC) are devoted to general computer architecture simulators (vol.
1, No. 4, December 2001) as well as specialized computer architecture simula-
tors (vol. 2, No. 1, March 2002), and their use in computing education. More

392 David Woolbright, Vladimir Zanev, Neal Rogers

than a dozen simulators are presented in these two issues of JERIC. Of these, we
attentively reviewed those simulators which are complete computer architecture
software environments with rich functionality and tools. CPU Sim [19] is a com-
plete development environment written in Java with an Assembler and assembly
language editor, windows for registers and RAM, and debugging features. CPU
Sim allows simulations of a variety of architectures – accumulator-based, RISC,
or stack-based CPUs. EasyCPU [26] simulates a simplified model of Intel 80x86
processors. It works in two-modes – basic and advanced. It has good visualization
tools for the main computer units, an assembly editor, step-by-step or continuous
execution of programs with different speeds, visualization and access to registers,
data, and stack segments. The PDP-8 emulator [18] is a historic machine emula-
tor that simulates the PDP-8 architecture on an Intel 80x86 computer. It is an
environment with a text editor, assembly translator, virtual engine upon which to
execute machine code, and a debugging tool that allows visualization of registers,
memory, and I/O interface. A survey paper of Wolffe and Yurcik [25] lists seven
categories of early computer simulators, most of them obsolete now. Black and
Komala considered several computer simulators and listed their main properties
and functions in their paper [2]. The Bochs [3] emulator, written in C++, al-
lows the simulation of a variety of Intel x86 CPUs, common I/O devices, and a
BIOS on different platforms. Emu8086 [7] is an IDE with code editor, assembler,
disassembler, microprocessor emulator, and debugger, but it is limited to 16-bit
code and does not support I/O. SPIM [22] is a MIPS simulator designed to run
assembly code, and has good tracking capabilities, separate frames for data visu-
alization, and a built-in Assembler for this architecture. The MarieSim simulator
[14], written in Java, accompanies The Essentials of Computer Organization and
Architecture text, and is based on the MARIE architecture. It consists of an
editor, assembler, loader, and microprocessor with GUI interface, organized as
an IDE with visualization of a step execution mode, symbol table, data segment,
memory, registers, output, and data path animation. MARS [23] is an IDE de-
veloped in Java that was designed to be used with the Computer Organization
and Design text of Patterson and Hennessy [15]. It has a convenient GUI with
assembly code, registers, memory, and data segment visualizations. LARC [2]
architecture includes functional simulator of MIPS similar instructions, machine
and assembly language debugger.

All of the above mentioned simulators are appropriate for use in teaching
Computer Organization and Assembly classes, however they do not satisfy our
first goal of being simulation tools we could use for IBM mainframe-based classes
in Computer Organization and Assembly programming.

VisibleZ: A Mainframe Architecture Emulator for Computing Education 393

We did find and examine several IBM mainframe emulators including
FLEX-ES, zPDT, Hercules [7], and z390 [8], [20], [21]. FLEX-ES was developed
by Fundamentals Software, Inc., and is an emulator package that allows an IBM
31-bit machine to run on an x86 Intel machine. FLEX_ES still exists, but was
discontinued because IBM declined to renew licenses for the new IBM 64-bit
z/Architecture. For legal licensing issues, Hercules [8], is also not considered by
some to be completely legal software. zPDT is an IBM released emulation product
that can provide a virtual System/z architecture environment supporting selected
mainframe operating systems, middleware and software running on x86 processor-
compatible platform. It runs well and offers the full z/Architecture. The z390 [24]
is a Java-implemented set of portable tools with a GUI and a command line inter-
face, a macro assembler (HLASM), a linker/binder, a z/Architecture instruction
emulator, memory dumps, and trace facilities. The O’Kane’s text, Basic IBM
Mainframe Assembly Language Programming [12] uses the z390 as a replacement
for a real mainframe, but we could not find any execution traces or reviews of
the use of z390 in an educational setting. The most significant problem with the
mainframe emulators mentioned above is that they are commercial software sys-
tems whose main purpose is to replace an existing IBM mainframe machine. They
were not created for educational purposes and cannot easily be used to convey
the main system objects, relationships, and functionality of an IBM mainframe
to a student. While their supporting documentation is usually Web-based, it is
also cumbersome, and voluminous.

