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MODULI STACKS OF POLARIZED K3 SURFACES IN
MIXED CHARACTERISTIC

Jordan Rizov

Communicated by V. Kanev

Abstract. In this note we define moduli stacks of (primitively) polarized
K3 spaces. We show that they are representable by Deligne-Mumford stacks
over Spec(Z). Further, we look at K3 spaces with a level structure. Our main
result is that the moduli functors of K3 spaces with a primitive polarization
of degree 2d and a level structure are representable by smooth algebraic
spaces over open parts of Spec(Z). To do this we use ideas of Grothendieck,
Deligne, Mumford, Artin and others.

These results are the starting point for the theory of complex multiplica-
tion for K3 surfaces and the definition of Kuga-Satake abelian varieties in
positive characteristic given in our Ph.D. thesis [28].

Introduction. In this note we will consider moduli spaces of K3 surfaces
with a polarization. For a natural number d and an algebraically closed field k,
a K3 surface with a polarization of degree 2d over k is a pair (X,L) consisting
of a K3 surface X over k and an ample line bundle L on X with self intersection
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number (L,L) = 2d. The moduli space of polarized K3 surfaces with certain
level structure over C is constructed as an open subspace of the Shimura variety
associated with SO(2, 19). Over Z we use techniques developed by Artin to show
the existence of such spaces.

In various places in the literature one finds detailed accounts on coarse
moduli schemes of primitively polarized complex K3 surfaces. We outline in
Section 4.3 two approaches to the theory, one via geometric invariant theory ([35])
and another via periods of complex K3 surfaces ([4, Exposé XIII] and [10, §1]).
Here we take up a different point of view and work with moduli stacks rather than
with coarse moduli schemes. In this way, our exposition is closer to [25] where
moduli stacks of primitively polarized K3 surfaces and their compactifictions over
Q are constructed. We define the categories F2d and M2d of primitively polarized
(respectively polarized) K3 surfaces of degree 2d over Z and show that they are
Deligne-Mumford stacks over Z.

For various technical reasons we will need to work with algebraic spaces
rather than with Deligne-Mumford stacks. In the case of abelian varieties one
introduces level n-structures using Tate modules and considers moduli functors
of polarized abelian varieties with level n-structure for n ∈ N, n ≥ 3. These
functors are representable by schemes. We adopt a similar strategy in order to
define moduli functors which are representable by algebraic spaces. For a certain
class of compact open subgroups K of SO(2, 19)(Af ) we introduce the notion of
a level K-structure on K3 surfaces using their second étale cohomology groups.
Further, we introduce moduli spaces F2d,K of primitively polarized K3 surfaces
with level K-structure and show that these are smooth algebraic spaces over
Spec(Z[1/NK]) where NK ∈ N depends on K. These moduli spaces are finite
unramified covers of F2d. Important examples of level structures are spin level n-
structures. These are level structures defined by the images of some principal level
n-subgroups of CSpin(2, 19)(Af ) under the adjoint representation homomorphism
CSpin(2, 19) → SO(2, 19). We denote the corresponding moduli space by F2d,nsp .

Let us outline briefly the contents of this note. In the first few sections
we review some basic properties of K3 surfaces. Then we continue with the
study of the representability of Picard and automorphism functors arising from
K3 surfaces. The core of the problems discussed here is Section 4.3 in which
we define various moduli functors of polarized K3 surfaces and prove that those
define Deligne-Mumford stacks. In Section 5.1 we define level structures on K3
surfaces associated to compact open subgroups of SO(2, 19)(Af ). In the last
section we show that the moduli functors of primitively polarized K3 surfaces
with level structure are representable by algebraic spaces.

Notations. We write Ẑ for the profinite completion of Z. We denote
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by A the ring of adèles of Q and by Af = Ẑ ⊗ Q the ring of finite adèles of Q.
Similarly, for a number field E we denote by AE and AE,f the ring of adèles and
the ring of finite adèles of E.

If A is a ring, A → B a ring homomorphism then for any A-module
(A-algebra etc.) V we will denote by VB the B-module (B-algebra etc.) V ⊗AB.

For a ring A we denote by (Sch/A) the category of schemes over A. We
will write Sch for the category of schemes over Z.

