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ABSTRACT. For given completely regular topological spaces X and Y, there
is a completely regular space X ® Y such that for any completely regular
space Z a mapping f : X x Y — Z is separately continuous if and only if
f: X®Y — Zis continuous. We prove a necessary condition of normality, a
sufficient condition of collectionwise normality, and a criterion of normality
of the products X @ Y in the case when at least one factor is scattered.

Let X, Y and Z be arbitrary topological spaces. Then for a mapping
f: X xY — Z there appears double notion of continuity: continuity in all
variables jointly (or joint continuity) and continuity in each variable separately
(or separate continuity).

It is well known (see e.g. [1, 17.D] or [5]) that we can define a topological
space X ® Y on the product set X x Y with the property that for any space Z
a mapping f: X XY — Z is separately continuous if and only if f: X ®Y — Z
is continuous. However this topology is inconvenient for investigating separately
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continuous mappings since in many important cases X ® Y fails to be completely
regular. In particular, the results of papers [5] and [4] imply that the spaces
ROIR, RA RRal, A® A and A ® ol are not completely regular. Here R
denotes the real line, A — the double arrow (the product [0;1] x {0;1} ordered
lexicographically), and oI’ — the one-point compactification of a discrete infinite
space T'.

In [6] on the set X x Y, where X and Y are completely regular spaces, a
new topological space X ® Y was constructed. This space satisfies the following
conditions: X ® Y is completely regular and for any completely regular space Z
a mapping f : X x Y — Z is separately continuous if and only if f: X ® Y — Z
is continuous.

The problem of normality of the spaces X ® Y comes quite naturally. In
[5] and [6] Knight, Moran and Pym obtained sufficient conditions of normality of
the products X @ Y only in the case when at least one factor is locally countable.
By using these results it is easy to see normality of the spaces R ® oI’ and A ® oI’
for countable I'. In [3] the author proved a sufficient condition of normality of
the spaces X @ Y that have at least one scattered factor. It follows from this
condition that the spaces R®al' and A®al are normal for arbitrary I'. Moreover,
established in [6] and [3] necessary conditions of normality of the products of
metrizable spaces indicate that the space R ® R is not normal.

In this paper the results of works [6] and [3] are generalized. In partic-
ular, it is shown that the spaces R @ al' and A @ ol are collectionwise normal
(Theorem 7), but the space R @ A is not normal (Theorem 4, see also [6, 8.4]).
The main result of the paper is a criterion of normality of the completely regular
topology of separate continuity for a rather large class of spaces (Theorem 9).

Necessary condition of normality.

Lemma 1. Any Cech-complete non-scattered space contains a compact
that can be mapped irreducibly onto the segment [0;1].

Proof. Let X be a Cech-complete non-scattered space. Then there exist
a non-empty perfect subset Z in X ([2], 1.7.10) and open in 3Z sets G, such that
oo

Z = () G,. By standard tree arguments for any finite binary sequence we may
n=1

determine an open in 57 set U(;, ;) so that: a) U(i1,...,in71,0)mU(iL...,inle) = 0

b) ﬁ(il,...,in_l,o) UU(il,...,in_l,l) C Uliy,.sin_1); c) Uiy,..in) C Gn-

Further, we put K = () U U(i17...7in) and construct the func-

n=1 (i1,...,in)€{0;1}"
tion f : K — [0; 1] transforming points from K to real numbers from [0; 1] written
in the binary form 0.4y ...4,.... Since f is continuous and K is compact, there is
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a closed subset M C K such that the restriction g of f on M is irreducible and
g(M) =1[0;1] ([2], 3.1.C). O

Lemma 2. For an irreducible closed mapping the image of an isolated
point is isolated point and the preimage of a dense set is a dense set.

Proof. Let g : M — N be an irreducible closed mapping, a point m
be isolated in M, and a set P be dense in N. As g(M \ {m}) # [0;1] the set
g(M \ {m}) =[0;1] \ g(m) is closed. Hence g(m) is an isolated point in N.

To prove the second claim we denote @ = g~ (P). Then the set N\ g(Q)
is open in N and disjoint with P. Therefore N \ g(Q) = 0, and by virtue of
irreducibility of g we obtain Q = M. O

Let X and Y be topological spaces. A mapping f : X — Y is called an
F-refinement if f is a continuous mapping with the finite preimages of points.
A space X is said to F-refine into a space Y if there exists an F-refinement
f: X =Y.

