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The t-Hill estimator for independent data was introduced by Fabian and
Stehlik (2009). It estimates the extreme value index of distribution function
with regularly varying tail. This paper considers sampling of an infinite mov-
ing average model. We prove that in the discussed case the t-Hill estimator
is weak consistent. However, in contrast to independent identically distrib-
uted case here it is shown that the t-Hill and the Hill estimator applied to
the moving average model are not robust with respect to large observations.

1. Introduction. Here we suppose that X1,X2, . . . ,Xn are possibly de-
pendent copies of X with d.f. F , upper order statistics

X(1,n) ≤ X(2,n) ≤ · · · ≤ X(n,n)

and

(1) 1 − F ∈ RV−α, α > 0.

We consider the t-Hill estimator of α−1

(2) H∗k,n =
1

α̂k,n

=

{
1

k

k∑

i=1

X(n−k,n)

X(n−i+1,n)

}−1

− 1, k = 1, 2, . . . , n − 1.
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Hill (1975) derived a procedure of Pareto tail estimation by the MLE. He
obtain the following Hill estimator

(3) Hk,n =
1

α̂k,n

=
1

k

k∑

i=1

log

{
X(n−i+1,n)

X(n−k,n)

}
, k = 1, 2, . . . , n − 1.

Later on, many authors tried to robustify the Hill estimator, but they still rely
on maximum likelihood. Fraga Alves (2001) has introduced a new lower bound
for sample fraction and studied its properties. Gomes and Oliveira (2003) and Li,
Peng and Nadarajah (2010) introduce powers of original statistics. However, the
influence function of Hill estimator is slowly increasing, but unbounded, therefore
the Hill procedure is no robust. Many authors tried to make the original Hill
estimator robust (see e.g. Beran and Schell (2010) and Vandewalle, Beirlant,
Christmann and Hubert (2007)). In Fabián (2001) a new score method of score
moment estimators has been proposed. It appeared that these score moment
estimators are robust for very heavy tailed distributions (see Stehĺık, Potocký,
Waldl and Fabián (2010)). Jordanova and Pancheva (2012) consider i.i.d. sample
and find the limit distribution of the t-Hill estimator for fixed number k of the
threshold order statistic. They prove that for Pareto distributed observations we
do not need large sample to have the corresponding limit distribution for fixed k.
In that case under suitable normalizations and large sample the t-Hill estimator
is asymptotically normal for k(n) → ∞. Under the more general conditions, the
t-Hill estimator is asymptotically normal for k(n) = o(n). The Hill estimator
procedure with the score moment estimator has been investigated in Stehĺık,
Fabián and Sťrelec (2012) for optimal testing for normality against Pareto tail.

A specific problem is finding of an optimal threshold k, say, yielding a trade
off in between of variance and bias of the Hill estimator. Simulation results
by Embrechts et al. (1997) showed that the Hill estimator and its alternatives
work well over large ranges of values for k in the case of Pareto distribution.
However, Hill estimator is often giving wrong results for distributions different
from the Pareto one. Their “Hill horror plots” actually show deviations of the
Hill estimates trending farther away from the true value of the tail index as k is
increased.

When the mean square error (MSE) is employed to study the quality of
estimation, then we are getting a bath-tube shape of MSE against threshold
k, since higher order statistics did not see the different underlying distribution,
however, first order statistics are very different (e.g. Frechet distribution as a
Pareto tail distribution, see Gomes and Oliveira (2003)).