After surveying existing simulators, we decided to implement our own
emulator for the IBM mainframe z/Architecture – VisibleZ.

3. Analysis and Design of the VisibleZ Emulator.

3.1. Learning Goals. In designing the VisibleZ emulator, there were
a number of learning goals. All of these goals were conceived in the context of
teaching assembler and computer organization for a specific family of machines
– IBM’s System/z. Our learning goals seek to develop an effective and deeper
student understanding of:

• The mainframe machine components, including the CPU structure, and
machine instruction execution with the fetch/decode/execute cycle

• The flow of control of the execution of a program with sequencing of machine
instructions, comparisons, and branching

• The impact that architectural decisions make on instruction semantics.

• The use of base/displacement addressing as a technique for locating data in
memory.

394 David Woolbright, Vladimir Zanev, Neal Rogers

• Data representations and instruction formats

• The role of registers in arithmetic and address creation

• The instruction semantics of a fundamental set of assembler instructions.

Beside these learning goals, there was one overriding goal that motivated
us: To find a more effective method of teaching all of these concepts by building
a product that we could use in a classroom or with individual students. The
VisibleZ emulator that we built presents each student with an environment that
simulates and visualizes System/z architecture and its functioning.

3.2. Design Principles. After analysing the computer simulators above,
and examining our own specific needs, we established the following design require-
ment principles for the VisibleZ mainframe emulator. It must:

• Promote the teaching and learning of System/z concepts. Our aim is not
to replicate a machine, but to use a highly visual representation of the
machine as a teaching and learning tool. This requirement feature is unique
to VisibleZ in that other System/z emulators are designed to act as machine
replacements, specifically for professional programmers.

• Have a GUI front end that is projectable in a classroom.

• Model a basic von Neumann architecture, specifically, the IBM System/z.

• Run on PCs with existing operating systems.

• Include, as a minimum, the following basic mainframe architectural com-
ponents: main storage, CPU (with ALU, registers, and PSW), and an I/O
channel.

• Emulate a subset of mainframe instructions and be extensible in the sense
that students should be able to invent new instructions for the architecture
as part of a Computer Organization class.

• Allow students to build the executable code for an instruction by imple-
menting the instruction semantics in terms of Java objects.

• Provide for visualization of the execution (emulation) of machine instruc-
tions and other main emulator components – main storage, registers, PSW,
CPU, and ALU

• Be able to interpret object code directly. The goal is to take the executable
code generated by an assembler and have it directly executed in the emu-
lator. Students should also be able to build object code programs by hand
and have them directly executed.

VisibleZ: A Mainframe Architecture Emulator for Computing Education 395

• Be intuitively easy to use.

Our choice of Java as the implementation language was very natural – Java
is portable, and object-oriented, and would allow us to develop all the architec-
tural components as Java objects, providing the system with a rich functionality.
More importantly, our students learn Java as their first language, and we wanted
to have them study instruction semantics by writing Java code that becomes part
of the emulator.