By a variety over a field k we will mean a separated, geometrically integral
scheme of finite type over k. For a variety X over C we will denote by X an the
associated analytic variety. For an algebraic stack F over a scheme S and a
morphism of schemes S ′ → S we will denote by FS′ the product F ×S S

′ and
consider it as an algebraic stack over S ′.

A superscript 0 indicates a connected component for the Zariski topology.
For an algebraic group G will denote by G0 the connected component of the
identity. We will use the superscript + to denote connected components for other
topologies.

Let V be a vector space over Q and let G ↪→ GL(V ) be an algebraic
group over Q. Suppose given a full lattice L in V (i.e., L⊗ Q = V ). Then G(Z)
and G(Ẑ) will denote the abstract groups consisting of the elements in G(Q) and
G(Af ) preserving the lattices L and L

Ẑ
respectively.
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help, their support and for everything I have learned from them. I would like to
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1. Basic results.
Definitions and examples. We will briefly recall some basic notions

concerning families of K3 surfaces.

Definition 1.1.1. Let k be a field. A non-singular, proper surface X
over k is called a K3 surface if Ω2

X/k
∼= OX and H1(X,OX ) = 0.

Note that a K3 surface is automatically projective. Let us give some basic
examples one can keep in mind:

Example 1.1.2. Let S be a non-singular sextic curve in P2
k where k

is a field and consider a double cover i.e., a finite generically étale morphism,
π : X → P2

k which is ramified along S. Then X is a K3 surface.
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Example 1.1.3. Complete intersections: Let X be a smooth surface
which is a complete intersection of n hypersurfaces of degree d1, . . . , dn in Pn+2

over a field k. The adjunction formula shows that Ω2
X/k

∼= OX(d1+· · ·+dn−n−3).

So a necessary condition for X to be a K3 surface is d1 + · · · + dn = n+ 3. The
first three possibilities are:

n = 1 d1 = 4
n = 2 d1 = 2, d2 = 3
n = 3 d1 = d2 = d3 = 2.

For a complete intersection M of dimension n one has thatH i(M,OM (m)) = 0 for
all m ∈ Z and 1 ≤ i ≤ n− 1. Hence in those three cases we have H 1(X,OX ) = 0
and therefore X is a K3 surface.

Example 1.1.4. Let A be an abelian surface over a field k of characteris-
tic different from 2. Let A[2] be the kernel of the multiplication by-2-map, let
π : Ã → A be the blow-up of A[2] and let Ẽ be the exceptional divisor. The
automorphism [−1]A lifts to an involution [−1]Ã on Ã. Let X be the quotient

variety of Ã by the group of automorphisms {idÃ, [−1]Ã} and denote by ι : Ã→ X
the quotient morphism. It is a finite map of degree 2. We have the following
diagram

Ã

π
����

��
��

��

ι
��

??
??

??
??

A X

of morphisms over k. The variety X is a K3 surface and it is called the Kummer
surface associated to A.

Definition 1.1.5. By a K3 scheme over a base scheme S we will mean a
scheme X and a proper and smooth morphism π : X → S whose geometric fibers
are K3 surfaces. A K3 space over a scheme S is an algebraic space X together
with a proper and smooth morphism π : X → S such that there is an étale cover
S′ → S of S for which π′ : X ′ = X ×S S

′ → S′ is a K3 scheme.

If π : X → S is a K3 space, then π∗OX = OS . Indeed, this is true since π
is proper and its geometric fibers are reduced and connected.

Remark 1.1.6. A K3 space X over S is usually defined as an algebraic
space X together with a proper and smooth morphism π : X → S such that for
every geometric point s ∈ S the fiber Xs is a K3 surface. In this note we will
restrict ourselves to Definition 1.1.5 above. The reason is that for this class of
K3 spaces one can easily see that certain automorphism functors of K3 spaces
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are representable by schemes (cf. Theorem 3.3.1). We do not know if this holds
in general.

1.2. Ample line bundles on K3 surfaces. In order to construct the
moduli stacks of polarized K3 spaces one needs a number of results on ample line
bundles. We give them below.

Definition 1.2.1. Let X be a K3 surface over a field k. The self-
intersection index (L,L)X of a line bundle L on X will be called its degree. A
line bundle L on X is called primitive if L⊗ k̄ is is not a positive power of a line
bundle on Xk̄.

Theorem 1.2.2. Let X be a K3 surface over a field k.