Resnick and Starica (1993) generalize the Hill estimator for a more general
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settings with possibly dependent data. In this paper we continue these investi-
gations. We obtain weak consistency of the t-Hill estimator for a special class
of dependent data, the infinite moving average model. In the end of the pa-
per we give some examples showing that in contrast to independent identically
distributed case the t-Hill and the Hill estimator applied to the moving average
model are not robust with respect to large observations. Since the score moment
estimator is simple, it is easy to implement it to the Hill procedure. Under the
concept of the Hill estimator we understand the successive averaging of ordered
values up to given k. In this paper we understand “The Hill estimator” as a
specific procedure for studying the tail of Pareto like distribution. Instead of
implementing “The Hill estimator” procedure, we implement the score moment
procedure. We illustrate t-Hill and we also quantify the robustness and compare
efficiency with other competitors. The paper is organized as follows. In the next
section we recall the theory of scalar score. In section 3 we discuss the t-Hill
estimator, introduced firstly by Fabián and Stehĺık (2009) and Stehĺık, Fabián
and Sťrelec (2012). The next section concerns the moving average model. Here
we show that under certain conditions the t-Hill estimator is weakly consistent.
In section 5 we introduce the t-Hill plot and compare t-Hill and Hill estimators.
Therein contamination of underling data is controlled by means of score variance
of Pareto distribution. Comparisons show that t-Hill estimator outperforms Hill
estimator. We end with powers of selected tests for normality against Pareto
distribution.

2. Scalar score. Fabian and Stehlik (2009) and Fabian (2011) have in-
troduced a simple scalar inference function, called a scalar score, which reflects
main features of a continuous probability distribution. Its simplicity has made it
possible to introduce new relevant numerical characteristics of continuous distri-
butions.

The scalar score has been introduced in three steps.
i) Let X be support of distribution F with density f , continuously differen-

tiable according to x ∈ X and let η : X → R. The transformation-based score or
shortly the t-score is defined by

(4) T (x) = −

1

f(x)

d

dx

(
1

η′(x)
f(x)

)
.

where η is given for most of distributions by

(5) η(x) =





x if X = R

log(x − a) if X = (a,∞)

log
x

1 − x
if X = (0, 1).
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Then (4) expresses a relative change of a ’basic component of the density’, the
density divided by the Jacobian of mapping (5).

ii) As a measure of central tendency of distribution F (x) has been suggested
the zero of the t-score,

x∗ : T (x) = 0,

called the transformation-based mean or shortly the t-mean.
iii) The function

(6) S(x; θ) = η′(x∗)T (x; θ),

called scalar score, has been suggested as a scalar inference function of distribu-
tion F .

For a particular class of distributions with support R and location parameter
µ (6) is identical with the score function of distribution F for µ. For a particular
class of distributions with “partial” support X 6= R and “transformed location
parameter” τ = η−1(µ) (distributions on X 6= R are taken as transformed “proto-
types” with support R”), (6) was proved to be identical with the score function of
distribution F for this parameter. For other distributions, (6) is a new function.
The t-mean of distributions with support R is the mode (if the distribution has
the location parameter, the t-mean is its value), the t-mean of distributions with
partial support is the transformed mode of the prototype.

Instead of the ordinary moments, the score moments were introduced for any
k ∈ N by relation

(7) Mk(θ) = ESk =

∫

X

S(x; θ)kf(x; θ) dx,

existing if f satisfies the usual regularity requirements. It appeares that the score
moments are often expressed by elementary functions of parameters. M1 = 0.
The value M2 = ES2 of location and transformed location distributions is, respec-
tively, Fisher information for the location and transformed location parameter.
Accordingly, ES2 is the Fisher information for the t-mean. The reciprocal value

(8) ω2 =
1

ES2
,

the score variance, appeared to be a natural measure of the variability (dispersion)
of the distribution even in cases in which the usual variance does not exist.

For parametric distributions with vector parameter θ, x∗ = x∗(θ). Given data
x1, . . . , xn and a model family {Fθ, θ ∈ Θ}, the sample characteristics of central
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tendency (“center”) and dispersion (square of the “radius”) can be obtained as
functions of the estimated parameters: the sample t-mean x̂∗ = x∗(θ̂) and the
sample score variance ω̂2 = ω2(θ̂). Estimates θ̂ of θ are usually the maximum
likelihood estimates or some robust M-estimates in cases of heavy-tailed distri-
butions or if considering gross errors models. We introduced the score moment
estimate as the solution of equations

(9) θ̂SM :
1

n

n∑

i=1

Sk(xi; θ) = EθS
k, k = 1, . . . ,m,

derived from (7) using the substitution principle.