Teaching mainframe introductory Computer Organization and Assembly
Programming classes using a real z/Architecture machine is not without problems.
While learning the main components of the z/Architecture and how they work
together is itself a worthy endeavour, the complexity and the abstraction layers
of the z/Architecture machine can be overwhelming for undergraduate students.
IBM z/Architecture machines are complex: multiple processing units (PU) – up
to 64 in six different functional categories for z9 ES; there is a “trimodal” way of
addressing with 24, 31, and 64-bit addresses; four different sets of CPU registers:
general purpose, floating-point, access, and control registers; a Program Status
Word (PSW) with 128 bits in several formats; a virtual storage system that maps
virtual addresses onto real addresses; a complex system of six classes of interrupts
and timing facilities; and a Channel I/O Subsystem which is in fact a separate
specialized computer. The CPU now has over a thousand machine instructions in
twenty six categories. VisibleZ addresses the complexity of a modern mainframe
by providing only those components of a real machine that are directly needed
by a programmer. This allows the student to focus on essential mainframe con-
cepts, components, and organization, and avoids the overwhelming details of the
mainframe z/Architecture.

The design of VizibleZ is based on some general and multimedia learning
and cognition principles [1], [4], [16]. We are applying the spatial contiguity
principle by designing VisibleZ with a main window that includes separate panels
for each component. Students assimilate mainframe concepts easily when machine
components are juxtaposed and exposed rather than appearing on separate panels
or screens. Following the temporal contiguity principle, we designed VisibleZ with
components presented simultaneously rather than successively. We have tried to
mitigate the overwhelming details of the z/Architecture by hiding extraneous
details following Mayer’s coherent principle of effective learning [11]. According
to the context principle [4], student learning depends on the context in which
concepts are presented. In VisibleZ, machine instructions are presented in the
context of an explicit representation of memory formats, registers, an animated
fetch-decode-execute cycle, and a coloring of instructions and components that

396 David Woolbright, Vladimir Zanev, Neal Rogers

provides visual semantic clues. All of these features help students develop a better
understanding of the mainframe architecture, and promotes effective learning of
mainframe concepts and components.

3.3. VisibleZ Architecture. The VisibleZ architecture is shown in
Figure 1, and includes the main components of a von Neumann machine (with
mainframe terminology and components): main storage, central processor unit
(CPU) with control unit, program status word (PSW), arithmetic logical unit
(ALU), registers, and channel I/O subsystem.

Main storage is viewed as a sequential collection of addressable bytes. It
contains the program as a sequence of machine instructions (in object code) and
all program data. The size of the main storage is configurable, but in most cases,
size N=1K or 2K bytes is sufficient for educational programs and data.

Fig. 1. VizibleZ Architecture

3.4. VisibleZ Functionality. The VisibleZ Central Processing Unit
(CPU) is the controlling system of emulator and consists of a Control Unit,
Program Status Word (PSW), Arithmetic Logical Unit (ALU) and Registers:
general-purpose registers (GPR) and floating-point registers (FPR) are provided.
The CPU controls the data flow from the main storage to and from the ALU
and the other CPU components. It fetches machine instructions from the main
storage, decodes them and sends the data in proper sequence to the ALU for
processing. The timing sequences of the Control Unit for machine instruction
execution are initiated by the user on a step-by-step basis. The PSW, on a real
machine, is a 128 bit special control register that contains information required
for the execution of the currently active program. The current state of the CPU
is displayed in a variety of PSW fields. The VisibleZ PSW includes the following

VisibleZ: A Mainframe Architecture Emulator for Computing Education 397

components of an actual PSW: instruction address (bits 64-127), Condition Code
(CC) (bits 18-19), and addressing mode (bits 31-32). Instructions may designate
information in one or more of 16 general purpose and 16 floating-point registers.
All registers are 64 bits. The GPRs are used as base-address registers, index
registers and as accumulators in some arithmetic and logical instructions. The
FPRs are used in floating-point instructions and contain floating-point operands.
The VisibleZ ALU is equipped to execute machine instructions in RR, RX, RS,
RI, SI, SS1, and SS2 formats. The structure of the VisibleZ ALU allows for
easy extension of the set of machine instructions with new instructions from the
z/Architecture or by user design. The following data formats are used with ma-
chine instructions: binary (signed and unsigned formats), decimal (zoned and
packed formats), floating-point (IEEE format), and alphanumeric [9], [10].