(a) If L is a line bundle on X, then (L,L) is even. If L is ample and d :=
(L,L)/2, then the Hilbert polynomial of L is given by hL(t) = dt2 + 2.

(b) Suppose L is an ample bundle. Then L is effective and H i(X,L) = 0 for
i > 0. Further, Ln is generated by global sections if n ≥ 2 and is very ample
if n ≥ 3.

P r o o f. (a) First note that, by Serre duality, h2(OX) = h0(Ω2
X/k) =

h0(OX) = 1. Since h0(OX) = 1 we find that χ(OX) = 2. Hirzebruch-Riemann-
Roch gives

χ(L) = χ(OX) +
1

2
·
(

(L,L) − (L,Ω2
X/k)

)

= 2 +
1

2
· (L,L)

as Ω2
X/k is trivial. Hence (L,L) = 2d is even. If L is ample then its Hilbert

polynomial is hL(t) = dt2 + 2
(b) By Serre duality and the fact that Ω2

X/k
∼= OX we have hi(L) =

h2−i(L−1). In particular h2(L) = h0(L−1) = 0 as an anti-ample bundle is not
effective. Since d := (L,L)/2 > 0 it follows that h0(L) = d+ 2 + h1(L) > 0, so L
is effective. For the remaining assertions we refer to [30], Section 8. �

Example 1.2.3. Let π : X → P2 be a double cover of P2 as in Example
1.1.2. The line bundle L = π∗OP2(1) is ample and one has that (L,L)X =
2(OP2(1),OP2(1))P2 = 2. Hence any K3 surface X which is a double cover of P2

ramified along a non-singular sextic curve has an ample line bundle L of degree 2.
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Example 1.2.4. Let X ⊂ Pn+2 be a K3 surface which is obtained as a
complete intersection of multiple degree (d1, d2, . . . , dn); see Example 1.1.3. Then
OX(1) degree d1d2 · · · dn. Note that the equality d1 +d2 + · · ·+dn = n+3 implies
that at least one of the di is even.

Note that if π : X → S is a K3 scheme over a connected base S then for a
line bundle L on X the intersection index (Ls̄,Ls̄)Xs̄ is constant for any s̄. This
follows from the fact that π is flat and the relation (Ls̄,Ls̄)Xs̄ = 2χ(Ls̄) − 4.

Lemma 1.2.5. Let π : X → S be a K3 scheme and let L be a line bundle
on X which is fiberwise ample on X, i.e. Ls̄ is ample on Xs̄ for every geometric
point s̄ ∈ S. Let 2d = (Ls̄,Ls̄)Xs̄ for any point s̄ ∈ S. Then π∗L

n is a locally free
sheaf of of rank dn2 + 2 and Ln is relatively very ample over S if n ≥ 3.

P r o o f. By Theorem 1.2.2 (b) we have that for all s̄ ∈ S the group
H1(Xs̄,L

n
s̄ ) is trivial. It follows from [11, Ch. III, §7], that π∗L

n is a locally free
sheaf and that π∗Ls̄ ∼= H0(Xs̄,L

n
s̄ ). The rank statement follows from Theorem

1.2.2 (a). By part (a) of Theorem 1.2.2 one sees that for every geometric point s̄ ∈
S and any n ≥ 3 the line bundle Lns̄ gives a closed immersion Xs̄ ↪→ P(π∗L

n
s̄ ) over

κ(s̄). Hence the morphism X ↪→ P(π∗L
n) induced by Ln is a closed immersion.

This finishes the proof. �

2. Cohomology groups of K3 surfaces.
2.1. Quadratic lattices related to cohomology groups of K3 surfa-

ces. In this section we introduce some notations which will be used in the sequel.
Let U be the hyperbolic plane and denote by E8 the positive quadratic lattice
associated to the Dynkin diagram of type E8 (cf. [31, Ch. V, 1.4 Examples]).

Notation 2.1.1. Denote by (L0, ψ) the quadratic lattice U⊕3 ⊕ E⊕2
8 .

Further, let (V0, ψ0) be the quadratic space (L0, ψ) ⊗Z Q.

We have that L0 is a free Z-module of rank 22. The form ψR has signature
(19+, 3−) on L0 ⊗ R.