In Fabián Z. (2007) and (2008) it is shown that x̂∗ is consistent and asymp-
totically normal. The t-score moment estimators take into account the assumed
form of the distribution, similarly as the maximum likelihood (ML) ones. How-
ever, since xi enters into estimation equations by means of S(xi; θ) only and
scalar scores of heavy-tailed distributions are bounded, the score moment esti-
mates are in cases of heavy-tailed distributions robust, or, in other words, the
t-score estimates of all parameters of heavy-tailed distributions are protected
against outliers.

3. t-Hill estimator in case of Pareto distribution. In some cases,
the first equation of (9) has a form

(10) x̂∗SM :
n∑

i=1

S(xi;x
∗) = 0.

This is the case of the Pareto distribution P (α) with support X = [1,∞) and
density

f(x) =
α

xα+1
.

Using the mapping η = log(x − 1), η′(x) = 1/(x − 1), the t-score (4) is

T (x) = −1 − (x − 1)f ′(x)/f(x) = α(1 − x∗/x)

where the t-mean x∗ = (α + 1)/α. From (10), x̂∗ = x̄H , where x̄H = n
/ n∑

1

1/xi

is the harmonic mean, and

α̂ = 1/(x̂∗ − 1).
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It suggests to introduce a variant of the Hill estimator as

(11) γ̂k =
1

α̂k

= H∗k,n =
1

1

k

k∑

i=1

X(n−k,n)

X(n−i+1,n)

− 1,

where harmonic mean is taken from the last k observed values with threshold
Xn−k,n.

Let us call the estimator (11) t-Hill estimator. Since it is based on harmonic
mean, it is expected to be to a certain extent resistant to large observations so
that it could yield more realistic values than the ordinary Hill estimator.

4. The Moving Average Model. Now we apply the following result
about weak consistency of the t-Hill estimator, obtained in Jordanova, Dusek
and Stehlik (2012).

Theorem 1. Suppose that X1,X2, . . . ,Xn are possibly dependent copies of
X with d.f. F , upper order statistics

X(1,n) ≤ X(2,n) ≤ · · · ≤ X(n,n)

and F satisfy condition (1). Let

µX,k(n),n(·) :=
1

k(n)

n∑

i=1

ε





Xi

b
(

n
k(n)

) ∈ (·)



 ,

be a random element in the space E
+ of positive Radon measures on (0,∞]

endowed with the vague topology,

b(t) := F←(1 −

1

t
) =

(
1

F

)
←

(t)

and µX,k(n),n =⇒ µ, n → ∞, where µ : σ((0,∞]) → [0,∞) and µ(x;∞] = x−α,
x > 0. Assume the following Mason’s condition

k(n)

n
→ 0, k(n) → ∞, n → ∞

holds. Then H∗k,n is an weakly consistent estimator for
1

α
.

In a particular case of infinite moving average sequence this theorem looks in
the following way.
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Theorem 2. Suppose at least one of the real numbers cj , j = 0, 1, . . . is
positive and there exists δ ∈ (0, 1), δ < α such that

(12)

∞∑

j=0

|cj |
δ < ∞.

Consider the moving average sequence

(13) Xn =
∞∑

j=0

cjZn−j, −∞ < n < ∞,

where Zi,−∞ < i < ∞, are non-negative independent identically distributed
(i.i.d.) innovations with d.f. G, such that G ∈ RV−α, α > 0.

If

(14) k(n) → ∞,
k(n)

n
→ 0,

then H∗k,n is an weakly consistent estimator for α−1.

P r o o f. Resnick and Starica (1993) show that

(15) µX,k(n),n⇒µ, n → ∞,

in E
+, where µ : σ((0,∞]) → [0,∞) and µ(x;∞] = x−α, x > 0.
The random, variables Xn, −∞ < n < ∞, are identically distributed. Cline

(1983) proves that under these settings

F (x) = P



∞∑

j=0

cjZj > x


 ∼

∞∑

j:cj>0

cα
j G(x) ∈ RV−α.

We apply Theorem 1 and complete the proof. �

5. Empirical investigation of the robustness of t-Hill estimator.
Comparisons. It seems difficult to compare the mean values and variances
of Hill and t-Hill estimators for all distribution functions with regularly varying
tails. Their robustness is not defined clearly and investigated theoretically yet.
In this section we compare empirically their properties.

