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A GENERALIZED QUASI-LIKELITHOOD ESTIMATOR
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ABSTRACT. Let {Z,}nen be a real stochastic process on (2, F, Py, ), where
0o is a unknown p-dimensional parameter. We propose a GQLE (General-
ized Quasi-Likelihood Estimator) of 6y based on a single trajectory of the
process and defined by 0, = argming Y »_; Vi (Zk,0), where ¥y (z,0) is
Fr—1-measurable, {F,}, being an increasing sequence of o-algebras. This
class of estimators includes many different types of estimators such as con-
ditional least squares estimators, least absolute deviation estimators and
maximum likelihood estimators, and allows missing data, outliers, or infi-
nite conditional variance. We give general conditions leading to the strong
consistency and the asymptotic normality of 6,,. The key tool is a uniform
strong law of large numbers for martingales. We illustrate the results in the
branching processes setting.

1. Introduction. Let {Z,},cn be a real discrete time stochastic process
on (Q,F, Py,), 8o € RP, p < 0o, that may depend on an environmental process
{U, }nen. The processes {Z, }nen and {U, }nen are observed. They can corre-
spond to the discrete time observations of some underlying processes in contin-
uous time. As examples, cite (non)linear time series, ARM AX models, Markov
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chain, or branching processes. We propose to estimate 8y from a single trajec-
tory {Zo, Z1,...,%,,Ug, Uy, U,} by the following GQLE (Generalized Quasi-
Likelihood Estimator) that we could also call “generalized minimum contrast
estimator”:

n

En := arg min S,(0), S,(0) := lelk(Zk,H), © C RP, ® compact, 0y Eé,
0cO 1

where Wy (z,0) is Fp_j-measurable, {Fj}x being an increasing sequence of o-
algebras included in F. The quantities {¥(z, 8)}r may have very general forms
and may handle missing data, outliers, and processes with infinite conditional
variance if we define Fj_1 = U_(l{Zk€]}7{Zk:—l}l217{Uk—l}l20)7 where [ is a
finite or infinite subset of R, and if Wy (z,0) = /\k‘ilk(z, 0), where \; and \T/k(z, 0)
are Fj_i-measurable and A\ is the “weight” of the contrast assumed to be null if
the elements of {Zy}, and {Uy}x involved in Wy (z,0) do not belong to I. This
type of weights allows to keep in the contrast only bounded quantities when it
is necessary (otherwise I = R). It is for example the case when the conditional
variance of the process is infinite at each time.

We present some examples of estimators, assuming to simplify the presenta-
tion that Az =" 1, for all k.

1. Conditional Least Squares Estimator (or “Quasi-likelihood estimator”):
(1) Vi (21, 0) = (Zr — 91(0))*, 9k(0) = Eg (Zk\fkﬂ)-

When more generally Uy (z,0) = Ak\ifk(z,O), where \ilk(z,O) = (Zx —
91(0))2, and if 8,,({\+}) denotes the corresponding estimator, then accord-
ing to [5], an({)\k}) is Op-optimal at time n (fixed sample optimality)
among the {an({yk})}, if the information criterion

@) o, (31(00)) (Foo($:(60)S7(80))) " Fo, (8.(60))

is maximal when {1} = {\;}, where S,,(0¢) := (05,(6)/06)(80), Sn(6o) :=
(85.’”(9) /00)(0y). The maximality is got according to the partial order of
nonnegative definite matrices (Loewner partial order: A > B if A — B is
positive semidefinite). The information criterion (2) is the natural general-
ization of the Fisher information.

When p = 1, an optimal set {\;} satisfies A\ = a(Vargo (Zk]}"k,l))fl,
where « is any nonnull constant ([3], Theorem 2.1 p.14 [5]).



A generalized quasi-likelihood estimator 73

2. Least Absolute Deviation Estimator (or “Li-norm estimator”):
(3) U1.(Zk,0) = |Zk — gx(0)], 9(0) = Eo(Z1|F1—1)-

3. Mazimum Likelihood Estimator:

(4) U (Zk,0) = —Inpe(Zi|Fr—1) (conditional likelihood).