Let {e1, f1} be a basis of the first copy of U in L0 such that

ψ(e1, e1) = ψ(f1, f1) = 0 and ψ(e1, f1) = 1.

For a positive integer d we consider the vector e1 − df1 of L0. It is a primitive
vector i.e., the module L0/〈e1 − df1〉 is free and we have that ψ(e1 − df1, e1 −
df1) = −2d. The orthogonal complement of e1 − df1 in L0 with respect to ψ is
〈e1 + df1〉 ⊕ U⊕2 ⊕E⊕2

8 .

Notation 2.1.2. Denote the quadratic sublattice 〈e1 + df1〉 ⊕ U⊕2 ⊕
E⊕2

8 of L0 by (L2d, ψ2d). Further, we denote by (V2d, ψ2d) the quadratic space
(L2d, ψ2d) ⊗Z Q.
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The signature of the form ψ2d,R is (19+, 2−). We have that 〈e1−df1〉⊕L2d

is a sublattice of L0 of index 2d. The inclusion of lattices i : L2d ↪→ L0 defines
injective homomorphisms of groups

(1) iad : {g ∈ O(V0)(Z) | g(e1 − df1) = e1 − df1} ↪→ O(V2d)(Z)

and

(2) iad : {g ∈ SO(V0)(Z) | g(e1 − df1) = e1 − df1} ↪→ SO(V2d)(Z).

Let L∗
2d denote the dual lattice Hom(L2d,Z). Then the bilinear form ψ2d defines

an embedding L2d ↪→ L∗
2d and we denote by A2d the factor group L∗

2d/L2d. It
is an abelian group of order 2d ([17, §2, Lemma]). One can extend the bilinear
form ψ2d on L2d to a Q-valued form on L∗

2d and define

q2d : A2d → Q/2Z

defined by
q2d(x+ L2d) = ψ2d(x, x) + 2Z

for any x ∈ L∗
2d. Let O(q2d) denote the group of isomorphisms of A2d preserving

the form q2d. Then one has a natural homomorphism τ : O(V2d)(Z) → O(q2d). It
is shown in [23] that

iad
(

{g ∈ O(V0)(Z) | g(e1 − df1) = e1 − df1}
)

= ker(τ).

2.2. De Rham cohomology. Let X be a K3 surface over a field k. The
following proposition will play an essential role when studying deformations of
K3 surfaces (Section 4.1). We will use it also to show that the automorphism
group Aut(X) of a K3 surface is reduced (see Theorem 3.3.1 below).

Proposition 2.2.1. If X is a K3 surface over a field k, then

(a) The Hodge-de Rham spectral sequence

Ei,j1 = Hj(X,Ωi
X/k) =⇒ H i+j

DR(X, k)

degenerates at E1. For the Hodge numbers hi,j = dimkH
j(X,Ωi

X/k) of X

we have

h1,0 = h0,1 = h2,1 = h1,2 = 0

h0,0 = h2,0 = h0,2 = h2,2 = 1

h1,1 = 20.
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(b) Let ΘX/k = Ω1∨
X/k be the tangent bundle of X. Then H i(X,ΘX/k) = 0 for

i = 0 and 2 and dimkH
1(X,ΘX/k) = 20.

P r o o f. If k has characteristic zero, then one may assume that k = C

and the proposition follows from [17, §1, Prop. 1.2]. The case char(k) = p > 0 is
treated in [8, Prop. 1.1]. �

Remark 2.2.2. Part (b) of the proposition is classical in the case
k = C. The proof in the general case is due to Rudakov and Shafarevich. It can
be reformulated in following way: There exist no non-trivial regular vector fields
on a K3 surface (cf. [29, §6, Thm. 7]).

2.3. Betti cohomology. Let X be a complex K3 surface. Then the
Betti cohomology groups H i

B(X,Z) are free Z-modules of rank 1, 0, 22, 0, 1 for
i = 0, 1, 2, 3, 4 respectively. One has a non-degenerate bilinear form (given by the
Poincaré duality pairing):

ψ : H2
B(X,Z)(1) ×H2

B(X,Z)(1) → Z

given by
ψ(x, y) = −tr(x ∪ y)

where x ∪ y is the cup product of x and y and tr : H4
B(X,Z(2)) → Z is the trace

map. It has signature (19+, 3−) over R. The quadratic lattice
(

H2
B(X,Z)(1), ψ

)

is isometric to (L0, ψ) (cf. Section 2.1). For proofs of those results we refer to
[17, §1, Prop. 1.2].