Input/Output (I/O) operations involve transfer of data between main stor-
age and an I/O device. I/O devices are attached to the I/O Channel which models
a simplified version of the z/Architecture channel subsystem by providing for up to
three input files with specific Data Definition (DD) names: FILEIN1, FILEIN2,
or FILEIN3. Three output files are also supported with Data Definition (DD)
names: FILEOUT1, FILEOUT2, and FILEOUT3. Record sizes for input and
output records are fixed at 80 bytes. Physical file names are specified using full
pathnames on the local machine. The I/O channel supports a limited collection of
I/O macros including OPEN, CLOSE, GET, and PUT. Within these constraints,
it is possible to assemble an object module program that reads and writes to files,
and have it execute in VisibleZ.

3.5. VisibleZ Visualization. The VisibleZ emulator includes a set of
graphical user interfaces for each of the main architectural components with the
ability to visualize the state, content and functionality of each component. The
set of GUIs run in a single window with separate panels for each component. The
following GUI panels were considered at the design level:

• A Memory panel displaying addresses and memory content (machine in-
structions and data) during program execution, with coloring that empha-
sizes the beginning locations of source and target fields.

• A PSW panel displaying the instruction address of the machine instruction
about to be executed, the condition code, and the addressing mode.

• A Register panel displaying the content of all registers with coloring that
emphasizes source, target, and index registers.

• A Decoding panel where the main parts of each instruction are exhibited
(object and explicit code formats).

398 David Woolbright, Vladimir Zanev, Neal Rogers

• A Control panel with buttons that allow program loading and reloading,
machine instruction execution (cycling), and PSW resetting.

• Info panels describing the main components of VisibleZ.

4. VisibleZ Implementation, Interface and Operation.

4.1. VisibleZ Implementation. VisibleZ is implemented as a collection
of Java classes in a project. Objects representing all the major architectural
components that are important to an assembly programmer are organized into
three main components:

• Architecture

• Instruction Set

• Interface

You can see a VisibleZ UML class diagram in Figure 2 with the structure
of these three VisibleZ main components. The Instruction set is modeled with
the Instruction class hierarchy. Currently there are six instruction format classes
(SS1, SS2, SI, RX, RS, and RR) that provide basic functionality. Each instruction
is equipped with an execute() method that is invoked during the fetch-decode-
execute cycle and represents the semantics of the instruction within the system.

By examining (or coding) the execute() method of an instruction, students
become familiar with the details of the architecture and the effects of each instruc-
tion on the state of the entire system. The system is designed for extensibility so
that new instructions and instruction formats can be added to the system easily.

The Architecture component consists of Java classes that implement the
functionality of the VisibleZ architecture presented in Figure 1 - CPU with PSW,
GPRegisters (general-purpose registers), FPRegisters (floating-point registers),
and two data format classes (Hex, PackedDecimal) with utility methods.

The Interface component contains a set of panels together with buttons,
textboxes, text areas, and component listeners accepting input from the key-
board and mouse, transferring the input action to the Architecture components,
and displaying information about the memory content, registers contents, PSW
instruction address and Code Condition, and fetch-load-execute phases. The In-
terface component is represented as a single Enterprise panel which is composed of
all other panels and GUI components. The Enterprise panel is the main tool that
users interact with when working with the emulator. For teaching purposes, ob-
jects from the Interface components – PSW panel, general registers panel, floating-
point registers panel, and the Enterprise panel have implemented listeners that

VisibleZ: A Mainframe Architecture Emulator for Computing Education 399

Fig. 2. VisibleZ UML Class Diagram

display information panels with explanations about the corresponding object.

4.2. VisibleZ Interface and Operation. The main user component
of the VisibleZ emulator is the virtual machine environment (see Figure 3) with
which the students interact. It is organized as a window containing a set of pan-
els implementing the main components of the mainframe architecture and their
functionality. VisibleZ includes a set of interfaces, one for each of our architecture
components. All components of the mainframe model – main storage, registers,
PSW, together with additional panels – JCL panel, fetch-decode panel, info pan-
els, and control buttons are visible on the main Enterprise panel.

