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Abstract. In this paper we introduce and study the lp-lattice summing op-
erators in the category of operator spaces which are the analogous
of p-lattice summing operators in the commutative case. We study
some interesting characterizations of this type of operators which
generalize the results of Nielsen and Szulga and we show that
Λl∞ (B (H) , OH) 6= Λl2 (B (H) , OH), in opposition to the commutative
case.

Introduction. The notion of p-lattice summing was introduced and
studied by Yanovskii in [24] for p = 1 and generalized by Nielsen and Szulga
in [16, 22]. In this paper we extend this notion and some results to the theory
of operator spaces (or the non-commutative case) which is recently studied by
[1, 2, 3, 6, 7, 19, 20, 21].
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The paper is divided into four sections. In the first one, we recall some
classical definitions and we give some preliminary facts such that: convexity and
concavity, order bounded operators and the notion of p-summing operators.

In section two, we try to recover some definitions and results concerning
the recent theory of operator spaces and we give some remarks about completely
bounded operators.

We study in section three the notion of lp-lattice summing operators u :
E −→ Y between an operator space E and a Banach lattice X, which extends the
p-lattice summing operators. This generalization is a natural non-commutative
analogous of the notion of p-lattice summing operators. We show some interesting
characterizations of this type of operators. We also give briefly the connection
between lp-summing (as studied in [14]) and lp-lattice summing operators for
some special spaces.

In the final section, we show that

πlp (B (H) , OH) 6= Λl2 (B (H) , OH)

for all 2 < p < ∞ in contrast to Banach space theory.

We finish this paper by mentioning that the little Grothendieck’s theorem is not
true for this notion.

1. Notation and preliminaries. For the background concerning
ordered vector spaces and Banach lattices we refer to [13] and [25]. Let n be an
integer. For a Banach lattice X and 1 ≤ p ≤ ∞, we denote by X

(
lnp
)

(the reader
can consult [13, Part II. pp. 40–43]) the space of all sequences x = (x1, . . . , xn)
of elements of X for which

‖x‖
X(lnp ) =

∥∥∥∥∥∥

(
n∑

1

|xi|
p

) 1
p

∥∥∥∥∥∥
if 1 ≤ p < ∞

and

‖x‖X(ln
∞

) =

∥∥∥∥ sup
1≤i≤n

|xi|

∥∥∥∥ if p = ∞.

The space X
(
lnp
)

is a Banach lattice equipped with the natural order

x ≤ y ⇐⇒ ∀i, xi ≤ yi.
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Let now X be a Banach space and 1 ≤ p ≤ ∞. We denote by lp (X) (resp.
lnp (X)) the space of all sequences (xi) in X with the norm

‖(xi)‖lp(X) =

(
∞∑

1

‖xi‖
p

) 1
p

(resp.
∥∥∥(xi)1≤i≤n

∥∥∥
lnp (X)

=

(
n∑

1

‖xi‖
p)

1
p

)
.

and by lωp (X) (resp. ln ω
p (X)) the space of all sequences (xi) in X with the norm

‖(xn)‖lωp (X) = sup
‖ξ‖X?=1

(
∞∑

1

|〈xi, ξ〉|
p)

1
p

)

(resp. ‖(xn)‖ln ω
p (X) = sup

‖ξ‖X?=1

(
n∑

1

|〈xi, ξ〉|
p)

1
p

)
.

We continue these preliminaries by recalling the definition of the p-con-
vexity and p-concavity.

Definition 1.1. Let E be an arbitrary Banach space, X a Banach lattice
and let 1 ≤ p ≤ ∞.

