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A GENERALIZED QUASI-LIKELIHOOD ESTIMATOR
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PROCESSES–ASYMPTOTIC PROPERTIES
AND EXAMPLES

Christine Jacob

Abstract. Let {Zn}n∈N be a real stochastic process on (Ω,F , Pθ0
), where

θ0 is a unknown p-dimensional parameter. We propose a GQLE (General-
ized Quasi-Likelihood Estimator) of θ0 based on a single trajectory of the

process and defined by θ̂n := argminθ

∑
n

k=1
Ψk(Zk, θ), where Ψk(z, θ) is

Fk−1-measurable, {Fn}n being an increasing sequence of σ-algebras. This
class of estimators includes many different types of estimators such as con-
ditional least squares estimators, least absolute deviation estimators and
maximum likelihood estimators, and allows missing data, outliers, or infi-
nite conditional variance. We give general conditions leading to the strong
consistency and the asymptotic normality of θ̂n. The key tool is a uniform
strong law of large numbers for martingales. We illustrate the results in the
branching processes setting.

1. Introduction. Let {Zn}n∈N be a real discrete time stochastic process
on (Ω,F , Pθ0

), θ0 ∈ R
p, p < ∞, that may depend on an environmental process

{Un}n∈N. The processes {Zn}n∈N and {Un}n∈N are observed. They can corre-
spond to the discrete time observations of some underlying processes in contin-
uous time. As examples, cite (non)linear time series, ARMAX models, Markov
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chain, or branching processes. We propose to estimate θ0 from a single trajec-
tory {Z0, Z1, . . . , Zn,U0,U1,Un} by the following GQLE (Generalized Quasi-
Likelihood Estimator) that we could also call “generalized minimum contrast
estimator”:

θ̂n := arg min
θ∈Θ

Sn(θ), Sn(θ) :=
n∑

k=1

Ψk(Zk,θ), Θ ⊂ R
p, Θ compact, θ0 ∈

◦

Θ,

where Ψk(z,θ) is Fk−1-measurable, {Fk}k being an increasing sequence of σ-
algebras included in F . The quantities {Ψk(z,θ)}k may have very general forms
and may handle missing data, outliers, and processes with infinite conditional
variance if we define Fk−1 = σ-

(
1
{Zk∈I}, {Zk−l}l≥1, {Uk−l}l≥0

)
, where I is a

finite or infinite subset of R, and if Ψk(z,θ) = λkΨ̃k(z,θ), where λk and Ψ̃k(z,θ)
are Fk−1-measurable and λk is the “weight” of the contrast assumed to be null if
the elements of {Zk}k and {Uk}k involved in Ψk(z,θ) do not belong to I. This
type of weights allows to keep in the contrast only bounded quantities when it
is necessary (otherwise I = R). It is for example the case when the conditional
variance of the process is infinite at each time.

We present some examples of estimators, assuming to simplify the presenta-
tion that λk

a.s.
= 1, for all k.

1. Conditional Least Squares Estimator (or “Quasi-likelihood estimator”):

Ψk(Zk,θ) = (Zk − gk(θ))2, gk(θ) := Eθ

(
Zk|Fk−1

)
.(1)

When more generally Ψk(z,θ) = λkΨ̃k(z,θ), where Ψ̃k(z,θ) = (Zk −

gk(θ))2, and if θ̂n({λk}) denotes the corresponding estimator, then accord-
ing to [5], θ̂n({λk}) is OF -optimal at time n (fixed sample optimality)
among the {θ̂n({νk})}, if the information criterion

Eθ0

(
S̈T

n (θ0)
)(

Eθ0

(
Ṡn(θ0)Ṡ

T
n (θ0)

))
−1

Eθ0

(
S̈n(θ0)

)
(2)

is maximal when {νk} = {λk}, where Ṡn(θ0) :=
(
∂Sn(θ)/∂θ

)
(θ0), S̈n(θ0) :=(

∂Ṡn(θ)/∂θ
)
(θ0). The maximality is got according to the partial order of

nonnegative definite matrices (Loewner partial order: A ≥ B if A − B is
positive semidefinite). The information criterion (2) is the natural general-
ization of the Fisher information.

When p = 1, an optimal set {λk} satisfies λk = α
(
V arθ0

(
Zk|Fk−1

))
−1

,
where α is any nonnull constant ([3], Theorem 2.1 p.14 [5]).
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2. Least Absolute Deviation Estimator (or “L1-norm estimator”):

Ψk(Zk,θ) = |Zk − gk(θ)|, gk(θ) = Eθ

(
Zk|Fk−1

)
.(3)

3. Maximum Likelihood Estimator:

Ψk(Zk,θ) = − ln pθ(Zk|Fk−1) (conditional likelihood).(4)

Remark. Robust estimators reducing the effects of outliers that are based
on some percentile of the data, such as Winsorised Estimators or Trimmed
Estimators, do not belong to this class because the corresponding quantities
{Ψk(z,θ)}k depend on the whole set of observations until time n, and therefore
are Fn-measurable but not Fk−1-measurable.

We give here conditions leading to the asymptotic properties, as n → ∞,
of θ̂n: its strong consistency (limn θ̂n

a.s.
= θ0), and its asymptotic distribution

(existence in distribution, for some matrix Υn, of limn Υn(θ̂n − θ0)).