Lemma 3. Let X XY be a hereditarily normal space, M be a closed subset
of X, and f : M — Y be an F-refinement. Then the set D = {(m, f(m)); m €
M} is discrete in X ® Y.

Proof. Choose a point mg € M, and let U be any its neighborhood such
that {m € M; f(m) = f(mo)}NU = 0. Since the sets D\ {(myo, f(mo))} and E =
({mo} xY)U (U x {f(mo)}) \{(mo, f(mo))} are closed in X x Y"\ {(mo, f(mo))},
there is a continuous function h : X x Y \ {(mg, f(mo))} — [0;1] such that
h(D\ {(mo, f(mg))}) = {1} and h(E) = {0}. We extend h to X x Y by defining
h(mg, f(mgo)) = 0. Then h is separately continuous or, in other words, continuous
with respect to the topology of the space X ® Y. Additionally h(mqg, f(mg)) = 0

and h(D\ {(mo, f(mo))}) = {1}. O

Theorem 4. Let a space X contain a Cech-complete non-scattered sub-
space that F-refines into a space Y, and let the space X XY be perfectly normal.
Then the space X ®Y is not normal.

Proof. We suppose that Z C X is a Cech-complete non-scattered space.
By Lemma 1 there exist a compact M C Z and an irreducible function g : M —
[0;1], and by Lemma 2 the sets T = ¢~ ([0;1] N Q) and M\ T = g~ 1([0;1] \ Q)
are dense in M.

Now we consider the mapping D : M — M xY given by the rule D(m) =
(m, f(m)), where f : M — Y is an F-refinement, and denote Fy = D(T') and
Fy = D(M\T). By Lemma 3 the sets Fy and F} are closed in X ® Y. Our goal
is to show that it is impossible to separate the sets Fy and F; by neighborhoods
in the space X @ Y.

Let Gy and GG be arbitrary neighborhoods of the sets Fjy and F} respec-
tively. Since X x Y is perfectly normal, we have that D(M) is equal to intersec-
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tion of some decreasing sequence of open sets {U;}jen. Therefore for each point
m € M we can find a natural number j(m) such that (U 0 (M x {f(m)})) U
(Ujomy N ({m} x f(M))) C Gy, where i =0 or i = 1.

For a natural number j, we put M; = {m € M; j(m) < j}. Clearly M =

U M;. Then it follows from the Baire category theorem that for some jo the set
j=1
M;, is not nowhere dense, i.e. there is an open in M set W such that Wy C Mf-\g[,
and besides we may assume that Wy x f(Wy) C U;,. The three alternatives are
possible for the set W = Wy N Mj: a) WNT =0; b) WN(M\T) = 0
) WNT#Pand WN(M\T) #0.

We shall consider all these alternatives.

a) Let m; € WoN'T and mg € W N {m € M; (m, f(m1)) € Ujimy)}-
Then j(mz2) < jo < j(ma) and (myz, f(m1)) € Ujum,) C Uj(m,)- Consequently
GonNG1 #0.

b) Let my; € WoN (M \T) and ma € WN{m € M; (m, f(m1)) € Ujimy)}-
Then j(mz) < jo < j(mi1) and (ma, f(m1)) € Ujom,) C Ujm,). Consequently
GonNG1 #0.

c) Let m;y e WNT and mg € WN (M \T). Then max{j(m1),j(mz)} <
Jo and (my, f(mz2)) € Wo x f(Wo) C Uj, C Ujgmy) N Ujimy)- Consequently
GonNG1 #0. O

Sufficient condition of normality.

Lemma 5. LetY be a paracompact, and assume that a space X contains
a point oo such that (X \ {oo}) ® Y is collectionwise normal. Then the space
X ®Y is collectionwise normal too.

Proof. Let {F,}scs be a discrete family of closed sets in the space X @Y.
First, we shall prove that one can separate the sets Fs by neighborhoods in the
case when the set S is divided into subsets S7 and Sy such that A = |J Fy C

seST
(X \{o0})xY and B= |J F, C {o0} x Y. Obviously, in this case it suffices to
SESH
separate the sets A and B.