Main storage is represented as a panel with an addressable space of bytes
in hexadecimal format. The size of the main storage is configurable. In Figure 3 it
consists of 1K of bytes. The main storage area contains the executable program
in machine format (the upper portion of the memory), the program data area
(in the middle), and a rudimentary operating system area (at the bottom). The
operating system is presented with a save area for registers, a parameter area,

400 David Woolbright, Vladimir Zanev, Neal Rogers

Fig. 3. VisibleZ Environment

and some simple channel I/O instructions with Supervisor Calls (SVCs).

Clicking on the Cycle button causes execution of the current instruction
and the next instruction is fetched and decoded. The instruction which is about
to be executed is colored and highlighted, the instruction address in the PSW
is updated to point at the beginning of the instruction, and the fetch-decode-
execute panel displays the instruction code of operation, object code, format, and
operands. Target fields are highlighted in red, source fields are highlighted in
green, and the current instruction in yellow. Index registers, when present, are
colored grey. Execution of the current instruction may also cause the Condition
Code to be updated on the PSW panel. Users see immediately the effects of each
instruction execution. By highlighting each instruction before it executes in the
memory, coloring the source and target fields, describing the current instruction in
the fetch/decode area, and showing the results of executing an instruction on the
memory, registers, and the PSW, VisibleZ draws a visually helpful and animated
picture of the state of the machine.

The Load Program button allows the user to load machine programs in
the main storage panel. VisibleZ is distributed with over a hundred pre-written
object code programs that are ready for execution and illustrate basic assembler

VisibleZ: A Mainframe Architecture Emulator for Computing Education 401

principles and machine and instruction specifics. The Reset PSW button sets the
instruction address of the PSW to the beginning of the program and allows the
user to start execution over at the beginning. Programs can also be easily reloaded
with the Reload Program button. Object code programs have a simple text file
format: each byte of object code is represented as two adjacent hexadecimal
digits and is separated from other bytes by whitespace (usually a single space).
Small assembly programs can be prepared for execution on VisibleZ by hand with
any text editor. Figure 4 depicts the process of machine program development
for a sample mainframe Assembly program [5]. For large assembler programs,
the machine (object) code file that is loaded into VisibleZ is prepared by first
assembling the program on a mainframe. The object module produced by the
HLASM assembler is used as input for a mainframe utility program that converts
the machine code to the VisibleZ format. This utility program is also available
for distribution with VisibleZ.

Fig. 4. Machine Program Development Fig. 5. Info Panel for FP Registers

Clicking on the main Interface components of the Enterprise panel opens
information panels with explanations about each component. In this way, stu-
dents are introduced to mainframe components with explanations, properties and
functions of the component. Figure 5 shows an information panel that describes
floating-point registers.

Clicking on the JCL tab opens the JCL Panel and clicking on the on the
Parameters tab opens the Parameters Panel.

VisibleZ object programs can read and write up to six sequential (QSAM-
type) input and output files. DD names are limited to six specific choices. The

402 David Woolbright, Vladimir Zanev, Neal Rogers

Fig. 6. JCL Panel Fig. 7. Parameters Panel

JCL panel can be used to establish the connection between the DD names used
inside an assembly program and the external physical file names. EBCDIC data
is automatically converted to ASCII data during input and output, so that text-
oriented data is easy to read on the host machine. VisibleZ supports OPEN and
CLOSE processing, PUT and GET macro code, and a limited set of supervisor
calls (SVC).

Support is also provided for testing subprograms that pass parameters.
The Parameters panel is used for entering up to eight values which can be passed
to a subprogram. Clicking the “Load Parameters” button stores the values in the
operating system memory area, builds a table of addresses for the parameters, and
initializes register 1 with the address of this table. After loading the parameters,
a subprogram is then free to process the parameters during program execution
using standard linkage techniques.