Since, except for particular classes of models and contrasts, θ̂n has generally
no explicit expression, the proofs will be indirect proofs based on the properties
of the contrast Sn(θ). The key tool will be a USLLNM (Uniform Strong Law of
Large Numbers for Martingales), direct generalization of Proposition 3.1 in [6].
This USLLNM allows to get asymptotic properties of the estimators in a very
general nonlinear, nonindependent and nonstationary setting.

Section 2 is devoted to the strong consistency of θ̂n, where two different types
of proofs based on the contrast properties are compared. In Section 3, we deal
with the asymptotic distribution of θ̂n. Then Section 4 illustrates the results of
the previous sections in the frame of a branching process with a long memory.
A short conclusion is given in Section 5. We will see that the strong consistency
of the estimator is easily got on the nonextinction set of the process, provided
that θ is identifiable in {Ψk(Zk,θ)}∞k=1, while the asymptotic distribution of the
estimator requires some stronger properties on the behavior of the process.

Since we do not deal here with inverse functions, in order to simplify the
notations, we will write everywhere “f−1(θ)” for “

(
f(θ)

)
−1

”. We will also write
“martingale” for a martingale on (Ω,F , Pθ0

) adapted to the filtration {Fn}n ⊂ F .
Finally if A is a real matrix, then ‖A‖

2 := λmax(A
T
A) (largest eigenvalue of

A
T
A), and λmin(A

T
A) is the smallest eigenvalue of A

T
A.

2. Strong consistency. To prove the consistency of θ̂n, we use some
properties of Sn(θ). The first type of proof will be based on the first order Taylor
series expansion of Ṡn(θ), when Ψk(θ) is twice differentiable in θ. Thus, from
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Ṡn(θ̂n) = 0 = Ṡn(θ0) + S̈n(θn)
(
θ̂n − θ0

)
, where θn “lies” between θ̂n and θ0, we

deduce as usual that

θ̂n − θ0 = −S̈−1
n (θn)Ṡn(θ0).(5)

Note that if S̈n(θ) is independent of θ and if there exists a matrix Υn such that
Υn

(
θ̂n − θ0

)
converges in distribution to a centered variable, then θ̂n is weakly

consistent. However, in a very general setting, S̈n(θ) depends on θ. So the
convergence in distribution of Υn

(
θ̂n−θ0

)
requires to prove first the consistency

of θ̂n.
The second type of proof is based on the minimum contrast idea, that is

minθ Sn(θ) should tend to Sn(θ0), as n → ∞.
We study conditions leading to the strong consistency of θ̂n through each type

of proof. We will see that the proof based on the first order Taylor’s expansion
of Ṡn(θ) requires unnecessary strong conditions, contrary to the proof based on
the minimum contrast property.

2.1. Strong consistency of θ̂n based on the Taylor’s expansion of

Ṡn(θ̂n). We may write (5) in the following form:

θ̂n − θ0 = −

(
Φ

−1
n S̈n(θn)

)
−1

Φ
−1
n Ṡn(θ0),

where Φn is a p × p matrix. We want to define conditions on Φn such that

limn Φ
−1
n Ṡn(θ0)

a.s.
= 0 and limn ‖

(
Φ

−1
n S̈n(θn)

)
−1

‖

a.s.
< ∞. We will use a SLLNM

(Strong Law of Large Numbers for Martingales) to prove that limn Φ
−1
n Ṡn(θ0)

a.s.
=

0. We point out that, in these theorems, Φn should be Fn−1-measurable. Thus
S̈n(θn) which is Fn-measurable, is not a good candidate for Φn.

Proposition 1. Assume that Sn(θ) is twice differentiable in θ and that Ṡn(θ0)
is a martingale. Let Φn =

∑n
k=1 E

(
Ψ̇k(Zk,θ0)Ψ̇

T
k (Zk,θ0)|Fk−1

)
. Then

(6) lim
n

θ̂n
a.s
= θ0 on {limn sup

θ

‖S̈n(θ)−1
Φn‖<∞,

lim
n

λmin

(
Φn

)
=∞, lim

n

(
ln(‖Φn‖)

)ν(
λmin(Φn)

)
−1

=0}, ν > 1.

P r o o f. The property limn Φ
−1
n Ṡn(θ0)

a.s.
= 0 is directly deduced from a SLLNM

([4] (p = 1), [8] (1 ≤ p < ∞)).

1. Consider the case p = 1. Note first that the last condition of (6) is auto-
matically checked in this case. We use here the following classical SLLNM
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[4], applied to Mn := Ṡn(θ), that is Xk := Ψ̇k(Zk, θ): let {Mn}n be a mar-
tingale, that is Mn =

∑n
k=1 Xk, where Xk := Mk−Mk−1, E(Xk|Fk−1) = 0,

and let {Φn} be a non decreasing sequence (Φn ≤ Φn+1) such that Φn is
Fn−1-measurable. Then

lim
n

Φ−1
n Mn

a.s.
= 0 on {lim

n
Φn=∞,

∑

n

Φ−2
n E

(
X2

n|Fn−1

)
<∞}.(7)

Moreover when Φn =
∑n

k=1 E
(
X2

k |Fk−1

)
, then (7) is reduced to

lim
n

Φ−1
n Mn

a.s.
= 0 on {lim

n
Φn=∞}

because any real sequence {x2
k}k satisfies (see [4] p.158, [6]):

∞∑

n=1

( n∑

k=1

x2
k

)
−2

x2
n<∞.(8)

Remark. Writing E
(
X2

k |Fk−1

)
=: x2

k, and Φ2
n =:

∑n
k=1 y2

k, then we may

have
∑

n

(∑n
k=1 y2

k

)
−2

x2
n<∞ with x2

n > y2
n. For instance, take y2

n = bn and
x2

n = an with b2 > a > b > 1. So Proposition 1 may be extended to some Φn

tending to ∞ at a smaller rate than
∑n

k=1 E
(
Ψ̇k(Zk, θ0)Ψ̇

T
k (Zk, θ0)|Fk−1

)
.