The group H2
B(X,Z) carries a natural Z-Hodge structure (which we will

abbreviate as Z-HS) of type {(2, 0), (1, 1), (0, 2)} with h2,0 = h0,2 = 1 and h1,1 =
20 as we see from Proposition 2.2.1.

For a complex K3 surface H1(X,OX ) is trivial so the first Chern class
map

c1 : Pic(X) → H2
B(X,Z)(1)

is injective. Exactly in the same way we see that for a K3 space π : X → S, where
S is a scheme over C, one has a short exact sequence of sheaves

0 → R1πan
∗ O∗

X → R2πan
∗ Z(1)

as R1πan
∗ OX is trivial.

Notation 2.3.1. Let L be an ample line bundle on X. We denote
by P 2

B(X,Z)(1) the orthogonal complement of c1(L) with respect to ψ. It is a
free Z-module of rank 21 called the primitive part (or the primitive cohomology
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group) of H2
B(X,Z)(1) with respect to c1(L). The restriction of ψ defines a non-

degenerate bilinear form:

ψL : P 2
B(X,Z)(1) × P 2

B(X.Z)(1) → Z.

The group P 2
B(X,Z(1)) carries a natural Z-HS induced by the one on

H2
B(X,Z(1)) of type {(−1, 1), (0, 0), (1,−1)} with h−1,1 = h1,−1 = 1 for which ψL

is a polarization.
Remark 2.3.2. Let L be an ample line bundle for which (L,L)X = 2d

and assume that it is primitive. Let {e1, f1} be a basis of the first copy of U in
L0 as in Section 2.1. By [4, Exp. IX, §1, Prop. 1] one can find an isometry

a :
(

H2
B(X,Z(1)), ψ

)

→ L0

such that a(c1(L)) = e1 − df1. Therefore a induces an isometry

a :
(

P 2
B(X,Z(1)), ψL

)

→ (L2d, ψ2d).

2.4. Étale cohomology. Let k be a field of characteristic p ≥ 0 and fix
a prime l which is different from p. Suppose given a K3 surface X over k. Then
the étale cohomology group H i

et(Xk̄,Zl) is a free Zl-module of rank 1, 0, 22, 0, 1
for i = 0, 1, 2, 3, 4. One sees this in the following way: If k has characteristic zero,
then the claim follows from the corresponding result for Betti cohomology and
the comparison theorem between Betti and étale cohomology ([19, Ch. III, §3,
Thm. 3.12]). Assume that p > 0. By [8, §1, Cor. 1.8] there exists a discrete
valuation ring R with residue field k̄ and a smooth lift X over R of X. If η is
the generic point of Spec(R), then by the smooth base change theorem for étale
cohomology ([19, Ch. VI, §4, Cor. 4.2]) one has that

(3) H i
et(Xk̄,Z/l

nZ) ∼= Hi
et(Xη̄,Z/l

nZ)

for every i = 0, . . . , 4 and every n. Hence H i
et(Xk̄,Zl)

∼= Hi
et(Xη̄,Zl) and we

deduce the claim from the characteristic zero result.
Further, one has a non-degenerate bilinear form

ψZl
: H2

et(Xk̄,Zl)(1) ×H2
et(Xk̄,Zl)(1) → Zl

given by

ψZl
(x, y) = −trZl

(x ∪ y)
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where trZl
: H4

et(Xk̄,Zl)(2) → Zl is the trace isomorphism. This is simply Poin-
caré duality for étale cohomology ([19, Ch. VI, §11, Cor. 11.2]).

The Kummer short exact sequence of étale sheaves on X

1 → µln → Gm → Gm → 1

gives an exact sequence of cohomology groups

H1
et(Xk̄,µln) → H1

et(Xk̄,Gm) → H1
et(Xk̄,Gm) → H2

et(Xk̄,µln).

By (3) the group H1
et(Xk̄,µln) is trivial we have an injection

0 → Pic(X)/ln Pic(X) → H2
et(Xk̄,µln).