5. Teaching Mainframe Computer Organization and As-

sembly Language with VisibleZ. We are using VisibleZ in lectures, labs,
and assignments. VisibleZ is distributed in two formats, depending on how an
instructor intends to use it:

1) Executable Version

Java .class files are provided as an executable .jar file with full functionality
for all instructions. Source code for instructions is withheld. In this format,
students can create and load object programs, step through execution of each
instruction, and use the system as learning and debugging tool.

2) Extensible Version

Extensible source code is provided for the basic system as a Java BlueJ
project. Source code is also provided for all instructions, but only a working set
of instructions are fully functional with completely coded execute() methods. In

VisibleZ: A Mainframe Architecture Emulator for Computing Education 403

this format, an instructor can assign students the task of researching an instruc-
tion’s semantics, and building the Java code that reflects the semantics using the
emulator classes. Using the working set of completed instructions, students can
still step through execution of many instructions, and use the system as learning
and debugging tool. Note: Source code for the majority of instructions is not pro-
vided as a means of preserving the integrity of student assignments which involve
building this code.

VisibleZ has proven to be a valuable classroom demonstration tool for
covering the following topics:

• Introduction to System/z architecture

• Main storage organization

• Registers and register operations: general purpose, floating-point, control,
and access registers

• Data types

• The CPU and ALU

• Program Status Word fields and format

• Base/Displacement Addressing

• The fetch-decode-execute cycle

• Machine state and control

• Timing and interruptions

• The instruction set and instruction formats

• Assembly coding and translation of programs to machine code

• Interruptions and operating system support

• I/O processing

VisibleZ is supported by a web site that has links to articles, lessons, and videos
covering assembler concepts. The support site, http://csc.columbusstate.

edu/woolbright/vzHomepage.htm, is divided into three parts:

1) Concept Lessons – These lessons cover those ideas that are fundamental
to learning assembly language and machine architecture.

2) Instruction Lessons – Instruction semantics for each of the supported
instructions is described, numerous examples of each instruction are provided, and
tips for using each instruction are given. Additionally, VisibleZ is distributed with
a collection of object code programs that exercise every supported instruction.

404 David Woolbright, Vladimir Zanev, Neal Rogers

For each instruction, there are two or more object code programs that use the
instruction and allow a student to quickly see each instruction in action.

3) Building Instruction Lessons – A unique feature of VisibleZ is that it
provides an environment in which students can be asked to research the semantics
of an instruction, and to write the Java code that insures the instruction behaves
as described. Each machine instruction has an execute() method which contains
the required code. In fact, because of the object-oriented design, it is easy to
add new instructions and instruction formats to the system, providing students
an opportunity to experiment with the instruction architecture.

Several labs were developed in order to build students’ knowledge and
skills, and to help prepare the students for completing the assignments. These
labs are briefly summarized as follows:

• As new instructions are introduced, students execute the object code pro-
grams that are provided for each instruction. By observing the effects that
instruction execution has on the entire system, students become familiar
with the machine architecture, base/displacement addressing, fetch-execute
cycle, and the semantics of the specific instructions.

• Students learn the details of data representations like zoned decimal, packed
decimal, and two’s complement by seeing data displayed in memory, and by
examining the helper methods provided in the utility classes that come with
the system.

• After a sufficient number of instructions have been covered, the class begins
writing some simple mainframe assembly programs, and assembling them as
object modules. After converting the object code to a VisibleZ format and
loading the machine code into VisibleZ, students can single step through
each instruction to verify that each program works correctly, or debug the
code as needed.

• A mainframe program which reads and writes sequential files is introduced.
The object code is loaded into VisibleZ. Execution of the program intro-
duces I/O macros including OPEN, CLOSE, GET, PUT, and DCBs. This
program also provides a chance to introduce supervisor calls and interrupt
processing.