(i) A linear operator u : E −→ X is called p-convex if there is a constant
C such that, for all n in N the operators

lnp (E) −→ X
(
lnp
)

(x1, . . . , xn) 7−→ (u(x1), . . . , u(xn))

are uniformly bounded by C.
(ii) A linear operator u : X −→ E is called p-concave if there is a constant

C such that, for all n in N the operators

X
(
lnp
)

−→ lnp (E)

(x1, . . . , xn) 7−→ (u(x1), . . . , u(xn))

are uniformly bounded by C.
The smallest constant C for which this holds is denoted by C p (u) and Cp (u)
respectively.
A Banach lattice X is p-convex (resp. p-concave) if idX is p-convex (resp. p-
concave).
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Remark 1.2. Any linear p-convex (resp. p-concave) operator u is
bounded and ‖u‖ ≤ Cp (u) (resp. ‖u‖ ≤ Cp (u)).
Every Banach lattice is 1-convex and ∞-concave. The p-convexity and p-concavity
for 1 ≤ p ≤ ∞ are decreasing and increasing in p, respectively see [13, Part
II. 1.d.5]. For example, Lp for 1 ≤ p < ∞ is p-convex and p-concave, and
Cp (Lp) = Cp (Lp) = 1.
Suppose now that X is a complete Banach lattice. An operator u ∈ B(E,X) is
called order bounded (see [15, 8]) if u (BX) is an order bounded subset of X. In
this case, we put

M (u) =
∥∥supx∈BX

|u (x)|
∥∥ .

We can show that (see [22] or [11]) M is a norm on M(E,X), the space of all
order bounded maps from E to X.
If w : X −→ Y (Y a complete Banach lattice) is a positive operator (i.e., w (x) ≥
0, for all x in X+), then wu is order bounded.

The following simple remark will be needed in the sequel. For more
precision see for example [8, Lemma 1.1].

Remark 1.3. Let n be an integer and X be a Banach lattice. Let
v : lnp∗ −→ X such that v (ei) = xi (1 ≤ p ≤ ∞). We have

M (v) = ‖(xi)1≤i≤n‖X(lnp ) =

∥∥∥∥∥(
n∑

i=1

|xi|
p)

1
p

∥∥∥∥∥ .(1.1)

If X = C(K), M (v) = ‖v‖.
We give now the p-lattice summing (1 ≤ p ≤ ∞) notion for operators

from a Banach space with values in a Banach lattice. It was first studied by
Yanovskii in [24] for p = 1 and by Nielsen and Szulga in [16] and [22] for p > 1.

Definition 1.4. Let 1 ≤ p ≤ ∞. Let X be a Banach space, Y a Banach
lattice and let u : X −→ Y be a linear operator. We will say that u is “p-
lattice summing” if there is a positive constant C such that for every n in N and
(x1, . . . , xn) in E, we have

‖(u (xi))‖X(lnp ) ≤ C ‖(xi)‖ln ω
p (E) .

(If p = ∞ the sums should be replaced by sup).

We write λp (u) for the smallest constant C satisfying the above inequality.
We will denote by Λp (E,X) the space of all p-lattice summing operators,

which is a Banach space if we consider as the norm λp (.).
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Remark 1.5. Let u : E −→ X be a linear operator from a Banach
space E into a complete Banach lattice X. Then,

u ∈ Λ
∞

(E,X) ⇐⇒ u is ∞-convex ⇐⇒ u ∈ M (E,X)

and
λ∞ (u) = C∞ (u) = M (u) .(1.2)

2. An introduction to operator spaces. If H is a Hilbert space,
we let B(H) denote the space of all bounded operators on H and for every n

in N we let Mn denote the space of all n × n-matrices of complex numbers, i.e.,
Mn = B(ln2 ). If X is a subspace of some B(H) and n ∈ N, then Mn (X) denotes
the space the space of all n × n-matrices with X-valued entries which we in the
natural manner consider as a subspace of B(ln2 (X)). An operator space X is a
norm closed subspace of some B(H) equipped with the distinguised matrix norm
inherited by the spaces Mn (X), n ∈ N.

In [19], Pisier constructed the operator Hilbert space OH (i.e., the unique
space verifying OH? = OH completely isometrically as in the case of Banach
spaces, because there are Hilbert spaces in this category which are not completely
isometric) and generalized in [20] (also Junge [9]) the notion of p-summing opera-
tors to the non-commutative case.

Let H be a Hilbert space. We denote by Sp (H) (1 ≤ p < ∞) the Banach
space of all compact operators u : H −→ H such that Tr(|u|p) < ∞, equipped
with the norm

‖u‖Sp(H) = (Tr(|u|p))
1
p .