Remark. Robust estimators reducing the effects of outliers that are based
on some percentile of the data, such as Winsorised Estimators or Trimmed
Estimators, do not belong to this class because the corresponding quantities
{Uk(z,0)}r depend on the whole set of observations until time n, and therefore
are J,-measurable but not F;_i-measurable.

We give here conditions leading to the asymptotic properties, as n — oo,
of 5n: its strong consistency (lim,, én = 0o), and its asymptotic distribution
(existence in distribution, for some matrix Y, of lim,, Tn(an —0y)).

Since, except for particular classes of models and contrasts, én has generally
no explicit expression, the proofs will be indirect proofs based on the properties
of the contrast S,,(0). The key tool will be a USLLNM (Uniform Strong Law of
Large Numbers for Martingales), direct generalization of Proposition 3.1 in [6].
This USLLNM allows to get asymptotic properties of the estimators in a very
general nonlinear, nonindependent and nonstationary setting.

Section 2 is devoted to the strong consistency of En, where two different types
of proofs based on the contrast properties are compared. In Section 3, we deal
with the asymptotic distribution of én Then Section 4 illustrates the results of
the previous sections in the frame of a branching process with a long memory.
A short conclusion is given in Section 5. We will see that the strong consistency
of the estimator is easily got on the nonextinction set of the process, provided
that @ is identifiable in {V}(Z, 0)}32,, while the asymptotic distribution of the
estimator requires some stronger properties on the behavior of the process.

Since we do not deal here with inverse functions, in order to simplify the
notations, we will write everywhere “f~1(6)” for “(f (9))71”. We will also write
“martingale” for a martingale on (2, F, Py, ) adapted to the filtration {F, }, C F.
Finally if A is a real matrix, then ||A||? := Apax(ATA) (largest eigenvalue of
ATA), and M\puin(ATA) is the smallest eigenvalue of AT A.

2. Strong consistency. To prove the consistency of 8, we use some
properties of S, (0). The first type of proof will be based on the first order Taylor
series expansion of S,,(0), when W (0) is twice differentiable in 6. Thus, from
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Sn(0,) = 0 = $,(80) + 5,(6,) (6, — 65), where 0, “lies” between 8, and 6, we
deduce as usual that

~ . .

(5) 0, — 0) = —51(6,)5.(6y).

Note that if S,(8) is independent of @ and if there exists a matrix X, such that
X, (Bn — 90) converges in distribution to a centered variable, then 6,, is weakly

consistent. However, in a very general setting, S,(0) depends on 6. So the

~

convergence in distribution of Y, (On — 00) requires to prove first the consistency
of én

The second type of proof is based on the minimum contrast idea, that is
ming Sy, (0) should tend to S,,(6y), as n — oo.

We study conditions leading to the strong consistency of én through each type
of proof. We will see that the proof based on the first order Taylor’s expansion
of Sn(O) requires unnecessary strong conditions, contrary to the proof based on
the minimum contrast property.

2.1. Strong consistency of En based on the Taylor’s expansion of
S(05). We may write (5) in the following form:

6.~ 00— —(9,75,(0.)) #;"5,(60).

where ®,, is a p X p matrix. We want to define conditions on ®,, such that
; _ .. -1 a.s.
lim,, @ 19,,(8) " 0 and T, | (@;15n(9n)) | 2" 0. We will use a SLLNM

a.s.

(Strong Law of Large Numbers for Martingales) to prove that lim,, ®,15,(8) “
0. We point out that, in these theorems, ®,, should be F;,_j-measurable. Thus
Sy (6y,) which is F,,-measurable, is not a good candidate for ®,,.

Proposition 1. Assume that Sn.(B) is twice differentiable in 6 and that Sn(Bg)
is a martingale. Let ®, =1 E(Vy(Zy,00)VL (Zy,00)|Fi—1). Then

(6) 1lim8, % 8y on {Iim, sup ||5,(0) " &, | <oc,
n 0
lim Apin () =00, lim (In([|@,]))" Amin(®4)) =0}, v > 1.

Proof. The property lim, ®,%5,(60) “= 0 is directly deduced from a SLLNM
(4] (p=1), [8] (1 <p < o0)).