• Standard linkage techniques are introduced. Students use VisibleZ to build
parameters and a parameter address table in memory. Students observe
how a subprogram uses the data structure during execution to process the
parameters.

As a minimum, four assignments with VisibleZ are scheduled. The first

VisibleZ: A Mainframe Architecture Emulator for Computing Education 405

assignment covers base/displacement addressing and involves modifying the ob-
ject code for a small program in such a way that the base/displacement addresses
require modification. The second assignment investigates the role of index regis-
ters when computing an effective address. In the third assignment, each student
has to develop the Java code for the execute() method of several machine instruc-
tions. In this assignment, students also have to build object code programs that
demonstrate that each instruction is working correctly. The final assignment re-
quires that a team of two or three students design, develop, and test some of the
more complicated instructions like Translate (TR), Translate and Test (TRT),
Pack (PACK), Unpack (UNPK), Branch On Condition (BC) and Edit (ED).

For a course in computer organization, students could be asked to design
and code an entirely new instruction (or even a small instruction set) for the
system. This process could involve creating a new instruction format or using an
existing one. In fact, a whole new architectural component (like a stack), could
easily be added because of the system’s extensibility.

For the past four years, the authors have taught assembly language and
computer organization courses using VisibleZ at Columbus State University and
Marist College, New York. It has been used in conducting corporate training
classes in assembly language programming. In each case, we have found that
VisibleZ is a helpful tool for teaching and learning assembly language concepts.
Informal surveys of these classes indicate that students found that VisibleZ is
an effecting teaching and learning tool. So far we have taught a total of twelve
classes with about two hundred students. VisibleZ is free software. It has been
downloaded over one hundred times. The link for downloading VisisbleZ is at the
end of the paper.

6. Conclusions and Future Work. The main conclusions we draw
based on a long experience of teaching assembly language, is that VisibleZ is
an effective visualization tool for teaching mainframe architecture and Assembly
language. We believe the VisibleZ emulator offers a new approach to learning
mainframe concepts and architecture, and exploits the object-oriented skills of
our students. This approach causes students to think deeply about instruction
semantics in a way that our previously traditional approach did not.

VisibleZ project is an on-going work. The object-oriented design and im-
plementation allow development of new extensions and enhancements of VisibleZ
features, functionality, and interfaces. Future work in the short term includes: ex-
tending the instruction set with floating-point instructions (decimal, hexadecimal,
and binary), adding additional control instructions, and developing a new visu-

406 David Woolbright, Vladimir Zanev, Neal Rogers

alization and animation of the fetch-decode cycle. Our long term plans include
implementing a better I/O Channel subsystem and a simple mainframe Supervi-
sor. Finally, if time and resources permit, we would like to develop a Web-based
VisibleZ emulator.

The VisibleZ emulator homepage is located at the URL below and contains
links for downloading the product, a video demo, and a collection of lessons.

http://csc.columbusstate.edu/woolbright/visiblez.xml

R EFER EN CES

[1] Ambrose S. A. et al. How learning works. Seven research based principles
for smart teaching. John Wiley & Sons, ISBN 9780470484104, 2010.

[2] Black M., P. Komala. A full system x86 simulator for teaching com-
puter organization. In: Proceedings of the SIGCSE’11, Dallas, Texas, 2011,
365–370.

[3] Bochs IA-32 emulator. http://bochs.sourceforge.net/, January 23rd,
2015

[4] Domjan M., J. Gray. The principles of learning and behavior. Cengage
Learning. 6th edition, ISBN 9780495601999.

[5] Corliss M., R. Hendry LARC: A little architecture for the classroom.
Journal of Computing Sciences in Colleges, 24 (2009), No 6, 15–20.

[6] Carrano F. Assembler language programming for the IBM 370. The Ben-
jamin/Cummings Publ. Co. Inc., 1988.