H = l2 (resp. ln2 ), we denote simply Sp (l2) by Sp (resp. Sp (ln2 ) by Sn
p ). We

denote also by S∞ (H) (resp. S∞) the Banach space of all compact operators
equipped with the norm induced by B(H) (resp. B(l2)) (Sn

∞ = B(ln2 )). Recall

that if
1

p
=

1

q
+

1

r
(1 ≤ p, q, r < ∞), then u ∈ BSp(H) if and only if there are

u1 ∈ BSq(H), u2 ∈ BSr(H) such that u = u1u2, where BSp(H) is the closed unit
ball of Sp (H).
Let now X be a vector space. If for each n ∈ N, there is a norm ‖·‖n on
Mn (X), the family of norms {‖·‖n}n≥1 is called an Lp-matricial structure on X

for 1 ≤ p ≤ ∞ if: for all a, b in Mn (C) = B (ln2 ); x ∈ Mn (X) and y ∈ Mm (X)
we have

(i) ‖axb‖n ≤ ‖a‖Mn(C) ‖x‖n ‖b‖Mn(C)

(ii) ‖x ⊕ y‖n+m =

{
(‖x‖p

n + ‖y‖p
m)

1
p if p is finite

max {‖x‖n , ‖y‖m} if p is infinite,
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where

‖x ⊕ y‖n+m =

∥∥∥∥
(

x 0
0 y

)∥∥∥∥
n+m

.

We say that X is Lp-matricially normed if it is equipped with an Lp-matricial
structure (which we suppose complete). Ruan proved in [21] and simplified (with
Effros) in [7] an important theorem which is an abstract matrix norm charac-
terization of operator spaces. This theorem states that: for any L∞-matricial
structure on a vector space X, there is a Hilbert space H and an embedding
of X into B (H) such that for all n ≥ 1, the norm ‖·‖n on Mn (X) coincides
with the norm induced by the space B (ln2 (H)). In other words, he has given an
abstract characterization of operator spaces. Also in [12] we have proved that,
if X is p-matricially normed with p = 1, then there is an operator structure on
X such that Mn (X) = Sn

1 [X], where Sn
1 [X] is the finite dimensional version of

S1 [X] = S1⊗̂X, the projective tensor product of S1 by X which is introduced in
[3, 6] and [6]. For p 6= 1, the problem is open.

Definition 2.1. Let H,K be Hilbert spaces. Let X ⊂ B(H) and Y ⊂
B (K) be two operator spaces. A linear map u : X −→ Y is completely bounded
(in short c.b.) if the maps

un : Mn (X) −→ Mn (Y )
(xij)1≤i,j≤n

7−→ (u(xij))1≤i,j≤n

are uniformly bounded when n −→ +∞, i.e. supn≥1 ‖un‖ < +∞.

In this case we put, ‖u‖cb = supn≥1 ‖un‖ (=⇒ ‖u‖ ≤ ‖u‖cb) and we
denote by cb (X,Y ) the Banach space of all c.b. maps from X into Y which is
also an operator space (Mn(cb (X,Y )) = cb (X,Mn (Y )), see [3, 6]. If we denote
by X ⊗min Y the subspace of B (H ⊗2 K) with induced norm, it is well known
by [17] that

‖u‖cb =
∥∥IB(l2) ⊗ u

∥∥
B(l2)⊗minX−→B(l2)⊗minY

.

We continue our introduction by mentioning briefly some properties con-
cerning completely bounded operators. Consider Y ⊂ A (a commutative C ∗-
algebra) ⊂ B (H) and let X be an arbitrary operator space. Then,

B (X,Y ) = cb (X,Y )

and

‖u‖ = ‖u‖cb .(2.1)
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Because Mn ⊗min Y ≡ Mn ⊗ε Y isometrically (Mn ⊗ε Y is the injective tensor
product of Mn by Y in the commutative case ), see for example [18, p. 69,
Corollary 3.18].

We recall that by [19, Proposition 1.5, p. 18] OH is homogeneous, namely, every
bounded linear operator u : OH −→ OH is automatically c.b and

‖u‖ = ‖u‖cb .(2.2)

Note also by Corollary 2.4 in [19] that S2 is completely isometric to OH×
OH. We denote by OHn the n-dimensional version of the Hilbert operator space
OH. If now SN

2 (N ∈ N) is equipped with the operator space structure OHN2 ,
then for any linear map u : SN

2 −→ OHN2 we have by homogeneity of OH

‖u‖ = ‖u‖cb .(2.3)

Let now X ⊂ B (H). We have by Pisier [20, p. 32]

l∞ (X) = l∞ ⊗min X = B (l1, X) .