Taking the projective limit over n one sees that the first Chern class map

c1 : Pic(X) ⊗Z Zl ↪→ H2
et(Xk̄,Zl)(1)

is injective. In particular, since H2
et(Xk̄,Zl(1)) is free, Pic(X) has no l-torsion for

any l different from p.
Similarly, if π : X → S is a K3 space then one can consider the long exact

sequence of higher direct images, coming from the Kummer sequence

R1
etπ∗µln → R1

etπ∗Gm → R1
etπ∗Gm → R2

etπ∗µln .

Further, since the stalk of R1
etπ∗µln at any geometric point of S is zero (one uses

here the proper base change theorem), the sheaf itself is zero ([19, Ch. II, §2,
Prop. 2.10]). Hence passing again to the projective limit over n we obtain the
exact sequence of Zl-sheaves

0 → R1
etπ∗Gm ⊗ Zl → R2

etπ∗Zl(1).

Notation 2.4.1. Let L be a primitive ample line bundle on X with
(L,L)X = 2d. Denote by P 2

et(Xk̄,Zl(1)) the primitive part of H2
et(Xk̄,Zl)(1) with

respect to c1(L) i.e., the orthogonal complement of c1(L) in H2
et(Xk̄,Zl)(1) with

respect to ψZl
. Denote the restriction of ψZl

to P 2
et(Xk̄,Zl(1)) by ψL,Zl

.

If k has characteristic 0, then by the comparison theorem between Betti
and étale cohomology one has that

(

H2
et(Xk̄,Zl(1)), ψZl

)

is isometric to
(

H2
B(XC,Z(1)), ψ

)

⊗Z Zl which is isometric to (L0, ψ) ⊗Z Zl. Moreover since
the comparison isomorphism respects algebraic cycles, the same holds for the
primitive parts with respect to L i.e., we have that

(

P 2
et(Xk̄,Zl(1)), ψL,Zl

)

∼=
(L2d, ψ2d) ⊗Z Zl.
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Assume that char(k) = p > 0. Then the pair (X,L) ⊗ k̄ has a lift (X ,L)
over a discrete valuation ring R with char(R) = 0 and with residue field k̄ (see
[8, §1, Cor. 1.8]). Using the same argument as above one concludes that

Hi
et(Xk̄,Zl)(m) ∼= Hi

et(Xη̄,Zl)(m)

and that
(

H2
et(Xk̄,Zl)(m), ψZl

)

is isometric to
(

H2
et(Xη̄,Zl)(m), ψZl

)

, where
η is the generic point of Spec(R). Consequently the two quadratic lattices
(

P 2
et(Xk̄,Zl(1)), ψL,Zl

)

and
(

P 2
et(Xη̄,Zl(1)), ψLη̄

)

⊗Z Zl are also isometric. Thus,
if L is primitive, then there is an isometry

a :
(

H2
et(Xk̄,Zl(1)), ψl

)

→ L0 ⊗ Zl

such that a(c1(L)) = e1 − df1. It induces an isometry

a :
(

P 2
et(Xk̄,Zl(1)), ψL,Zl

)

→ (L2d, ψ2d) ⊗ Zl.

Remark 2.4.2. Let k be a field of characteristic p. We make the
following notations

Ẑ(p) :=
∏

l 6=p

Zl and A
(p)
f = Ẑ(p) ⊗ Q.

In the sequel we will be considering étale cohomology with Ẑ(p) or A
(p)
f coefficients.

Then we have that for a K3 surface over a field k one has isometries

(

H2
et(Xk̄, Ẑ

(p)(1)), ψf
)

∼= (L0, ψ) ⊗Z Ẑ(p)

and for a primitive ample line bundle L of degree 2d on X one has

(

P 2
et(Xk̄, Ẑ

(p)(1)), ψL,f

)

∼= (L2d, ψ2d) ⊗Z Ẑ(p).

Here ψf and ψL,f are the corresponding bilinear forms coming from the Poincaré

duality on H2
et(Xk̄, Ẑ

(p)(1)).

2.5. Crystalline cohomology. Let k be a perfect field of characteristic
p > 0 and let W = W (k) be the ring of Witt vectors with coefficients in k.
Consider a K3 surfaceX over k. Then by [8, Prop. 1.1] the crystalline cohomology
group H i

cris(X/W ) is a free W -module of rank 1, 0, 22, 0, 1 for i = 0, 1, 2, 3, 4
respectively. We consider next the crystalline Chern class map

c1 : Pic(X) → H2
cris(X/W ).
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As pointed out in [8, Appendice, Rem. 3.5] the Chern class map defines an
injection

c1 : NS(Xk̄) ⊗Z Zp ↪→ H2
cris(X/W (k̄))

where NS(Xk̄) = Pic(Xk̄)/Pic0(Xk̄) is the Néron-Severi group of Xk̄. In particu-
lar this means that the Néron-Severi group of Xk̄ has no p-torsion.