Denote Z = {y € Y; (0o,y) € B}. For each point z € Z there is an
open in X ® Y set U, such that (co0,2) € U, C U, C (X xY)\ A. Then the
paracompact set B has a locally finite open cover {{oo} x Vi}ier inscribed in
the cover {U, N B},cz. For each index ¢t € T we fix a point z(¢) such that
{oo} x Vi C Uyyy and put Wy = (X x Vi) N Uy (). The family {W; }ier is locally
finitein X®Y. Hence BC Wy U Wy= U Wi C U U,y C (X xY)\ A

teT teT teT teT

Now we are ready to prove the statement of the lemma in general case. In

view of collectionwise normality of Y we can find disjoint open in Y sets U, such
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that Fy; N ({oo} x Y) C Us. By using the above considered case we obtain that
F,\ (X xUy) C V! and Fyn({oo} xY) C V2 for some disjoint open in X @Y sets
V> and V2. Since (X \{oc})®Y is collectionwise normal, there are disjoint open
in X®Y sets W} and W2 such that Fi\ (VUV2) C W}l and Fi\ (X xUs) € W2,
Thus it is easy to check that the sets ((VVS1 UVIUV2)n(X xUy))u(W2n Vsl)
are disjoint neighborhoods of the sets F;. O

We recall that a normal space X is called strongly zero-dimensional if for
any closed set F' C X and for any its neighborhood U there exists a clopen set
H such that F C H C U ([2, 6.2]).

Lemma 6. In any open cover of a strongly zero-dimensional paracompact
one can inscribe a disjoint open cover.

Proof. Let X be a strongly zero-dimensional paracompact, and let
{Ui}1er be an open cover of the space X. Regularity and paracompactness of X
enable us, in an obvious way, to inscribe combinatorially with closure an open
cover {V;}ier in the cover {U;}ber.

By the definition of strong zero-dimensionality, for each ¢ € T there is a
clopen set H; such that V; C Hy, C U;.. We may assume that the set T is well
ordered and put Wy = H; \ |J Hy. Then {W,}ier is the required cover. O

<t

We recall that an ordinal ht(X) = min{o; X(® = 0} is called scattered
height of the space X. Here X (@ is the a-th Cantor-Bendixson derivative of X.

Theorem 7. Let X be a scattered strongly zero-dimensional paracompact,
and Y be a paracompact. Then the space X QY is collectionwise normal.

Proof. A) Let ht(X) = a4+ 1 be an isolated ordinal. We suppose that
for all spaces X with the property ht()N( ) < « the statement of the theorem is
true. Since the space X (@ is discrete for each point z € X(® there is an open in
X set U, such that U, N X(® = {z}. And also choose arbitrary neighborhoods
U, in the space X \ X(@ for all remaining points z € X \ X(®. By Lemma 6,
in the open cover {U, },ex we can inscribe an open disjoint cover {V;}icr. Then

XY =@ (V;®Y). By Lemma 5 and the inductive assumption, all the spaces
teT

V; QY are collectionwise normal. Hence the space X @Y is collectionwise normal
too. _

B) Let ht(X) = « be a limit ordinal. We suppose that for all spaces X
with the property ht()? ) < « the statement of the theorem is true. For each
point x € X we fix an ordinal 3, < a such that x ¢ X (Bz) and take an arbitrary
neighborhood U, of the point z in the space X \ X (Bz) By Lemma 6 in open
cover {U, },cx we can inscribe an open disjoint cover {V;};cr. Then by inductive
assumption the space V; @ Y is collectionwise normal for any ¢ € T. Hence the
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space X @Y = @ (V; ®Y) is collectionwise normal too. [
teT

Criterion of normality.

Lemma 8. Any locally compact paracompact scattered space is strongly
zero-dimensional.

Proof. Indeed a scattered space is hereditarily disconnected, and in
the class of locally compact paracompact spaces hereditary disconnectedness is
equivalent to strong zero-dimensionality ([2], 6.2.9). O

Theorem 9. Let a locally compact paracompact space X F-refine into
a paracompact space Y, and let the space X XY be perfectly normal. Then the
space X ®Y is normal if and only if X is scattered.

Proof. Theorem 4 and Cech-completeness of the locally compact space
X imply necessity, and Lemma 8 and Theorem 7 imply sufficiency. O

Corollary 10. Let X be a locally compact paracompact space, and let the
space X x X be perfectly normal. Then the space X ® X is normal if and only if
X is scattered.
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