We can show that for all n in N and 1 ≤ p ≤ ∞

‖v‖cb = sup
a,b∈B+

S2p(H)

(

n∑

1

‖axib‖
p

Sp(H))
1
p =

∥∥∥∥∥

n∑

1

ej ⊗ xj

∥∥∥∥∥
lnp⊗minX

(2.4)

if p is finite and

‖v‖cb =

∥∥∥∥∥

n∑

1

ej ⊗ xj

∥∥∥∥∥
ln
∞
⊗minX

=

∥∥∥∥∥

n∑

1

ej ⊗ xj

∥∥∥∥∥
ln
∞
⊗εX

= ‖v‖(2.5)

if p = ∞. Where v : lnp∗ −→ X such that v (ei) = xi.

3. lp-lattice summing operators. We now give the lp-lattice sum-
ming (1 ≤ p ≤ ∞) notion for operators from an operator space with values
in a Banach lattice as an adaptation of the non-commutative case see [9, 14]
to p-lattice summing as used in [22, 24] and we characterize them. The non-
commutative version can be introduced as follows.

Definition 3.1. Let 1 ≤ p ≤ ∞. Let E ⊂ B (H) be an operator space,
X be a complete Banach lattice and u : E −→ X be a linear operator. We will
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say that u is “lp-lattice summing” if there is a positive constant C such that for
every n in N the mappings

Un : lnp ⊗min E −→ X
(
lnp
)

n∑
1

ei ⊗ xi 7−→ (u(x1), . . . , u(xn))

are uniformly bounded by C (i.e. ‖Un‖lnp⊗minX−→X(lnp ) ≤ C).

We denote by λlp (u) = supn ‖Un‖lnp⊗minX−→X(lnp ).

We will denote by Λ
lp

(E,X) the space of all lp-lattice summing operators
and we equip it with the norm λlp (·) for which it becomes a Banach space.

We will need by (2.4) and (2.5) the following reformulation of the above
definition.

The operator u is lp-lattice summing and λlp (u) ≤ C, if and only if, for
every n in N and every linear operator v : lnp∗ −→ E we have

∥∥∥∥∥∥

(
n∑

1

|uv (ei)|
p

) 1
p

∥∥∥∥∥∥
≤ C ‖v‖cb(3.1)

for p < ∞. For the case p = ∞, the sum should be replaced by sup. The space
lnp∗ is equipped with its natural operator space structure, see [20, Chapter 2].

From this equivalence we obtain the following remark.
Remark 3.2.

1. p-lattice summing =⇒ lp-lattice summing and λlp (u) ≤ λp (u).
2. Let E ⊂ A (a commutative C∗-algebra) ⊂ B (H) and let X be an arbitrary
Banach lattice. Then by (2.1) and (3.1), we have

Λlp (E,X) = Λp (E,X) .

3. If E = OH we have, Λl2 (E,X) = Λ2 (E,X) and λl2 (u) = λ2 (u) because
l2 (I) is by [20, Proposition 2.1, p. 32] completely isometric to OH (I) for any
index set I.

Recalling now the definition of lp-summing operator as studied in [14].
An operator u between an operator space E ⊂ B (H) and a Banach space X is
lp-summing if there is a constant C such that for all n in N and all finite sequence
(xi)1≤i≤n in X, we have

(
n∑

1

‖u (xi)‖
p

) 1
p

≤ C sup
a,b∈B+

S2p(H)

(
n∑

n=1

‖axib‖
p

Sp(H)

) 1
p

.
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In other words, u transform weakly lp-summable sequences in the non-commuta-
tive case into strongly lp-summable sequences in the commutative case.

We denote by πlp (u) the smallest constant C for which this holds and
by Πlp (E,X) the space of all lp-summing operators with the norm πlp (·) which
becomes a Banach space. We have
4. X, p − concave =⇒ (λlp (u) =⇒ πlp (u)),

X, p − convex =⇒ (πlp (u) =⇒ λlp (u)),
X = Lp =⇒ (πlp (u) = λlp (u)).