Let n ∈ {1, 2, . . . } be fixed. Analogously to the Hill plot we consider the set
of points with coordinates

(
k(n),

1

α̂k(n),n

)
, k(n) ∈ {1, 2, . . . , n}.
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Further on we call their plot “t-Hill plot”. In each of the following graphs, the
dotted line represents the true value of 1/α.

Note: The score variance of the Pareto distribution is ω2 = (α + 2)/α3. If
ω = 1, we have 1/α = 0.657. Pareto distribution with score variance ω2 will be
denoted by P (ω).

We consider two cases.

Case 1. i.i.d. observations. The next investigations refine the conclusions
made in Fabián and Stehĺık (2009).

a.) Pareto distribution. We simulate n = 2500 observations with Pareto
d.f. and α = 0.3, 1. Then we plot the Hill and t-Hill estimators for k =
50, 51, . . . , 2500 and determine the corresponding 0.05-confidence intervals. To
obtain good estimators in each of these cases it is important k to be large and
k < n. The rate of convergence of the Hill and t-Hill estimators could be seen in
Fig. 1.
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Fig. 1. The t-Hill plot – left and Hill plot – rigth, for F (x) = 1 − x−α, x > 1,
α = 0.3 – above and α = 1 below
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It is apparent that the t-Hill in his first part oscillates more than the ordinary
Hill. The reason is that the t-Hill is sensitive to an abrupt change of the threshold
value. It could be, however, suppressed by a suitable smoothing. According to
our empirical investigations both estimators behave similarly. The Hill estimator
has smaller dispersion than t-Hill estimator and therefore it is slightly better.
The rate of convergence of both estimators increases with α.

b.) D.f. with regularly varying tail at very slow rate. The Hill and
t-Hill estimators may perform very poorly if the slowly varying function in the
tail is faraway from a constant. In (4.16) Embrechts et al. (1997) consider

(16) F←(p) = (1 − p)−1/α(−ln(1 − p)), p ∈ (0, 1),

with respect to the Hill estimator. We simulated a sample of n = 10000 observa-
tions of random variables with quantile functions (16) for α = 0.3, 0.5 and plotted
the Hill and the t-Hill plots for k(n) = 21, 22, . . . , 500. The rate of convergence
of these estimators could be observed on Fig. 2.
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Fig. 2 The t-Hill (left) and Hill plot (right), α = 0.3 above and α = 1, below
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The Hill estimator seems slightly closer to the estimated value, but both
estimators are not good for such d.f’s.

c.) Log-gamma distribution. The score moment estimator is usually
simple so that it makes possible for many distributions to apply a score moment
Hill-like estimator. Consider for instance data generated from the log-gamma
distribution with support X = (1,∞) and density

(17) f(z) =
cα

Γ(α)
(log z)α−1z−(c+1).

In this case, a simple scalar score is obtained by use of the mapping η : (1,∞) → R

in the form
η(x) = log(log x).

Since η′(x) = 1/(x log x), by (4)

T (x) =
1

f(x)

d

dx

(
−(log x)cαx−c

)
= c log x − α

so that the ’loglog’ t-mean is x∗ = eα/c. As the ’second log-log moment’ ET 2 =
E[c2 log2(x/x∗)] = α, the estimation equations (9) are

n∑

i=1

c log xi − α = 0(18)

n∑

i=1

(c log xi − α)2 = α(19)

By setting ŝ1 =
1

k

k∑

i=1

log xi and ŝ2 =
1

k

k∑

i=1

log2 xi, it follows from (18) that

the estimates α̂ and ĉ correspondingly of α and c are α̂ = ŝ1ĉ and from (19)
ĉ(ŝ2 − ŝ2

1) = ŝ1. So that the Hill-like estimate of the tail index (cf. Beirlant,
Goegebeur, Segers and Teugels, (2005)) is given by closed-form expression

γ̂k =
1

α̂k
=

ŝ2

ŝ2
1

− 1.