1. Consider the case p = 1. Note first that the last condition of (6) is auto-
matically checked in this case. We use here the following classical SLLNM
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[4], applied to M,, := S,(0), that is X := ¥1.(Zy,0): let {M,}, be a mar-
tingale, that is M, = >}, X}, where X}, := M}, — My_1, E(Xy|Frp—1) =0,
and let {®,} be a non decreasing sequence (®,, < ®,.;) such that ¢, is
Frn_1-measurable. Then

(7) lim 1M, “= 0 on {lim ®,,=cc, > 9, °E(X7|Fp1)<oo}.
n

Moreover when ®,, =)', E(Xz\fk,l), then (7) is reduced to

a

lim &, 1 M,, 2 0 on {lim ®,=oc}
n n

because any real sequence {z7}), satisfies (see [4] p.158, [6]):

n

(8) i ( J:i)_2$721<oo.

n=1 k=1

Remark. Writing E(X?|F,_1) =: 27, and ®2 =: >}, y7, then we may
have -, (Y5 y,%)_2$%<oo with 22 > y2. For instance, take y2 = b" and
x2 = a™ with b > a > b > 1. So Proposition 1 may be extended to some ®,,
tending to co at a smaller rate than >_;_; E(\ilk(Zk,00)‘1'1;{(Zk,00)|]:k_1).

. Consider now the general case 1 < p < co. We use a SLLNMM (SLLN
for Multivariate Martingales) [8]: let {My},, defined by M,, := >}, X,
be a multivariate martingale, and let ®,, be a symmetric F,,_;-measurable
matrix such that ®2,, — ®2 is nonnegative definite, that is V7 (®2 ; —
<I>721)V >0, for all p x 1 vector V. Then

9) lim®,'M, =
n
on {1im Ain (@) =00, > E(1®, X Fn1) <00}
n

Moreover in the particular case ®, = Y ,_, E(Xszl}"k,l), then

(10) lim®,'M, = 0
on {im Amin (®,,) =00, lim (In(||®, )"\, (8,)=0}, v > 1.

min
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Remark. When p > 1, the condition lim,, (In(||®x )" (Amin(®)) "~ bas g
is not always checked contrary to the case p = 1 (take Apin(®y) = O(n), ||®,| =
op"), B>1).

Consider the conditions of Proposition 1 applied to (1), (3), (4):

1. \I/k(Zk,e) (Zk — gk(e))2 Then S (90) = -2 22:1 €k(00)gk(00) and
Sn(0) = 25751 91(0)37 (0)—2 377, €1(0)31(0), where ex(8) = Z—gi(6).
The quantities Y _, ek(ao)gk(%) and Zk:l er(00)dr(00) are martingales.
We see that unfortunately the first condition of (6) is generally not checked
in the nonlinear case.

2. U(Zk,0) = |Zk — g(0)] is not differentiable;
3. Uy(Zk,0) = —Inpg(0), where p(0) := pg(Zk|Fr-1). Then S,.(00) =
—Z}j:lpk(ao)p,;l(eo). This implies that S,(0¢) is a martingale, under

the classical assumption that integral and derivatives may be exchanged.

In addition S,,(0) = Y%, px(0)p} (0)p.2(0) — Sk, #x(0)p,. ' (8), where
Sor_, Pk(00)p, 1 (80) is a martingale. As in item 1, the first condition of (6)
is generally not cheched.

2.2. Strong comnsistency of én based on the minimum contrast
property.

Proposition 2. Assume that S,,(0)—5,(00) = Dy, (0)+M,(0), where D, (0)
is Fn—1-measurable and M, (0) =: > ;_, Xi(0) is a martingale. Then

(11) 117£n§n %5 9,
on Ng{lim,, inf D,(0)=0c0, sup Eq ( Fn_ 1) <00
{ 16—60]>6 ©) lle— 60H>5Z ’ o) ® I

Proof. From S,(0) — S,(600) = D,(0) + M, (0), we deduce that

12)  inf  S,(0) — S.(60) > inf D,(0)(1— sup |M,(8)D,'(8)]).
(12) | it 5.(6)=Su00) 2 int Du@®)(1- sw |M.(6)D;'(0)])
Then we use Wu's Lemma [11]: if lim,, inf)jg_g,|>5(5n(0) — Sn(60)) 70, for all
6 > 0, then lim,, §n “0,.