Remark 3.3. We have from (2.3) that the operator u is lp-lattice
summing and λlp (u) ≤ C if and only if

∥∥∥∥∥∥

(
n∑

1

|u (xi)|
p

) 1
p

∥∥∥∥∥∥
≤ C sup

a,b∈B+
S2p(H)

(
n∑

n=1

‖axib‖
p

Sp(H)

) 1
p

(3.2)

if p is finite and if p is infinite we have by (2.5)

Λ
l∞

(E,X) = Λ
∞

(E,X)

and

λ
l∞

(u) = λ
∞

(u) .(3.3)

Let now u : X −→ Y be a bounded linear operator between Banach
lattices X,Y . We say that u is p-regular (1 ≤ p ≤ ∞) if there is a positive
constant C such that for all finite sequence (xi) ⊂ X, we have

∥∥∥∥
(∑

|T (xi)|
p
) 1

p

∥∥∥∥ ≤ C

∥∥∥∥
(∑

|(xi)|
p
) 1

p

∥∥∥∥ .

The best possible constant will be denoted by ρp (u).

We will denote by ρp (X,Y ) the space of all p-regular operators and we
equip it with the norm ρp (·) for which it becomes a Banach space.

Recall that by Krivine [10] (see also [13, Part.II.1.f.14 and 1.d.9]) every
linear operator is 2-regular and every positive operator is p-regular for 1 ≤ p ≤ ∞.
If p = 2, ρp(w) = KG ‖w‖ (KG is the universal Grothendieck constant) and
ρp(w) = ‖w‖ if p 6= 2.

Proposition 3.4. If X = C (K), we have

u is p-regular if and only if u is lp-lattice summing
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and

ρp(u) = λlp(u).

P r o o f. By (2.1), it is easy to see that: u is p-regular if and only if for
every n in N and v : lnp∗ −→ X, we have

∥∥∥∥∥∥

(
n∑

1

|uv (ei)|
p

) 1
p

∥∥∥∥∥∥
≤ ρp(u)M (v) .

By Remark 1.3, we have M (v) = ‖v‖ = ‖v‖cb (Remark 3.2.2) and we conclude
by the proof, because ‖v‖ = ‖v (ei)‖ln w

p
. �

Remark 3.5. (i) Clearly the class of lp-lattice summing operators is
not an ideal in Pietsch’s sense but it is an ideal on left. Indeed, consider u, E,
X as in Definition 3.1. Let E0 be an operator space and let u0 : E0 −→ E be a
completely bounded operator. Then by (3.1), we have

∥∥∥∥∥∥

(
n∑

1

|uu0v (ei)|
p

) 1
p

∥∥∥∥∥∥
≤ λlp (u) ‖u0v‖cb ≤ λlp (u) ‖u0‖cb ‖v‖cb .

Hence, uu0 is lp-lattice summing and λlp (uu0) ≤ λlp (u) ‖u0‖cb.
(ii) On the other hand, if w : X −→ Y is a bounded linear operator

between Banach lattices X,Y such that w is p-regular (as defined above) for
1 ≤ p ≤ ∞, then wu is lp-lattice summing and λlp (wu) ≤ λlp (u) ρp(w). Indeed,
always by (3.1) we have

∥∥∥∥∥∥

(
n∑

1

|wuv (ei)|
p

) 1
p

∥∥∥∥∥∥
≤ ρp(w)

∥∥∥∥∥∥

(
n∑

1

|uv (ei)|
p

) 1
p

∥∥∥∥∥∥
≤ λlp (u) ρp(w) ‖v‖cb .

We now give some characterizations for the lp-lattice summing operators.
The technique of proofs depend vigorously on ideas in [16], but slightly different
from the original. Because we will be working with the finite dimensional lnp
instead of Lp.

Theorem 3.6. Let 1 ≤ p ≤ ∞. Let E be any operator space and X be a
complete Banach lattice. Then, the following properties of a positive constant C

and a linear map u : E −→ X are equivalent:
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(i) u ∈ Λ
lp

(E,X) and λlp (u) ≤ C.
(ii) For any n in N and any v : lnp∗ −→ E such that ‖v‖cb ≤ 1, we have

λl∞ (uv) ≤ C.