The Hill-like estimates based on log-gamma distribution is given on Fig. 3
and Fig. 4. It is apparent that the log-gamma hill-like estimator estimates the
tail index properly whereas both t-Hill and Hill, expecting heavier Pareto tail,
show systematic decrease.
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Fig. 3. T-Hill (left), Hill (right) based on log-gamma distribution
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Fig. 4. Hill-like estimates based on log-gamma distribution

d.) Contaminated data from Pareto sample. Usually the data are
contaminated in practice. See e.g. Fabian and Stehlik (2009). Frequently there
are outliers in the right tail of the distribution. It is known that the Hill estimator
is not robust. This is due to the fact that in its formula, the data are entered by
their logarithm. What about the t-Hill estimator? In (2) the data are involved
by their reciprocal value. We could compare the charts of y(x) = 1/x and y(x) =
ln(x) and to deduce that the t-Hill estimators are more robust with respect to
large values than the Hill estimators. They are sensitive to the center of the
distribution.

We simulated n = 2500 data of Pareto(α) distribution with probability 1 −

ǫ = 0.9, contaminated with Pareto(δ) distribution with probability ǫ = 0.1 for
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different α = 1, 1.7 and δ = 0.5, 1, i.e.

F (x) = (1 − ǫ)FPatero(α)(x) + ǫFPatero(δ)(x), x ∈ R.

Then we plotted the Hill and t-Hill estimators for k(n) = 1, 2, . . . , n, together
with the corresponding 0.05-confidence intervals. The Hill estimator has more
narrow confidence intervals than t-Hill estimator. To reach a good estimation
for 1/α we need k(n) to be large and k(n) < n. When α < 1 and δ ≥ 1 the
Hill estimators are better than the t-Hill estimators. When α < 1 and δ < 1, or
α ≥ 1 and δ > 1 the t-Hill estimators are comparable to the corresponding Hill
estimators. In view of Figs 5–7 we can conclude that, for α ≥ 1 and δ ≤ 1, the
t-Hill estimators are better than the Hill estimators.
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Fig. 5. Rate of convergence of the t-Hill (left) and Hill (right) estimators, α = 1, δ = 0.5
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Fig. 6. Rate of convergence of the t-Hill (left) and Hill (right) estimators, α = 1.7 and
δ = 0.5
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Fig. 7. Rate of convergence of the t-Hill (left) and Hill (right) estimators, α = 1.7 and
δ = 1

Ratios of γ̂(k)/γ(1) for k = 100, 250 and 900 and n = 1000 are given for Hk,n

and H∗k,n in Table 1 and Table 2.

Table 1. Values r(k) = Hk,n/γ(ω∗) − 1 and r∗(k) = H∗

k,n
/γ(ω∗) − 1 for Pcont

with three different ω∗ and ǫ = 0.05

ǫ ω∗ γ(ω∗) r(100) r∗(100) r(250) r∗(250) r(900) r∗(900)
1.5 0.879 .0363 .0376 .0235 .0187 .0184 .0170

.05 3 1.500 .2027 .1517 .1333 .0982 .0679 .0473
5 2.165 .4982 .3049 .2792 .1573 .1203 .0656

Table 2. Values r(k) = Hk,n/γ(ω∗) − 1 and r∗(k) = H∗

k,n
/γ(ω∗) − 1 for Pcont

with three different ω∗ and 0.1

ǫ ω∗ γ(ω∗) r(100) r∗(100) r(250) r∗(250) r(900) r∗(900)
1.5 0.879 .0683 .0707 .0502 1.0458 .0339 .0296

.10 3 1.500 .3842 .2828 .2512 .1799 .1340 .0970
5 2.165 .9298 .6250 .5536 .3352 .2383 .1310

Case 2. Infinite moving average process Consider the infinite moving
average process with the following autoregressive form

Xi = 1.3Xi−1 − 0.7Xi−2 + Zi, i = 1, 2, . . . , n.