If K is the fraction field of W then we shall denote by H i
cris(X/K) the

K-vector space H i
cris(X/W ) ⊗W K.

3. Picard schemes and automorphisms of K3 surfaces.
3.1. Picard and Néron-Severi groups of K3 surfaces. In this section

we will study Picard functors of K3 spaces. Those functors will play an important
role in two aspects in the construction of moduli spaces of (primitively) polarized
K3 surfaces. First, we will define (quasi-) polarizations on K3 surfaces using
Picard spaces (cf. Definition 3.2.2 below). Later, in Section 4.2, we will use Picard
spaces in the construction of the Hilbert scheme parameterizing K3 subschemes
of PN .

For a separated algebraic space X over a scheme S we denote by Pic(X)
the group of isomorphism classes of invertible sheaves on X. Let π : X → S be a
K3 space and consider the relative Picard functor

PicX/S : (Sch /S)0 → Groups.

By definition it is the fppf-sheafification of the functor

PX/S : (Sch /S)0 → Groups given by T 7→ Pic(X ×S T ).

For every g : T → S we have that PicX/S(T ) = H0(T,R1π′∗Gm) where π′ : X ×S

T → T is the product morphism and all derived functors are taken with respect
to the fppf-topology.

Theorem 3.1.1. For a K3 space π : X → S the relative Picard functor
PicX/S is represented by a separated algebraic space locally of finite presentation
over S.

P r o o f. The representability follows form [3, §7, Thm. 7.3]. The proof of
the separatedness property goes exactly in the same way as the proof of Theorem
3 in [5, Ch. 8, §8.4]. �

Let S = Spec(k) be a spectrum of a field. Then PicX/k is represented by

a group scheme (cf. [26] or Lemma 3.1.2 below) and shall denote by Pic0
X/k its

identity component. We set further

PicτX/k =
⋃

n>0

n−1
(

Pic0
X/k

)



Moduli stacks of polarized K3 surfaces in mixed characteristic 143

where n : PicX/k → PicX/k is the multiplication by n.

Lemma 3.1.2. Let X be a K3 surface over a field k. Then PicX/k is
represented by a separated, smooth, zero dimensional scheme over k. In particular
Pic0

X/k is trivial. Further, we have also that PicτX/k is trivial.

P r o o f. Combining Theorem 3 and Theorem 1, with S = Spec(k), of [5,
Ch. 8, §8.2] one concludes that PicX/k is representable by a separated scheme,
locally of finite type over k.

By Theorem 1 of [5, Ch. 8, §8.4] one has that

dimk PicX/k ≤ dimkH
1(X,OX) = 0

and as the equality holds in this case, PicX/k is smooth over k. This shows the
validity of all assertions except for the claim about PicτX/k.

The scheme PicτX/k is proper and of finite type over k (cf. [5, Ch. 8,

Thm. 4]). Since its dimension is zero it is a finite commutative group scheme
over k. The injectivity of the étale Chern class map shows that Pic(X) has no
l-torsion for l 6= p. By the first part of the lemma we have that NS(X) = Pic(X).
Then the injectivity of the crystalline Chern class map shows that Pic(X) has no
p-torsion either. Thus Pic(X) is torsion free and therefore PicτX/k(k̄) is trivial.
Since in this case PicτX/k is reduced we conclude it is trivial. �

If X is a K3 surface over a field k, then NS(X) = Pic(X), which follows
from the fact that in this case Pic0(X) is trivial. Hence Pic(X) is a free abelian
group of rank at most 22 (use [19, Ch. V, §3, Cor 3.28]). If the characteristic of
the ground field is zero, then rkZ Pic(X) ≤ 20.

Let π : X → S be a K3 scheme. Define Pic0
X/S and PicτX/S as the

subfunctors of PicX/S consisting of all elements whose restrictions to all fibers Xs

belong to Pic0
Xs/κ(s) and PicτXs/κ(s) respectively.