2. Consider now the general case 1 ≤ p < ∞. We use a SLLNMM (SLLN
for Multivariate Martingales) [8]: let {Mn}n defined by Mn :=

∑n
k=1 Xk

be a multivariate martingale, and let Φn be a symmetric Fn−1-measurable
matrix such that Φ

2
n+1 − Φ

2
n is nonnegative definite, that is V

T
(
Φ

2
n+1 −

Φ
2
n

)
V ≥ 0, for all p × 1 vector V. Then

(9) lim
n

Φ
−1
n Mn

a.s.
= 0

on {lim
n

λmin

(
Φn

)
=∞,

∑

n

E
(
‖Φ

−1
n Xn‖

2
|Fn−1

)
<∞}.

Moreover in the particular case Φn =
∑n

k=1 E
(
XkX

T
k |Fk−1

)
, then

(10) lim
n

Φ
−1
n Mn

a.s.
= 0

on {lim
n

λmin

(
Φn

)
=∞, lim

n

(
ln(‖Φn‖)

)ν
λ−1

min(Φn)=0}, ν > 1.

�
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Remark. When p > 1, the condition limn

(
ln(‖Φn‖)

)ν(
λmin(Φn)

)
−1 a.s.

= 0
is not always checked contrary to the case p = 1 (take λmin(Φn) = O(n), ‖Φn‖ =
O(βn), β > 1).

Consider the conditions of Proposition 1 applied to (1), (3), (4):

1. Ψk(Zk,θ) = (Zk − gk(θ))2. Then Ṡn(θ0) = −2
∑n

k=1 ek(θ0)ġk(θ0) and
S̈n(θ) = 2

∑n
k=1 ġk(θ)ġT

k (θ)−2
∑n

k=1 ek(θ)g̈k(θ), where ek(θ) := Zk−gk(θ).
The quantities

∑n
k=1 ek(θ0)ġk(θ0) and

∑n
k=1 ek(θ0)g̈k(θ0) are martingales.

We see that unfortunately the first condition of (6) is generally not checked
in the nonlinear case.

2. Ψk(Zk,θ) = |Zk − gk(θ)| is not differentiable;

3. Ψk(Zk,θ) = − ln pk(θ), where pk(θ) := pθ(Zk|Fk−1). Then Ṡn(θ0) =
−

∑n
k=1 ṗk(θ0)p

−1
k (θ0). This implies that Ṡn(θ0) is a martingale, under

the classical assumption that integral and derivatives may be exchanged.
In addition S̈n(θ) =

∑n
k=1 ṗk(θ)ṗT

k (θ)p−2
k (θ) −

∑n
k=1 p̈k(θ)p−1

k (θ), where∑n
k=1 p̈k(θ0)p

−1
k (θ0) is a martingale. As in item 1, the first condition of (6)

is generally not cheched.

2.2. Strong consistency of θ̂n based on the minimum contrast

property.

Proposition 2. Assume that Sn(θ)−Sn(θ0) = Dn(θ)+Mn(θ), where Dn(θ)
is Fn−1-measurable and Mn(θ) =:

∑n
k=1 Xk(θ) is a martingale. Then

(11) lim
n

θ̂n
a.s
= θ0

on ∩δ {limn inf
‖θ−θ0‖≥δ

Dn(θ)=∞, sup
‖θ−θ0‖≥δ

∞∑

n=1

Eθ0

(
X2

n(θ)|Fn−1

)
D−2

n (θ)<∞}.

P r o o f. From Sn(θ) − Sn(θ0) = Dn(θ) + Mn(θ), we deduce that

(12) inf
‖θ−θ0‖≥δ

Sn(θ) − Sn(θ0) ≥ inf
‖θ−θ0‖≥δ

Dn(θ)
(
1 − sup

‖θ−θ0‖≥δ

|Mn(θ)D−1
n (θ)|

)
.

Then we use Wu’s Lemma [11]: if limn inf
‖θ−θ0‖≥δ(Sn(θ) − Sn(θ0))

a.s.
> 0, for all

δ > 0, then limn θ̂n
a.s.
= θ0.

So thanks to (12), it is sufficient to prove that

limn inf
‖θ−θ0‖≥δ

Dn(θ)
(
1 − limn sup

‖θ−θ0‖≥δ

|Mn(θ)D−1
n (θ)|

)
a.s.
> 0.