So thanks to (12), it is sufficient to prove that

lim, inf D,(0)(1-Tm, sup [M,(0)D;'(0)]) > 0.
" oy ss Pn )< “9760“25\ (0)D,( )!)

For this purpose, we use the following USLLNSM (Uniform SLLNM):
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Lemma 1. Let, for all € © compact, M,(8) := S.7_, X1(8) be a mar-
tingale (Egy(Xk(0)|Fr-1) = 0, for all k), and let D,(8) = >_}_, d;(8) be
a nonnegative quantity with d%(@) Fr_1-measurable, for all k. Assume that
Eo, (| X1(01) — Xi(02)||Fr—1) < hx (|61 — O2||)uk, where uy, is Fj_1-measurable,
and lim,_o hx () =0, and similarly for |d;(01) — d;(02)|. Then

a.s

(13) lim sup |M,(8)D,;1(8)] = 0
" 6co®

on {lim,, inf D, (8)=0c0, supZE.g0 ( )| Fn— 1) ( )<oo}.

This proposition is the direct generalization of Proposition 3.1 of [6] which con-
cerns the particular class M, (0) := > ;_, ex(00)dr(0). It can be viewed as a
generalization of the SLLNM (Strong Law of Large Numbers for Martingales)
[4], and as a generalization of the uniform strong law of large numbers for i.i.d.
variables, originally due to Le Cam. O

Corollary 1. Assume that D,,(0)—D,_1(0) > 0, and let D,,(0)—D,_1(0) =:
d2(0). Then

(14) liman 0y on Ns{lim,, inf D,(0)=c0,
n |6—60|>8

lim, sup Eg,(X.(0)|Fn-1)d;,*(0)1(4,(0)L0} <00}
|6—6¢]|>6

Proof. (14) implies (11) thanks to (8). O
Consider (11) and (14) applied to (1), (3), (4).

Vi (Zk ) = (Z — gr(8))*. Writing Z — gx(0) =: ex(8) and g (o) —
9r(0) =: di(0), we get that

Sn(8) = Sn(B0) = > (e;(0) — €} (o))

= ) di(0)+2)  ex(00)di(0) =: Dy (6) + My (6).
k=1 k=1
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Consequently, defining 02 := Eg, (€2 (80)|Fn-1), (11) is reduced to

15 hm@n“z'sa on Ng{lim, inf D,(8)=0c0,
(15) 1B, " oy on (s (lm, inf D, (6)

sup Y o2d2(0)( D d3(8)) <o},

10—60l|>6,,— k=1

n

T 9 @S- .
and, when lim, 0, < o0, (14) is reduced to

16 lim/éna:'SO on Ng{lim, inf D,(0)=cc}.
(16 n oo g i ) il Pnl@)=0ck

Note that lim,, o2 ‘2" 50 under appropriate weights {Ag}r: for all k, \p

n
Uk_2 or A\ o 3,;2, where 3,3 is a consistent estimator of a,%.

Remark.  Assume that gi(0) is differentiable with gx(68) continuous in
0. Then we may write gx(0) — gr(60) = (60 — 00)” g1(0%), where 6y, lies
“between” 0 and 6. In this case,

17 Ns{lim,, inf D, (0)=c0} = {lim Ain(P,)=00},
(17) af 0o s (@)=o0} {n (®n)=00}

where ®, =Y, gk(eo)g,{(eo). This implies that(16) is reduced to
(18) lim 6, £ 6 on {lim Apin (@, )=00}.
n n

Comparing (18) to (6), we see that (6) contains unnecessary conditions,
while (18) is reduced to a necessary and sufficient condition in the sense

that it is easy to find examples with En/\min(@n) 2 0 and such that the
estimator is not consistent (take p = 1, g5 () = 6W}, and the {ex(0p) }x 1.i.d..
Then 6,, — 6y = (22:1 W,f)fl(zzzl ek(Qo)Wk) the variance of which is
proportional to (22:1 I/V,f)f1 =& 1)

Consequence in the particular linear case

Assume that g;,(0) = 6TW, with im,02 < oo. Then (18) is reduced to
n -1 n
(19) lim (Z W,ﬂV{) (Z ek(BO)Wk> 0
" \k=1 k=1
on {lim Amin (Z WkWZ> :oo}

k=1
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while, using directly the SLLNMM (8], we get that