In this case we have

λlp (u) = sup

{
M (uv) : n ∈ N, v ∈ B

cb
(
ln
p∗

,E
)
}

.

P r o o f. Suppose in the first that p is finite. Consider u ∈ Λ
lp

(E,X) and
v in B

cb
(
ln
p∗

,E
). We have

uv (x) = uv

(
n∑

1

λiei

)
=

n∑

1

λiuv(ei)

and therefore

|uv (x)| =

∣∣∣∣
n∑
1

λiuv(ei)

∣∣∣∣

(by Hölder’s inequality) ≤

(
n∑
1
|λi|

p∗
) 1

p∗
(

n∑
1
|uv(ei)|

p

) 1
p

≤ ‖x‖

(
n∑
1
|uv(ei)|

p

) 1
p

.

Hence

sup
x∈Bln

p∗

|uv (x)| ≤

(
n∑

1

|uv(ei)|
p

) 1
p

.

Taking the norm on both sides

∥∥∥∥∥∥
sup

x∈Bln
p∗

|uv (x)|

∥∥∥∥∥∥
≤

∥∥∥∥∥

(
n∑
1
|uv(ei)|

p

) 1
p

∥∥∥∥∥
≤ λlp (u) ‖v‖cb .

This implies by using (3.1) that

λl∞ (uv) ≤ λlp (u) ≤ C.
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Conversely, let n be an integer in N and v be an operator in B
cb
(
ln
p∗

,E
) such that

v (ei) = xi. We have

∥∥∥∥∥

(
n∑
1
|u (xi)|

p

) 1
p

∥∥∥∥∥ =

∥∥∥∥∥

(
n∑
1
|uv (ei)|

p

) 1
p

∥∥∥∥∥
(by (1.1)) ≤ l (uv)

(by (1.2) and (3.3)) ≤ λl∞ (uv)

≤ C.

This implies λlp (u) ≤ C.

The case p = ∞. i =⇒ ii is trivial by Remark 3.5.i. Conversely, Let
x1, . . . , xn in E, ε > 0 and E0 be the subspace of E spanned by x1, . . . , xn.
Consider the following diagram

lN1
q

−→ E0
i

−→ E
u

−→ X

where q is the canonical surjection from lN1 (N is suitably chosen) into E0. By
(2.5), ‖q‖cb = ‖q‖ ≤ 1 + ε. Then we can take v = iq. Hence uv ∈ Λ

l∞

(
lN1 , X

)

implies that u ∈ Λ
l∞

(E,X) which concludes the proof. �

Corollary 3.7. Consider p,E,X and u as in the above theorem. We
have

Λ
l∞

(E,X) ⊂ Λ
lp

(E,X) ⊂ Λ
l2

(E,X)

and

λl2 (u) ≤ λlp (u) ≤ λl∞ (u) .

P r o o f. The second inequality is a simple consequence of Remark 3.5.ii.
Concerning the first and before embarking on the proof, let us recall some facts
about ln2 and its embedding into LN

p . Let D = {−1,+1}N equipped with its
normalized uniform measure µ and its Borel σ-algebra B. We denote by εi :
D −→ {−1,+1} the i-th coordinate and let Bn be the σ-algebra on D generated
by the first n-coordinates. Lp(D,Bn,µ) is isometric to L2n

p ( where LN
p is the space

R
N (or C

N ) equipped with the norm
∥∥∥{αi}1≤i≤N

∥∥∥
LN

p

=

(
1

N

N∑

1

|αi|
p

) 1
p

if p is

finite and we take max
1≤i≤N

|αi| if p is infinite.
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From some classical inequalities of Kintchine, we have: for each p there
are positive constants Ap and Bp such that

Ap

(
n∑

1

|αi|
2

) 1
2

≤

∥∥∥∥∥

n∑

1

αiεi

∥∥∥∥∥
Lp(D,Bn,µ)

≤ Bp

(
n∑

1

|αi|
2

) 1
2

.