For this purpose, we use the following USLLNSM (Uniform SLLNM):
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Lemma 1. Let, for all θ ∈ Θ̃ compact, Mn(θ) :=
∑n

k=1 Xk(θ) be a mar-

tingale (Eθ0

(
Xk(θ)|Fk−1

)
= 0, for all k), and let Dn(θ) :=

∑n
k=1 d2

k(θ) be

a nonnegative quantity with d2
k(θ) Fk−1-measurable, for all k. Assume that

Eθ0

(
|Xk(θ1)−Xk(θ2)||Fk−1

)
≤ hX(‖θ1 − θ2‖)uk, where uk is Fk−1-measurable,

and limx→0 hX(x) = 0, and similarly for |d2
k(θ1) − d2

k(θ2)|. Then

(13) lim
n

sup
θ∈Θ̃

|Mn(θ)D−1
n (θ)|

a.s.
= 0

on {limn inf
θ∈Θ̃

Dn(θ)=∞, sup
θ∈Θ̃

∞∑

n=1

Eθ0

(
X2

n(θ)|Fn−1

)
D−2

n (θ)<∞}.

This proposition is the direct generalization of Proposition 3.1 of [6] which con-
cerns the particular class Mn(θ) :=

∑n
k=1 ek(θ0)dk(θ). It can be viewed as a

generalization of the SLLNM (Strong Law of Large Numbers for Martingales)
[4], and as a generalization of the uniform strong law of large numbers for i.i.d.
variables, originally due to Le Cam. �

Corollary 1. Assume that Dn(θ)−Dn−1(θ) ≥ 0, and let Dn(θ)−Dn−1(θ) =:
d2

n(θ). Then

(14) lim
n

θ̂n
a.s
= θ0 on ∩δ {limn inf

‖θ−θ0‖≥δ
Dn(θ)=∞,

limn sup
‖θ−θ0‖≥δ

Eθ0

(
X2

n(θ)|Fn−1

)
d−2

n (θ)1
{dn(θ)6=0}<∞}.

P r o o f. (14) implies (11) thanks to (8). �

Consider (11) and (14) applied to (1), (3), (4).

1. Ψk(Zk,θ) = (Zk − gk(θ))2. Writing Zk − gk(θ) =: ek(θ) and gk(θ0) −
gk(θ) =: dk(θ), we get that

Sn(θ) − Sn(θ0) =

n∑

k=1

(e2
k(θ) − e2

k(θ0))

=

n∑

k=1

d2
k(θ) + 2

n∑

k=1

ek(θ0)dk(θ) =: Dn(θ) + Mn(θ).
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Consequently, defining σ2
n := Eθ0

(
e2
n(θ0)|Fn−1

)
, (11) is reduced to

(15) lim
n

θ̂n
a.s
= θ0 on ∩δ {limn inf

‖θ−θ0‖≥δ
Dn(θ)=∞,

sup
‖θ−θ0‖≥δ

∞∑

n=1

σ2
nd2

n(θ)
( n∑

k=1

d2
k(θ)

)
−2

<∞},

and, when limnσ2
n

a.s.
< ∞, (14) is reduced to

lim
n

θ̂n
a.s
= θ0 on ∩δ {limn inf

‖θ−θ0‖≥δ
Dn(θ)=∞}.(16)

Note that limnσ2
n

a.s.
< ∞ under appropriate weights {λk}k: for all k, λk ∝

σ−2
k or λk ∝ σ̂−2

k , where σ̂2
k is a consistent estimator of σ2

k.

Remark. Assume that gk(θ) is differentiable with ġk(θ) continuous in
θ. Then we may write gk(θ) − gk(θ0) = (θ − θ0)

T ġk(θ̃k), where θ̃k lies
“between” θ and θ0. In this case,

∩δ{limn inf
‖θ−θ0‖≥δ

Dn(θ)=∞}

a.s.
= {lim

n
λmin(Φn)=∞},(17)

where Φn =
∑n

k=1 ġk(θ0)ġ
T
k (θ0). This implies that(16) is reduced to

lim
n

θ̂n
a.s
= θ0 on {lim

n
λmin(Φn)=∞}.(18)

Comparing (18) to (6), we see that (6) contains unnecessary conditions,
while (18) is reduced to a necessary and sufficient condition in the sense

that it is easy to find examples with limnλmin(Φn)
a.s.
< ∞ and such that the

estimator is not consistent (take p = 1, gk(θ) = θWk and the {ek(θ0)}k i.i.d..

Then θ̂n − θ0 =
(∑n

k=1 W 2
k

)
−1(∑n

k=1 ek(θ0)Wk

)
the variance of which is

proportional to
(∑n

k=1 W 2
k

)
−1

= Φ
−1
n ).

Consequence in the particular linear case

Assume that gk(θ) = θT
Wk with limnσ2

n

a.s.
< ∞. Then (18) is reduced to

(19) lim
n

(
n∑

k=1

WkW
T
k

)
−1( n∑

k=1

ek(θ0)Wk

)
a.s.
= 0

on

{
lim
n

λmin

(
n∑

k=1

WkW
T
k

)
=∞

}
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while, using directly the SLLNMM [8], we get that

(20)

( n∑

k=1

WkW
T
k

)
−1( n∑

k=1

ek(θ0)Wk

) a.s.
= 0 on {lim

n
λmin

( n∑

k=1

WkW
T
k

)
=∞,

lim
n

(
ln(‖

n∑

k=1

WkW
T
k ‖)
)ν(

λmin(
n∑

k=1

WkW
T
k )
)
−1

=0}, for some ν > 1.

The last condition in (20) is equivalent to

lim
n

(
ln(λmax(

n∑

k=1

WkW
T
k ))
)ν(

λmin(
n∑

k=1

WkW
T
k )
)
−1 a.s.