(20)
(S-WeWE) (D~ ex(8) W) = 0 on {Him Avin (>, Wi W) =00
k=1 k=1 =

tim (In(| Y- Wi WED)” (Ain(Y W, W) "'=0}, for some v > 1.
k=1 k=1

The last condition in (20) is equivalent to

im (I (Amax(Y WiWE))” nin(Y Wi W) Y0 for some v > 1,
k=1 k=1

which is automatically satisfied only when p = 1. Note that (20) leads to
the strong consistency of the estimator in the linear stochastic regression
setting and was given in [7].

We then obtain with (19) an improvement of Lin’s conditions (10) for the
particular class of martingales M, = >, ex(00) W}, where lim,,02 <z 00,
and Wy, is Fj_1-measurable.

. \Ilk(Zk,G) = ‘Zk — gk(e)] = ’6]{(9)‘ This implies that

n

B _ . e n (0 ek 00)
Sn(0) — Sn(60) 2 (lex(0)] — lex(60)]) Z < ler ()] + [ex(8o)|

Therefore
Sn(e) - Sn(eo) > A;I(e) (Dn(a) + Mn(e))v

where A;,(0) := supi<p<, (|di(0)] + 2lex(60)]), Dn(0) = 3Z;_;(gk(60) —
9k(0))%, Mn(0) == 371, er(60)(9x(00) — g1(0)), ex(00) = Zj, — g(60),
di(6p) := gr(0g) — g(0). Then using the same steps as in Proposition 2
and defining 02 := Eg, (€3(00)|Fn—1), we obtain that

.. a.s . . Dn(e)
21) limé@, = 6y on Ns {lim, inf >0,
(21) g ’ 7 i 16—60]|>5 A (6)
2 12
lim, inf D,(0)=0c0, sup ZL”(Q)QE},

lo—60)>6 16—80>6 < (Zzzldz(é’))2
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e 9 @S .
or, if lim,0;, < o0, according to (14),

o as . . Dn(e) . .
lim@,, = 6y on N {lim, inf >0,lim,, inf D,(0)=0cc}.
n oon Ns i ) B ,(6) JoSBays P (8)=00)

Note that the subset above is reduced to {lim, inf|g_g,|>s5 Dn(8)=00} if
each W (Zg,0) is bounded that is, if Wi (Zy,0) = \ilk(z,a)l{zkel}, where
Zy = (Zy,Zx-1,-..,Zk—qa), d being the memory of the process, and I being
any d + 1-dimensional vector of large finite intervals.

3. Vi (Zk,0) = —Inpk(0), where pi(0) := pe(Z|Fr—1) (conditional likelihood
of Zy). Then S,(8) — S,(00) = Y r_, In(pr(60)p, *(8)), implying in turn
that

S”(e) - Sn(eo)
_ kz Foy(In i((eo)) Fir) + > (in 1;’1((00)) -~ By (n 1;1;((00)) 7))

k=1
=: D,(0)+ M,(0),

where by construction M, (0) is a martingale, and D,,(8) > 0 because

0
Eg, (1n ]jf((ao)) |7:k—1> > 0 (with equality if and only if px(0) = pr(6o)).
k

This quantity is the Kullback-Leibler divergence between the true density
pr(0o) and pr(0). Then (14) becomes

(22) lim/B\n 9y on Ns {lim, inf D,(0)=c0,
n 16—60]1>6

Z’VL ‘Fﬂ/—
— VGT'GO ( In ppe_ao((Zn‘L_n_ll)) ‘fn—l)
lim,, sup

<o0}.
Poy (Zn|Fn-1) pBO(ZnV'—n—l)
”9790”26 EOO (111 pBO(T}—nnfl)Lf‘nil {EGO In 10 ZnFn_1) #1}

3. Asymptotic distribution We use the classical approach based on
the first order Taylor series of S,,(6,,) at 8¢ (see (5)), and we write

Y0, 00) = —(T,'8,007,") " (T,'$0000)).

where Y,, and Y,, are p X p invertible matrices.
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Proposition 3. Assume that S, () is twice differentiable in 6 and that S,,(0)
is a martingale. Let X,, and X,, be p X p invertible matrices such that X,, is de-
terministic and assume that

(23) lim T_lsn(On)Tgl exists in probability and is deterministic

n
n

(24) lim'i" S,.(80) exists in distribution.

n
Then lim,, Tn(an — 0y) exists in distribution.