We denote by Rn
p the closed linear subspace of L2n

p of the functions {εi, 1 ≤ i ≤ n}.
By the above inequalities, Rn

p is isomorphic to ln2 . Let rn
p : Rn

p −→ ln2 be this
isomorphism. We can take

∥∥rn
p

∥∥
cb

≤ 1. We know by [20, p. 109] that there is a

c.b. projection Pp : L2n

p
−→ Rn

p
.

Consider now the following diagram

L2n

p

Pp
−→ Rn

p

rn
p

−→ ln2
v

−→ E
u

−→ X.

If u ∈ Λ
lp

(E,X) then uvrn
p Pp ∈ Λ

l∞
(E,X). As rn

p Pp is surjective then uv ∈
Λ

l∞
(ln2 , X) and therefore u ∈ Λ

l2
(E,X). �

Corollary 3.8. If we replace E by OH in Corollary 3.7, then

Λ
l∞

(OH,X) = Λ
l2

(OH,X) .

P r o o f. Consider u in Λ
l2

(OH,X). Let n be in N and i : OHn −→ OH

be the canonical injection. We have ui ∈ Λ
l∞

(OHn, X) and by Remark 3.5.i,
u ∈ Λ

l∞
(OH,X). �

Before stating the next result, it will be convenient to recall here the
following definition: we say that a bounded linear operator u between Banach
spaces X,Y is integral and we write u ∈ I (X,Y ) if it admits a factorization

X
α

−→ C (K)
id
−→ L1 (K,µ)

β
−→ Y

where µ is a probability measure on a compact K and α, β are bounded linear
operators. The integral norm of u is the infimum of all possible values of ‖α‖ ‖β‖
in the previous diagram. The integral operators I (X,Y ) with norm i (u) form a
Banach operator ideal.

Proposition 3.9. Let u be a linear operator from an operator space E

into a complete Banach lattice X. Then, the following conditions of a positive
constant C are equivalent:

(i) u ∈ Λ
l∞

(E,X) and λl∞ (u) ≤ C.
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(ii) For every n in N and every positive w : X −→ ln1 , ‖w‖ ≤ 1 then wu

is integral and i (wu) ≤ C.

Moreover,

λl∞ (u) = sup
{
i (wu) , n ∈ N and w in B+

B(X,ln1 )

}
.

P r o o f. (i) =⇒ (ii). By (3.3) we consider u in Λ
∞

(E,X). Let n be in N

and let w : X −→ ln1 be a positive operator. By Remark 1.5, we have wu order
bounded from E into ln1 and hence integral by [11, Proposition 3.1] because ln1 is
1-concave with C1(l

n
1 ) = 1 or by [5, Theorem 5.19, p. 104] we have

i (wu) = M (wu)
(by (1.3)) = λ∞ (wu)
(Remark 3.5.ii) ≤ ‖w‖ λ∞ (u) .

(ii) =⇒ (i). Consider x1, . . . , xn in BE. Let y = sup {|u (xi)| , 1 ≤ i ≤ n}.
Let L (y) be an abstract L1-space generated by y (see [8, p. 221]) and let w :
X −→ L (y) the natural map (which is positive) such that ‖w (y)‖ = ‖y‖. Let
M = {|wu (xi)| , 1 ≤ i ≤ n} ∪ {w(y)} which is finite and ε > 0. We know by [5,
Lemma 3.3] that there exists an N in N, a finite rank projection p in B(L (y)),
where p (L (y)) is isomertrically isomorphic to lN1 with N = dim(p(L (y))), and
‖p‖ = 1 such that, for all i

‖pwu (xi) − wu (xi)‖ < ε

and

‖pw (y) − w (y)‖ < ε

Consider the following diagram

E
u

−→ X
w

−→ L (y)
p

−→ lN1 .
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Thus, we have that
∥∥∥∥ sup

1≤i≤n

|u (xi)|

∥∥∥∥ = ‖y‖ = ‖w (y)‖ =

∥∥∥∥w
(

sup
1≤i≤n

|u (xi)|

)∥∥∥∥

≤ (1 + ε) ‖pw (y)‖ = (1 + ε)

∥∥∥∥pw

(
sup

1≤i≤n

|u (xi)|

)∥∥∥∥

≤ (1 + ε)

∥∥∥∥
(

sup
1≤i≤n

|pwu (xi)|

)∥∥∥∥

≤ (1 + ε)λ∞ (pwu)

≤ (1 + ε)i (pwu)

≤ (1 + ε)C,

as desired. �

The next theorem translates the tie between the lp-summing and lp-lattice
summing operators for p = 1 or p = 2.