= 0, for some ν > 1,

which is automatically satisfied only when p = 1. Note that (20) leads to
the strong consistency of the estimator in the linear stochastic regression
setting and was given in [7].

We then obtain with (19) an improvement of Lin’s conditions (10) for the

particular class of martingales Mn =
∑n

k=1 ek(θ0)Wk, where limnσ2
n

a.s.
< ∞,

and Wk is Fk−1-measurable.

2. Ψk(Zk,θ) = |Zk − gk(θ)| =: |ek(θ)|. This implies that

Sn(θ) − Sn(θ0) =

n∑

k=1

(
|ek(θ)| − |ek(θ0)|

)
=

n∑

k=1

e2
k(θ) − e2

k(θ0)

|ek(θ)| + |ek(θ0)|
.

Therefore

Sn(θ) − Sn(θ0) ≥ A−1
n (θ)

(
Dn(θ) + Mn(θ)

)
,

where An(θ) := sup1≤k≤n

(
|dk(θ)| + 2|ek(θ0)|

)
, Dn(θ) :=

∑n
k=1(gk(θ0) −

gk(θ))2, Mn(θ) :=
∑n

k=1 ek(θ0)(gk(θ0) − gk(θ)), ek(θ0) := Zk − gk(θ0),
dk(θ0) := gk(θ0) − gk(θ). Then using the same steps as in Proposition 2
and defining σ2

n := Eθ0

(
e2
k(θ0)|Fn−1

)
, we obtain that

(21) lim
n

θ̂n
a.s
= θ0 on ∩δ {limn inf

‖θ−θ0‖≥δ

Dn(θ)

An(θ)
>0,

limn inf
‖θ−θ0‖≥δ

Dn(θ)=∞, sup
‖θ−θ0‖≥δ

∑

n

σ2
nd2

n(θ)
(∑n

k=1 d2
k
(θ)
)2 <∞},



80 C. Jacob

or, if limnσ2
n

a.s.
< ∞, according to (14),

lim
n

θ̂n
a.s
= θ0 on ∩δ {limn inf

‖θ−θ0‖≥δ

Dn(θ)

An(θ)
>0, limn inf

‖θ−θ0‖≥δ
Dn(θ)=∞}.

Note that the subset above is reduced to {limn inf
‖θ−θ0‖≥δ Dn(θ)=∞} if

each Ψk(Zk,θ) is bounded that is, if Ψk(Zk,θ) = Ψ̃k(z,θ)1
{Zk∈I}, where

Zk = (Zk, Zk−1, . . . , Zk−d), d being the memory of the process, and I being
any d + 1-dimensional vector of large finite intervals.

3. Ψk(Zk,θ) = − ln pk(θ), where pk(θ) := pθ(Zk|Fk−1) (conditional likelihood
of Zk). Then Sn(θ) − Sn(θ0) =

∑n
k=1 ln(pk(θ0)p

−1
k (θ)), implying in turn

that

Sn(θ) − Sn(θ0)

=

n∑

k=1

Eθ0

(
ln

pk(θ0)

pk(θ)
|Fk−1

)
+

n∑

k=1

(
ln

pk(θ0)

pk(θ)
− Eθ0

(
ln

pk(θ0)

pk(θ)
|Fk−1

))

=: Dn(θ) + Mn(θ),

where by construction Mn(θ) is a martingale, and Dn(θ) ≥ 0 because

Eθ0

(
ln

pk(θ0)

pk(θ)
|Fk−1

)
≥ 0 (with equality if and only if pk(θ) = pk(θ0)).

This quantity is the Kullback-Leibler divergence between the true density
pk(θ0) and pk(θ). Then (14) becomes

(22) lim
n

θ̂n
a.s
= θ0 on ∩δ {limn inf

‖θ−θ0‖≥δ
Dn(θ)=∞,

limn sup
‖θ−θ0‖≥δ

V arθ0

(
ln

pθ0
(Zn|Fn−1)

pθ(Zn|Fn−1) |Fn−1

)

Eθ0

(
ln

pθ0
(Zn|Fn−1)

pθ (Zn|Fn−1) |Fn−1

) 1
{Eθ0

(
ln

pθ0
(Zn|Fn−1)

pθ (Zn|Fn−1)

)
6=1}

<∞}.

3. Asymptotic distribution We use the classical approach based on
the first order Taylor series of Ṡn(θ̂n) at θ0 (see (5)), and we write

Υn(θ̂n − θ0) = −

(
Υ̃

−1
n S̈n(θn)Υ−1

n

)
−1(

Υ̃
−1
n Ṡn(θ0)

)
,

where Υn and Υ̃n are p × p invertible matrices.
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Proposition 3. Assume that Sn(θ) is twice differentiable in θ and that Ṡn(θ0)
is a martingale. Let Υn and Υ̃n be p× p invertible matrices such that Υ̃n is de-

terministic and assume that

lim
n

Υ̃
−1
n S̈n(θn)Υ−1

n exists in probability and is deterministic(23)

lim
n

Υ̃
−1
n Ṡn(θ0) exists in distribution.(24)

Then limn Υn(θ̂n − θ0) exists in distribution.

The proof is directly deduced from Slutsky’s convergence theorem.