This process is considered in Resnick and Starica (1993) with respect to the Hill
estimator. In each of the following examples we simulated a sample of n = 2500
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such data and plotted the Hill and the t-Hill plots of the corresponding estimators
together with their 0.05-confidence intervals.

a.) Pareto noise. Here Zi, i = 1, 2, . . . are independent and Pareto(α)
distributed. For each sample we calculated Xi, i = 1, 2, . . . , n, Hill and the t-Hill
estimators for k(n) = 10, 11, . . . , 500. The charts of corresponding estimators
together with their 0.05-confidence intervals are given on Fig. 8 and Fig. 9, for
α = 0.3, 1.
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Fig. 8. Rate of convergence of the t-Hill (left) and Hill (right) estimators, α = 0.3
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Fig. 9. Rate of convergence of the t-Hill (left) and Hill (right) estimators, α = 1

Both estimators have similar behaviour for fixed number of upper order statis-
tics. In order to obtain consistent estimators we need k(n) = o(n), k(n) → ∞ and
n → ∞. Therefore both estimators are appropriate only for very large samples.

b.) Infinite moving average data with contaminated Pareto noise.

In this case Zi, i = 1, 2, . . . , n are independent Pareto(α) distributed on (1,∞)
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with probability 0.9, contaminated with Pareto(δ) distribution with probability
0.1 for different α > 0 and δ > 0. We take a sample of n = 10000 observations
and calculated the Hill and the t-Hill estimators. The corresponding estimators
together with their 0.05-confidence intervals are given on Figs 10–12. The results
are very different from Case 1), d.).
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Fig. 10. Rate of convergence of the t-Hill (left) and Hill (right) estimators,
α = 1, δ = 0.5
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Fig. 11. Rate of convergence of the t-Hill (left) and Hill (right) estimators,
α = 1.7, δ = 0.5

Here X1,X2, . . . ,Xn are dependent. Both estimators depend on upper order
statistics, but situation is very different from the i.i.d. case. In view of regular
variation of the tail of the distribution of the noise components, 1/min(α, δ)
determines the largest values among Z1,Z2, . . . ,Zn. If for some i = 1, 2, . . . , n Zi

is huge then it influences all of Xj, j = i + 1, i + 2, . . . , n. Therefore in this case
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Fig. 12. Rate of convergence of the t-Hill (left) and Hill (right) estimators,
α = 1.7, δ = 1

both estimators are not robust. They are good not for 1/α, but for 1/min(α, δ).

6. Power of selected tests for normality against Pareto distri-
bution. In this section we present power of selected classical and robust tests
for normality against Pareto alternative distributions. For this purpose we as-
sume Pareto (α, c) distribution for α ∈ {0.5, 1, 2, 5, 10}, c = 1. Simulation
study has been performed with sample sizes n ∈ {10, 15, 20, 25}, 100000 repeti-
tions and the following tests of normality: the classical Jarque-Bera test (JB),
the robust Jarque-Bera test (RJB), the Shapiro-Wilk test (SW ), the Anderson-
Darling test (AD), the Lilliefors test (LT ), directed SJ test (SJdir), three med-
couple tests (MC1,MC2,MC3) and selected RT tests which were introduced
in Stehĺık, Fabián and Sťrelec (2012), i.e. RTJB9, RTJB39 and RTJB42 tests.
Therein we substantially used t-Hill estimator for Pareto tail to classify optimal
test again given alternative. Therefore, Tables 3–6 present the results of Monte
Carlo simulations of power of analyzed tests against Pareto (α, c = 1) alternative
distributions. From them we may conclude that:

• The Shapiro-Wilk test outperforms the other tests for normality.
• For small sample sizes n = 10, 15, 20 and 25 the RTJB9 outperforms JB

test for all analyzed Pareto alternatives. For example, power of the classical
Jarque-Bera test against Pareto (α = 1, c = 1) alternative and very small
sample size n = 10 is 0.757. In comparison, power of RTJB9 test (test
based on “mean-median” robustification of the classical Jarque-Bera test -
see Stehĺık, Fabián and Sťrelec (2012)) against the same alternative is 0.857
and is comparable with the Shapiro-Wilk test, which has power of 0.870