The proof is directly deduced from Slutsky’s convergence theorem.

Remark. According to Subsection 2.1, when U (Zy,0) = (Z — gx(0))? or
when W (Z;,0) = —Inpy(@), then S, (0p) is a martingale.

Remark. Condition (23) should be easily checked thanks to the strong
consistency of 6,, under continuity conditions in 6 on the {U1(2,0)}, and using
in addition the USLLNM, when S n(0) contains a term that is a martingale. Con-
dition (24) should be easily checked thanks to an appropriate CLT (Central Limit

Theorem). Denoting Y, 'S n(00) = > 5 X =t M}, and since {M}'}r<, is a
martingale, then, if lim, >, E(thx;{’n]]:gil) exists in probability and is a
deterministic matrix I', we may use a CLT for martingales to get the limit distri-
bution of M. However, in the branching processes setting, I' is the most often
random, preventing us to use some CLT for martingales. Since in this setting,
M? may be usually written as a random sum of independent variables, then we
may rather use a CLT for random sums (see for example e.g. [1], [2]). Recall
first the following CLT for multivariate martingale arrays ([10] (continuous time),
[2]) which is the direct generalization of the CLT for univariate martingale arrays
[4]: Let M} =: Zle X;n be a multidimensional {F}' ; },-martingale triangular

array. Then lim, M 2N (0,T'), under the following assumptions:

n
Z (Xk X5 nlFr ) Zr (semi-definite deterministic matrix),

lim
n

M: i

P
E(HXk,n||21{||xk,nu226}If}?_1> =0, Ve > 0.

i
I
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4. Example: a branching process with memory. Let the following
BGW (Bienaymé-Galton-Watson) with memory d:

d Zr—1

D .
(25) Zy, = Z Z Yk*l,k,i: Yk,l’kﬂ"fkfl = POZSSOH(ml(G())), ml(eo) > 0, VI,
=1 i=1

{Vi—iki il Fr—1 independent, Fj_1 = o-({Zp—1}1>1),

where Y},_; 1 ; represents the offspring at time k generated by the individual ¢
of the population at time k — [. The quantity [ represents the maturation time
to produce the offspring Y;_; ;. We assume that m;(6o) is independent of the
process {Zy}r and depends on a unknown p-dimensional parameter 6y, where
1 < p <d. When d =1, this process is a single-type BGW process.

As example, Yj,_; ;. ; may be the number of newborns at time k of 7 born at
time k—I[. Then, if 1 is the age of 7 at his birth time k—[, [+1 represents the age of
i at the birth time k of Yj,_; ;. Therefore {Z}}, is the process of newborns, and
the older populations are then directly deduced from this newborns process using
survival. In [9], Zj represents the incidence of infectives at time k. An infective
is assumed to be removed at the following time, and Yj_;;; is the number of
secondary infectives generated at time k, by an infective of time k — [. Here [
represents the latent (non infectious) period.

According to the assumptions,
b d
Zy|Fie—1 = Poisson(gi(60)), gr(0) = Z Zy—ymy(0).
=1

This process may be represented as a multitype BGW process {Zg}r, where
Zy = (Zk, Zk-1- -+ Zy—(a—1))- The behavior of {Z}} is then deduced from the
behavior of {Z}r [9]. We obtain for example that lim, Z,p~" = W, where p
is solution of sz:1 p~'my(6p) = 1 and W is a nonnegative integrable random
variable. Moreover the process becomes a.s. extinct if p < 1 which is equivalent
to sz:1 my(0p) < 1, while its probability of nonextinction is P(W > 0) which is
strictly positive when p > 1, i.e. when Zld:l my(0o) > 1.