Remark. According to Subsection 2.1, when Ψk(Zk,θ) = (Zk − gk(θ))2 or
when Ψk(Zk,θ) = − ln pk(θ), then Ṡn(θ0) is a martingale.

Remark. Condition (23) should be easily checked thanks to the strong
consistency of θ̂n under continuity conditions in θ on the {Ψ̈k(z,θ)}k, and using
in addition the USLLNM, when S̈n(θ) contains a term that is a martingale. Con-
dition (24) should be easily checked thanks to an appropriate CLT (Central Limit

Theorem). Denoting Υ̃
−1
n Ṡn(θ0) =:

∑n
k=1 Xk,n =: M

n
k , and since {M

n
k}k≤n is a

martingale, then, if limn

∑n
k=1 E

(
Xk,nX

T
k,n|F

n
k−1

)
exists in probability and is a

deterministic matrix Γ, we may use a CLT for martingales to get the limit distri-
bution of M

n
n. However, in the branching processes setting, Γ is the most often

random, preventing us to use some CLT for martingales. Since in this setting,
M

n
n may be usually written as a random sum of independent variables, then we

may rather use a CLT for random sums (see for example e.g. [1], [2]). Recall
first the following CLT for multivariate martingale arrays ([10] (continuous time),
[2]) which is the direct generalization of the CLT for univariate martingale arrays
[4]: Let M

n
k =:

∑k
l=1 Xl,n be a multidimensional {Fn

k−1}k-martingale triangular

array. Then limn M
n
n

D
= N (0,Γ), under the following assumptions:

lim
n

n∑

k=1

E
(
Xk,nX

T
k,n|F

n
k−1

)
P
= Γ (semi-definite deterministic matrix),

lim
n

n∑

k=1

E
(
‖Xk,n‖

21
{‖Xk,n‖

2
≥ǫ}|F

n
k−1

)
P
= 0, ∀ǫ > 0.
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4. Example: a branching process with memory. Let the following
BGW (Bienaymé-Galton-Watson) with memory d:

(25) Zk =
d∑

l=1

Zk−l∑

i=1

Yk−l,k,i, Yk−l,k,i|Fk−1
D
= Poisson

(
ml(θ0)

)
, ml(θ0) > 0,∀l,

{Yk−l,k,i}i,l|Fk−1 independent, Fk−1 = σ-
(
{Zk−l}l≥1

)
,

where Yk−l,k,i represents the offspring at time k generated by the individual i
of the population at time k − l. The quantity l represents the maturation time
to produce the offspring Yk−l,k,i. We assume that ml(θ0) is independent of the
process {Zk}k and depends on a unknown p-dimensional parameter θ0, where
1 ≤ p ≤ d. When d = 1, this process is a single-type BGW process.

As example, Yk−l,k,i may be the number of newborns at time k of i born at
time k−l. Then, if 1 is the age of i at his birth time k−l, l+1 represents the age of
i at the birth time k of Yk−l,k,i. Therefore {Zk}k is the process of newborns, and
the older populations are then directly deduced from this newborns process using
survival. In [9], Zk represents the incidence of infectives at time k. An infective
is assumed to be removed at the following time, and Yk−l,k,i is the number of
secondary infectives generated at time k, by an infective of time k − l. Here l
represents the latent (non infectious) period.

According to the assumptions,

Zk|Fk−1
D
= Poisson

(
gk(θ0)

)
, gk(θ) =

d∑

l=1

Zk−lml(θ).

This process may be represented as a multitype BGW process {Zk}k, where
Zk := (Zk, Zk−1, . . . , Zk−(d−1)). The behavior of {Zk}k is then deduced from the

behavior of {Zk}k [9]. We obtain for example that limn Znρ−n a.s.
= W , where ρ

is solution of
∑d

l=1 ρ−lml(θ0) = 1 and W is a nonnegative integrable random
variable. Moreover the process becomes a.s. extinct if ρ ≤ 1 which is equivalent
to
∑d

l=1 ml(θ0) ≤ 1, while its probability of nonextinction is P (W > 0) which is

strictly positive when ρ > 1, i.e. when
∑d

l=1 ml(θ0) > 1.

We consider here the estimators of the parameter θ0, given by (1), (3), (4),
and we give conditions leading to their strong consistency, and then to their
asymptotic distribution using the results of Sections 2 and 3.
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4.1. Strong consistency of θ̂n.

• Ψk(Zk,θ) = − ln pk(θ), where pk(θ) = exp(−gk(θ))(Zk!)−1
(
gk(θ)

)Zk . This
implies that ln

(
pk(θ0)p

−1
k (θ)

)
= gk(θ) − gk(θ0) − Zk ln

(
gk(θ)g−1

k (θ0)
)
.

Defining xk(θ) := gk(θ)g−1
k (θ0), we notice that

(26) xk(θ) ∈
[
xmin, xmax

]
, xmin := min

l,θ
ml(θ)

(
max

l
ml(θ0)

)
−1

,

xmax := max
l,θ

ml(θ)
(
min

l
ml(θ0)

)
−1

.