Theorem 3.10. Let p ∈ {1, 2}. Let u be a linear operator from an
operator space E into a complete Banach lattice X. The following properties are
equivalent:

(i) u ∈ Λ
lp

(E,X).
(ii) For every n ∈ N and every p-regular w : X −→ ln1 then, wu is

lp-summing.
Moreover

λlp (u) = sup
{
πlp (wu) , n ∈ N, w : X −→ ln1 ap-regular, ‖w‖ = 1

}
.

P r o o f. Let 1 ≤ p < ∞. Consider u in Λ
lp

(E,X), n in N and w a
p-regular operator from X into ln1 . As ln1 is p-concave (Remark 1.2) we have

(
n∑
1
‖wu (xi)‖

p

) 1
p

≤

∥∥∥∥∥

(
n∑
1
|wu (xi)|

p

) 1
p

∥∥∥∥∥

(Remark 3.5.ii) ≤ ‖w‖

∥∥∥∥∥

(
n∑
1
|u (xi)|

p

) 1
p

∥∥∥∥∥

≤ ‖w‖ λlp (u) sup
a,b∈B+

S2p(H)

(
n∑

n=1
‖axib‖

p

Sp(H)

) 1
p

.
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This implies that wu is lp-summing and πlp (wu) ≤ ‖w‖ λlp (u). Assume now
that p = 1 or 2 and that wu ∈ πlp (E, ln1 ) for every n in N and every p-regular
w : X −→ ln1 . Let v ∈ cb

(
lnp∗, E

)
. We have by [14, Remark 2.1, p. 702] that

wuv ∈ πlp

(
lnp∗ , l

n
1

)
and hence by Remark 3.2.2 for p∗ = ∞ and by Remark 3.2.3

for p∗ = 2, we have wuv ∈ πp

(
lnp∗ , l

n
1

)
. This implies that wuv is integral. By

Proposition 3.9, we have uv in Λ
∞

(
lnp∗, X

)
and by Theorem 3.6, we conclude that

u is in πlp (E,X). �

Remark 3.11. We can replace ln1 in the first implication by any p-
concave space Y and this by [4, Corollary 7] because every p-regular operator is
p-concave.

4. Comparison with the commutative case. Let us concentrate
on the case where E = B(H) and X = OH. The main result of this section is
to prove that πlp (B (H) , OH) 6= Λl2 (B (H) , OH), for all 2 < p < ∞ unlike the
commutative case [16, Theorem 1.5], where it is shown that πp (E,X) ⊂ Λ2 (E,X)
for all p, 2 < p < ∞.

Proposition 4.1. Consider 2 < p < ∞. Then,

πlp (B (H) , OH) 6= Λl2 (B (H) , OH) .

P r o o f. Suppose that πlp (B (H) , OH) ⊂ Λl2 (B (H) , OH). Let u be in
πlp (B (H) , OH), we have by Remark 3.2.4 that u is in πl2 (B (H) , OH). This
implies by Proposition 2.5 in [14] that πlp (B (H) , OH) = πl2 (B (H) , OH) which
is impossible by [14, Theorem 4.1]. �

Finally, we end this work by the following theorem which is the principal
result of this paper.

Theorem 4.2. We have

Λl∞ (B(H), OH) 6= Λl2 (B(H), OH) .

P r o o f. Suppose that Λl2 (B(H), OH) ⊂ Λl∞ (B(H), OH) (the converse
is given by Corollary 3.7). Let u be in Λl2 (B(H), OH). This implies also by
Corollary 3.7 that u ∈ Λlp (B(H), OH). Thus, we have by Remark 1.2 and
Remark 3.2.4 that u ∈ πlp (B(H), OH). In this case we are in contradiction with
Proposition 4.1. �
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Remark 4.3. We can say that the little Grothendieck’s theorem is not
valid in the case of lp-lattice summing operators.
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