We consider here the estimators of the parameter 6y, given by (1), (3), (4),
and we give conditions leading to their strong consistency, and then to their
asymptotic distribution using the results of Sections 2 and 3.
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4.1. Strong consistency of En.

o Uy(Zy,0) = —Inpy(0), where pp(0) = exp(—gx(0))(Z!) (g k(G))Z". This

implies that In (px(60)p;, " (0)) = gr(0) — gk(eo) Zyn (gx(6)g;, ' (80))-
Defining z1,(0) := gx(8)g; *(60), we notice that

(26) xr(0) € [:L’min,xmax], Tmin = minml(a)(mlaxml(ao))_l,

Tmax = maxmy(0) ( mlin ml(Bo)) -1

Moreover assume the following condition C":
(27) V6 >0,V0: |0 — 0|l > 6, 3¢5 : x(0) ¢ [1— &5, 1+ &5

This assumption is checked in particular when p = 1 and the m;(6) are, for
all [ =1,...,d, strictly increasing (resp. decreasing) functions of #. This is
the case in [9], where m;(#) is affine in 6. We have

Vare, (In 505 | Fi1) (I 2,,(0))°
(28) 2£(80) T 220 —1— nzp(9)
Ego(ln 22(0) ’fk—l) k k

Thanks to (26) and assuming C, there exists §5 < oo such that

(29) (In24(6))? (21(0) — 1 — Ina4(0)) ' < Bs.
Then, defining D,,(0) = >_7'_; Eg,(In Zkk((eé’)) |Fr—1), (22) becomes

lim,, % 6 Ns {lim, inf D, (8)=co}.
im o on N; {lim o nks (6)=0c}

Note that assuming C, thanks to (29), then, for ||@ — 8| > 0,

n n

> Eay (n 2EF) = Yo (0(6) 1 I (6))an (00

k=1 k=1

> 6570 ge(00) (Inzi(9))”

k=1
n d
> 55_1mlinmz(90 (In(1+¢&5) 2;;%1-

Then, we obtain the following result.
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Proposition 4. Assume C. Then lim, §n 2 0y on the nonextinction set,
that is on {W > 0}.

U (Z1,0) = Me(Zi — gr(8))%, where Ny = (308, Z,1)~'. Thus S,(6)
is the direct generalization of the contrast leading to the CLSE in the
BGW setting (d = 1). Let o} := Eg,(M(Zk — 91(00))?|Fr—1). Then

-1 .
U,% = (Zflzl Zk—l) Zflzl Z—imy(0g) € (mlnl my(0p), max; ml(ao)). Con-
sequently, according to (16),

lim8,, % 0 Ns {lim, inf D, (8)=0c0},
im o on N; {lim o nks (6)=0c}

n d
where D Z gk 90 ))2(221671)71.
k=1 =

Under C and (29), for ||@ — 8| > ¢, we obtain that

n d
Dn(0) > > g2(60)(Inwy(0) + 85 (Inxk(0)*)* (Y Zuy) ™
k=1 =1

n d
> mlinm?(eo)(ln 1+&5)) ZZ: k—1s

which implies the same result as for the MLE.

Proposition 5. Assume C. Then lim, §n = @ on the nonextinction set,
that is on {W > 0}.

Remark. Inthe BGW setting (d = 1), the strong consistency of the CLSE
0, of 0y := m1(6p) is classically proved directly using the explicit expression
of 8, — 6y and the asymptotic behavior of the martingale W,, = Z,my",
contrary to our indirect proof based only on the nonextinction set:

_ S ohe1(Zk —moZp—1) _ Y (Wi — Wi_1)my

> k=1 Zk—1 Sopoy Wiamg !

T/ﬁ — mgy =

\I/k(Zk,e) = )\llg/21{zkel}\2k — gk(e)’, where )\k = (Z;lzl Zk,l)fl and [ is
any very large finite interval. Then according to (21) and to the results in
the CLSE setting (previous item), we obtain the following result.