[7] EMU8086Emulator.https://archive.org/details/tucows_325007_
Emu8086_-_Microprocessor_Emulator, January 23rd, 2015.

[8] Hercules System/370, ESA/390, and z/Architecture emulator.
http://www.hercules-390.org, January 23rd, 2015

[9] IBM z/Architecture principles of operation. 9th Edition, SA22-7832-08, 2010.

[10] IBM Redbooks. ABCs of z/OS system programming, 10 (2008).

[11] Mayer R. Multimedia learning. Cambridge University Press, 2001, ISBN
0521787491.

VisibleZ: A Mainframe Architecture Emulator for Computing Education 407

[12] O’Kane K. Basic IBM mainframe assembly language programming. Cre-
ateSpace Paramount, CA, 2011.

[13] J. Kincaid, K. Westerlund. Simulation in education and training. In:
Proceedings of 2009 winter simulation conference, Austin, Texas, December,
2009, 273–280.

[14] Null L., J. Lobur. MarieSim: The Marie computer simulators. ACM jour-
nal of educational resources in computing, 3 (2003), No 2.

[15] Patterson D., J. Hennessy. Computer organization and design. 4th Ed,
Morgan Kaufmann Publ., 2008.

[16] N. Rutten, W. Van Joolingen, J. Van Der Veen. The learning effect
of computer simulations in science education. Computers & Education, 58

(2012), No 1, 136–153.

[17] Schools teaching mainframe subjects.
http://www.mainframes.com/schools.htm, January 23rd, 2015.

[18] Shelburne B. A PDP-8 emulator program. ACM journal of educational
resources in computing, 2 (2002), No 14, 17–47.

[19] Skrien D. CPU Sim 3.1: a tool for simulating computer architectures in
computer organization classes. ACM journal of educational resources in com-
puting, 1 (2001), No. 4, 46–59.

[20] Smith P. III, The state of IBM mainframe emulation. zJournal,
Apr/May2007, 62–64. http://enterprisesystemsmedia.com/magazines/

enterprise-tech-journal, January 23rd, 2015.

[21] Smith P. III, IBM mainframe emulation: reloaded. zJournal, Decem-
ber 2008/January 2009, 36–38. http://enterprisesystemsmedia.com/

magazines/enterprise-tech-journal, January 23rd, 2015.

[22] SPIM: A MIPS32 simulator. http://spimsimulator.sourceforge.net/,
January 23rd, 2015.

[23] Vollmar K. , P. Sanderson. MARS: An education-oriented MIPS as-
sembly language simulator. In: Proceedings of SIGCSE’06, March 1-5, 2006,
Houston, Texas, 239–243.

408 David Woolbright, Vladimir Zanev, Neal Rogers

[24] z390 portable mainframe assembler and emulator project, 2008.
http://www.z390.org/, January 23rd, 2015.

[25] Wolffe G., W. Yurcik, H. Osborne, M. Holliday. Teaching com-
puter organization/architecture with limited resources using simulators. In:
Proceedingsof the SIGCSE’02, February 27-March 3, 2002, Covington, Ken-
tucky, USA, 176–180.

[26] Yehezkel C., W. Yurcik et al. Three simulator tools for teaching com-
puter architecture: EasyCPU, Little man computer, and RTLSim. ACM jour-
nal of educational resources in computing, 1 (2001), No 4, 1–15.

David Woolbright

Columbus State University

TSYS School of Computer Science

4225 University Ave,

Columbus, GA 31907

e-mail: woolbright_david@columbusstate.edu

Vladimir Zanev

Columbus State University

TSYS School of Computer Science

4225 University Ave,

Columbus, GA 31907

e-mail: zanev_vladimir@columbusstate.edu

Neal Rogers Columbus State University

TSYS School of Computer Science

4225 University Ave,

Columbus, GA 31907

e-mail: rogers_neal@columbusstate.edu

Received November 11, 2014

Final Accepted January 23, 2015