Moreover assume the following condition C:

∀δ > 0, ∀θ : ‖θ − θ0‖ ≥ δ, ∃ξδ : xk(θ) /∈
[
1 − ξδ, 1 + ξδ

]
.(27)

This assumption is checked in particular when p = 1 and the ml(θ) are, for
all l = 1, . . . , d, strictly increasing (resp. decreasing) functions of θ. This is
the case in [9], where ml(θ) is affine in θ. We have

V arθ0

(
ln pk(θ0)

pk(θ) |Fk−1

)

Eθ0

(
ln pk(θ0)

pk(θ) |Fk−1

) =
(ln xk(θ))2

xk(θ) − 1 − lnxk(θ)
.(28)

Thanks to (26) and assuming C, there exists βδ < ∞ such that

(ln xk(θ))2
(
xk(θ) − 1 − ln xk(θ)

)
−1

≤ βδ.(29)

Then, defining Dn(θ) =
∑n

k=1 Eθ0

(
ln pk(θ0)

pk(θ) |Fk−1

)
, (22) becomes

lim
n

θ̂n
a.s
= θ0 on ∩δ {limn inf

‖θ−θ0‖≥δ
Dn(θ)=∞}.

Note that assuming C, thanks to (29), then, for ‖θ − θ0‖ ≥ δ,

n∑

k=1

Eθ0

(
ln

pk(θ0)

pk(θ)
|Fk−1

)
=

n∑

k=1

(xk(θ) − 1 − ln xk(θ))gk(θ0)

≥ β−1
δ

n∑

k=1

gk(θ0)
(
ln xk(θ)

)2

≥ β−1
δ

min
l

ml(θ0)
(
ln(1 + ξδ)

)2 n∑

k=1

d∑

l=1

Zk−l.

Then, we obtain the following result.
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Proposition 4. Assume C. Then limn θ̂n
a.s
= θ0 on the nonextinction set,

that is on {W > 0}.

• Ψk(Zk,θ) = λk(Zk − gk(θ))2, where λk = (
∑d

l=1 Zk−l)
−1. Thus Sn(θ)

is the direct generalization of the contrast leading to the CLSE in the
BGW setting (d = 1). Let σ2

k := Eθ0

(
λk(Zk − gk(θ0))

2
|Fk−1

)
. Then

σ2
k =

(∑d
l=1 Zk−l

)
−1∑d

l=1 Zk−lml(θ0) ∈
(
minl ml(θ0),maxl ml(θ0)

)
. Con-

sequently, according to (16),

lim
n

θ̂n
a.s
= θ0 on ∩δ {limn inf

‖θ−θ0‖≥δ
Dn(θ)=∞},

where Dn(θ) :=

n∑

k=1

(
gk(θ0) − gk(θ)

)2( d∑

l=1

Zk−l

)
−1

.

Under C and (29), for ‖θ − θ0‖ ≥ δ, we obtain that

Dn(θ) ≥

n∑

k=1

g2
k(θ0)

(
ln xk(θ) + β−1

δ

(
ln xk(θ)

)2)2( d∑

l=1

Zk−l

)
−1

≥ min
l

m2
l (θ0)

(
ln(1 + ξδ)

)2 n∑

k=1

d∑

l=1

Zk−l,

which implies the same result as for the MLE.

Proposition 5. Assume C. Then limn θ̂n
a.s
= θ0 on the nonextinction set,

that is on {W > 0}.

Remark. In the BGW setting (d = 1), the strong consistency of the CLSE
θ̂n of θ0 := m1(θ0) is classically proved directly using the explicit expression
of θ̂n − θ0 and the asymptotic behavior of the martingale Wn = Znm−n

0 ,
contrary to our indirect proof based only on the nonextinction set:

m̂n − m0 =

∑n
k=1(Zk − m0Zk−1)∑n

k=1 Zk−1
=

∑n
k=1(Wk − Wk−1)m

k
0∑n

k=1 Wk−1m
k−1
0

.

• Ψk(Zk,θ) = λ
1/2
k

1
{Zk∈I}|Zk − gk(θ)|, where λk = (

∑d
l=1 Zk−l)

−1 and I is
any very large finite interval. Then according to (21) and to the results in
the CLSE setting (previous item), we obtain the following result.

Proposition 6. Assume C. Then limn θ̂n
a.s
= θ0 on the nonextinction set,

that is on {W > 0}.
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4.2. Asymptotic distribution of θ̂n.

• Ψk(Zk,θ) =
(
Zk−gk(θ)

)2
λk, where gk(θ) =

∑d
l=1 Zk−lml(θ), λk =

∑d
l=1 Zk−l.

Then

Ṡn(θ0) = −2
n∑

k=1

ek(θ0)ġk(θ0)λk,(30)

S̈n(θ) = 2

n∑

k=1

ġk(θ)ġT
k (θ)λk − 2

n∑

k=1

ek(θ)g̈k(θ) λk,(31)

where ek(θ) := Zk − gk(θ). The quantity Ṡn(θ0) is a martingale and using
Zk ∼ Wρk and V arθ0

(ek(θ0)) = gk(θ0), we have, for any large n,

n∑

k=1

E
(
e2
k(θ0)ġk(θ0)ġ

T
k (θ0)λ

2
k|Fk−1

)

=

n∑

k=1

( d∑

l=1

Zk−lml(θ0)
)( d∑

l=1

Zk−lṁl(θ0)
)( d∑

l=1

Zk−lṁ
T
l (θ0)

)( d∑

l=1

Zk−l

)
−2

∼ W

n∑

k=1

ρk

∑d
l=1 ρ−lml(θ0)

∑d
l=1 ρ−lṁl(θ0)

∑d
l=1 ρ−lṁT

l (θ0)(∑d
l=1 ρ−l

)2 .