• The power of the tests is decreasing with the increase of the parameter
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Table 3. Power of analyzed tests against Pareto (α, c = 1)
alternative distributions for n = 10

n = 10

test α = 0.5 α = 1 α = 2 α = 5 α = 10

JB 0.886 0.757 0.610 0.444 0.403

AD 0.958 0.855 0.712 0.545 0.483

LT 0.916 0.765 0.585 0.416 0.367

RJB 0.885 0.745 0.579 0.414 0.366

SJdir 0.875 0.712 0.530 0.359 0.306

SW 0.966 0.870 0.741 0.578 0.518

MC1 0.635 0.445 0.330 0.251 0.218

MC2 0.217 0.150 0.121 0.107 0.105

MC3 0.732 0.507 0.361 0.261 0.229

RTJB9 0.956 0.857 0.707 0.556 0.484

RTJB39 0.825 0.669 0.501 0.366 0.308

RTJB42 0.441 0.284 0.193 0.137 0.130

Table 4. Power of analyzed tests against Pareto (α, c = 1)
alternative distributions for n = 15

n = 15

test α = 0.5 α = 1 α = 2 α = 5 α = 10

JB 0.979 0.912 0.799 0.650 0.585

AD 0.997 0.968 0.896 0.766 0.710

LT 0.990 0.920 0.787 0.611 0.540

RJB 0.976 0.897 0.767 0.602 0.533

SJdir 0.970 0.868 0.702 0.507 0.435

SW 0.998 0.976 0.921 0.809 0.760

MC1 0.770 0.550 0.398 0.285 0.259

MC2 0.425 0.253 0.174 0.141 0.121

MC3 0.914 0.711 0.530 0.375 0.327

RTJB9 0.994 0.953 0.863 0.721 0.656

RTJB39 0.973 0.894 0.758 0.588 0.516

RTJB42 0.748 0.543 0.394 0.286 0.244
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Table 5. Power of analyzed tests against Pareto (α, c = 1)
alternative distributions for n = 20

n = 20

test α = 0.5 α = 1 α = 2 α = 5 α = 10

JB 0.997 0.974 0.908 0.789 0.716

AD 1.000 0.995 0.968 0.894 0.845

LT 0.999 0.978 0.902 0.753 0.676

RJB 0.996 0.963 0.879 0.740 0.656

SJdir 0.993 0.941 0.810 0.624 0.528

SW 1.000 0.997 0.983 0.926 0.891

MC1 0.891 0.706 0.529 0.399 0.358

MC2 0.518 0.322 0.212 0.170 0.167

MC3 0.972 0.845 0.664 0.504 0.453

RTJB9 0.999 0.991 0.948 0.854 0.801

RTJB39 0.995 0.965 0.879 0.737 0.661

RTJB42 0.892 0.738 0.579 0.432 0.384

Table 6. Power of analyzed tests against Pareto (α, c = 1)
alternative distributions for n = 25

n = 25

test α = 0.5 α = 1 α = 2 α = 5 α = 10

JB 1.000 0.993 0.961 0.875 0.830

AD 1.000 0.999 0.989 0.956 0.928

LT 1.000 0.994 0.958 0.862 0.791

RJB 0.999 0.987 0.939 0.825 0.765

SJdir 0.998 0.973 0.880 0.705 0.609

SW 1.000 1.000 0.995 0.976 0.957

MC1 0.918 0.741 0.570 0.429 0.388

MC2 0.557 0.320 0.222 0.169 0.160

MC3 0.981 0.868 0.695 0.519 0.466

RTJB9 1.000 0.997 0.978 0.919 0.876

RTJB39 0.999 0.989 0.944 0.838 0.770

RTJB42 0.959 0.857 0.716 0.574 0.518
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α. For example, power of the Shapiro-Wilk test against Pareto (α = 1,
c = 1) alternative and small sample size n = 15 is 0.976 and against Pareto
(α = 10, c = 1) alternative and the same sample size is 0.760.

• The smallest power show the medcouple tests and RTJB42 (test based
on “trimm-trimm” robustification of the classical Jarque-Bera test – see
Stehĺık, Fabián and Sťrelec (2012)).

Based upon our experience we can recommend the Shapiro-Wilk test and
RTJB9 test instead of the classical Jarque-Bera test (JB) and robust Jarque-
Bera test (RJB), especially for small and very small sample sizes.
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