Proposition 6. Assume C. Then lim,, En =¥ @ on the nonextinction set,
that is on {W > 0}.
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4.2. Asymptotic distribution of En.

o U(Zk,0) = (Z—01(8)) *Ar, where gi(8) = S, Zyymu(0), My = S0, Zi.
Then

n

(30) Su(80) = =2 ex(60)dr(60) M,
k=1
(31) Sn(0) = Qng 0) A — 22% 6) Ak,

where e;,(0) := Zj, — gx(6). The quantity S,,(0p) is a martingale and using
Zy ~ WpF and Varg,(ex(80)) = gr(0o), we have, for any large n,

> B(e2(00)dk(00)3 (00)XF i1 )
k=1

Z ZZk 1my(0o)) ZZk 11 (09)) ZZk 1] (60)) ZZkl -
-1

~ W - kal 1P ml(90 Zl 1P ml(‘90 Zl 1P mz (00)

k=1 (Zz 1 P_l)

Choosing Y, = (37—, P*)'/?T and denoting T;ISH(OO) =: > X
then ZzzlE(Xk’nXan]Fk,l) converges a.s. to a random variable, pre-
venting us to use a CLT for martingales. So using (25), we rather write

d Si-in-1 d -
~ 1 - Zl:l P ml(OO)
Y, Sn(0) ~ Z Z le,] —my( 00)) d )
(Zk 1P 1/2 = Y1 P!

where S1_; -1 = > 5y Zk— and Yy 2 Yi—i ki Then we use a CLT for

random sums for each [, and since lim,, Sl—l,n—l(ZZﬂ pk)_l =l
(Toeplitz Lemma), we get that, for [ =1,...,d,

im Y, $n(00) 2 —2W V2V () ZUlp on {W > 0},
=1

D . -1
where Uy ~ N (0,m(80)), V(8o) := (X0, p~t1u(00)) (0, p™!) ", and
the {U;}; are independent and independent of W. Then using Zld:1 p~lmy(8y) =
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1, we get that

lim Y, ' $,(00) 2

n

—2W2V(00)U on {W > 0}, U K N(0,1).

Consider now Tglén(en)rgl with X, = YT, = (>hy pk)l/QI. Using
again Zj,_; ~ WpF~!l, we have, for any large n,

T‘i‘s’* (6, )r*l
N i (8) iy p 7 (8)
Zk v ; Zldzl pt A 0]
= 2WB(,) — 2M,(0,),
where
y n d d
ML, (0,) = > en(80) (Y p7liu(0.)) (> p) ™
k=1 =1 =1
n d d
+ " dk(0n) (D pliu(0.)) (D p7)
k=1 =1 =1

The first term of M,,(6,,) converges a.s. to 0 thanks to the USLLNM, and
the second term converges a.s. to 0 thanks to the continuity of m;(@) and
of m;(@) and the strong consistency of 0,. So finally the conditions of
Proposition 3 are checked leading to the following result.

Proposition 7. Assume C and define

d d d
= (Do lriu(60) > p~'mi (60)) X > phiu(60))
=1 =1 =1
Then on {W > 0},

(32) lim (Y oY) )28, — 60) 2 W2V, (60)U, U R N(0,1),
k=1

where U and W are independent.
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o Uy(Zy,0 = —1npg(0). Then, writing Zy, — gr(0) =: er(0), we have

S'n(go) _ _ipk(eo):_iek(eo)gk(ao),

— pr(60) = 91(6o)
x o e(0)pf(8) = k(8)
Sn(o) - P pz(g) k:1pk(0)
= (0)gi(0) ex(0), < o (9)9:(6)
= g(0) (1+gk(9)) kz::l k(e)gk(a)

We see that these expressions are similar to those corresponding to the
CLSE, except that Ay is here replaced by g, 1(9), and that there is an
additional term in S, (6) depending on the {ex(8)g; ' (8)}%. Consequently
we finally get the same limit as for the CLSE.

Proposition 8. Assume C. Then on {W > 0},

(33) 1im (3 0")% (8, — 00) Z WAV, (00)U, U R N (0, 1),
k=1

n

where U and W are independent, and V.(0y) is defined in Proposition 7.

5. Conclusion. We saw that the indirect way of proof does not require
any explicit expression of 8,,. Moreover, thanks to the USLLNM and to Wu’s
lemma, the condition for the strong consistency of 6,, is reduced to the strong
identifiability of @ in D, (0), when the {Wy} are not “explosive” (condition on
the variance of the martingale). Note also that, thanks to (5), when S,(6,,) is
independent of 8,,, then 0,, has an explicit expression given by (5). Finally the
USLLNM with an appropriate CLT lead to general conditions for an asymptotic
distribution that are easily checked.
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