Choosing Υ̃n = (
∑n

k=1 ρk)1/2
I and denoting Υ̃

−1
n Ṡn(θ0) =:

∑n
k=1 Xk,n,

then
∑n

k=1 E
(
Xk,nX

T
k,n|Fk−1

)
converges a.s. to a random variable, pre-

venting us to use a CLT for martingales. So using (25), we rather write

Υ̃
−1
n Ṡn(θ0) ∼ −

2
(∑n

k=1 ρk
)1/2

d∑

l=1

S1−l,n−l∑

j=1

(
Yl,j − ml(θ0)

)∑d
l=1 ρ−lṁl(θ0)∑d

l=1 ρ−l
,

where S1−l,n−l =
∑n

k=1 Zk−l and Yl,j
D
= Yk−l,k,i. Then we use a CLT for

random sums for each l, and since limn S1−l,n−l

(∑n
k=1 ρk

)
−1 a.s.

= ρ−lW
(Toeplitz Lemma), we get that, for l = 1, . . . , d,

lim
n

Υ̃
−1
n Ṡn(θ0)

D
= −2W 1/2

V(θ0)
d∑

l=1

Ulρ
−l/2 on {W > 0},

where Ul
D
∼ N

(
0,ml(θ0)

)
, V(θ0) :=

(∑d
l=1 ρ−lṁl(θ0)

)(∑d
l=1 ρ−l

)
−1

, and

the {Ul}l are independent and independent of W . Then using
∑d

l=1 ρ−lml(θ0) =



86 C. Jacob

1, we get that

lim
n

Υ̃
−1
n Ṡn(θ0)

D
= −2W 1/2

V(θ0)U on {W > 0}, U
D
∼ N

(
0, 1
)
.

Consider now Υ̃
−1
n S̈n(θn)Υ−1

n with Υn = Υ̃n =
(∑n

k=1 ρk
)1/2

I. Using
again Zk−l ∼ Wρk−l, we have, for any large n,

Υ̃
−1
n S̈n(θn)Υ−1

n

∼

2W∑n
k=1 ρk

n∑

k=1

ρk

∑d
l=1 ρ−lṁl(θn)

∑d
l=1 ρ−lṁT

l (θn)
∑d

l=1 ρ−l
− 2M̃n(θn)

=: 2WB(θn) − 2M̃n(θn),

where

M̃n(θn) =

n∑

k=1

ek(θ0)
( d∑

l=1

ρ−lm̈l(θn)
)( d∑

l=1

ρ−l
)
−1

+
n∑

k=1

dk(θn)
( d∑

l=1

ρ−lm̈l(θn)
)( d∑

l=1

ρ−l
)
−1

.

The first term of M̃n(θn) converges a.s. to 0 thanks to the USLLNM, and
the second term converges a.s. to 0 thanks to the continuity of ml(θ) and
of m̈l(θ) and the strong consistency of θ̂n. So finally the conditions of
Proposition 3 are checked leading to the following result.

Proposition 7. Assume C and define

V∗(θ0) :=
( d∑

l=1

ρ−lṁl(θ0)

d∑

l=1

ρ−lṁT
l (θ0)

)
−1( d∑

l=1

ρ−lṁl(θ0)
)
.

Then on {W > 0},

lim
n

( n∑

k=1

ρk
)1/2(

θ̂n − θ0

) D
= W−1/2

V∗(θ0)U, U
D
∼ N (0, 1),(32)

where U and W are independent.
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• Ψk(Zk,θ = − ln pk(θ). Then, writing Zk − gk(θ) =: ek(θ), we have

Ṡn(θ0) = −

n∑

k=1

ṗk(θ0)

pk(θ0)
= −

n∑

k=1

ek(θ0)
ġk(θ0)

gk(θ0)
,

S̈n(θ) =
n∑

k=1

ṗk(θ)ṗT
k (θ)

p2
k
(θ)

−

n∑

k=1

p̈k(θ)

pk(θ)

=
n∑

k=1

ġk(θ)ġT
k (θ)

gk(θ)

(
1 +

ek(θ)

gk(θ)

)
−

n∑

k=1

ek(θ)
g̈k(θ)

gk(θ)
.

We see that these expressions are similar to those corresponding to the
CLSE, except that λk is here replaced by g−1

k
(θ), and that there is an

additional term in S̈n(θ) depending on the {ek(θ)g−1
k (θ)}k. Consequently

we finally get the same limit as for the CLSE.

Proposition 8. Assume C. Then on {W > 0},

lim
n

( n∑

k=1

ρk
)1/2(

θ̂n − θ0

) D
= W−1/2

V∗(θ0)U, U
D
∼ N (0, 1),(33)

where U and W are independent, and V∗(θ0) is defined in Proposition 7.

5. Conclusion. We saw that the indirect way of proof does not require
any explicit expression of θ̂n. Moreover, thanks to the USLLNM and to Wu’s
lemma, the condition for the strong consistency of θ̂n is reduced to the strong
identifiability of θ in Dn(θ), when the {Ψk}k are not “explosive” (condition on
the variance of the martingale). Note also that, thanks to (5), when S̈n(θn) is
independent of θn, then θ̂n has an explicit expression given by (5). Finally the
USLLNM with an appropriate CLT lead to general conditions for an asymptotic
distribution that are easily checked.
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