Proposition 3.1.3. For a K3 scheme π : X → S over a quasi-compact
base S one has that PicX/S is an algebraic space which is unramified over S.

Further, we have that Pic0
X/S and PicτX/S are trivial.

P r o o f. The first part of the proposition follows from the preceding
lemma as it is enough to check the PicX/S is unramified in the case S is a spectrum
of a field. To prove the second part we notice that according to [5, Ch. 8, §8.3,
Thm. 4] we have open immersions Pic0

X/S ↪→ PicX/S and PicτX/S ↪→ PicX/S . By

Lemma 3.1.2 above for every geometric point s̄ ∈ S the subspaces Pic0
Xs̄/κ(s̄) and

PicτXs̄/κ(s̄) are trivial hence Pic0
X/S and PicτX/S are trivial. �

Remark 3.1.4. Let π : X → S be a K3 scheme and let L and M be
two line bundles on X. If Ln = Mn for some n ∈ N, then L is isomorphic to
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M⊗π∗N where N is a line bundle on S. Indeed, we have that cl(L)n = cl(M)n

in PicX/S . Since PicτX/S is trivial we have that the multiplication by n-morphism

[n] : PicX/S → PicX/S is an injective homomorphism of group schemes. Since

cl(L)n = cl(M)n we conclude that cl(L ⊗M−1) is trivial, so M and L differ by
an invertible sheaf coming from the base S ([5, Ch. 8, §8.1, Prop. 4]).

Remark 3.1.5. It is easy to see that the statement of Proposition 3.1.3
remains true for K3 spaces.

A morphism of schemes π : X → S is called strongly projective (respecti-
vely strongly quasi-projective) if there exists a locally free sheaf E on S of constant
finite rank such that X is S-isomorphic to a closed subscheme (respectively a
subscheme) of P(E).

Lemma 3.1.6. Let S be a noetherian scheme and suppose given a K3
scheme π : X → S. If π is a strongly projective morphism, then we have that

(i) for any n ∈ N the multiplication by n-morphism

[n] : PicX/S → PicX/S

is a closed immersion of group schemes over S.

(ii) for any λ ∈ PicX/S(S) the set of points

So = {s ∈ S | λs is primitive on Xs}

is open in S.

P r o o f. (i): By definition we have a closed immersion X ↪→ P(E) for
some locally free sheaf E on S. Let OX(1) denote the pull-back of the canonical
bundle O(1) on P(E) via this inclusion. For a polynomial Φ ∈ Q[t] let PicΦ

X/S
be the subfunctor of PicX/S which is induced by the line bundles L on X with
a given Hilbert polynomial Φ (with respect to OX(1)) on the fibers of X over
S. Then PicΦ

X/S is representable by a strongly quasi-projective scheme over S

and PicX/S is the disjoint union of the open and closed subschemes PicΦ
X/S for

all Φ ∈ Q[t]. For a proof of this result we refer to [5, Ch. 8, §8.2, Thm. 5].
Since all schemes PicΦ

X/S are quasi-compact we have that for a given Φ

the image [n](PicΦ
X/S) is contained in a finite union

⋃

i∈Cn
Φ

PicΦi

X/S . We will show

first that for a given Φ ∈ Q[t] the morphism

[n] : PicΦ
X/S →

⋃

i∈Cn
Φ

PicΦi

X/S
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is proper. As all schemes involved are noetherian we can apply the valuative
criterion for properness. We may assume that S is a spectrum of a discrete
valuation ring R and that X admits a section over S and let η and s be the
generic and the special point of S. Under those assumptions any element of
PicX/S comes from a class of a line bundle ([5, Ch. 8, §8.1, Prop. 4]). To show

that the restriction of [n] to PicΦ
X/S is proper we have to show that if L is a line

bundle over the generic fiber Xη of X, then Ln extends uniquely to a line bundle
on X which is a n-th power of a line bundle. This follows from [5, Ch. 8, §8.4,
Thm. 3] as both L and Ln extend uniquely over X.

Further, the morphism [n] : PicX/S → PicX/S is an immersion of the
corresponding topological spaces and as it is proper on every open and closed
PicΦ

X/S , the image [n](PicX/S) is closed in PicX/S . We are left to show that

the natural homomorphism of sheaves OPicX/S
→ [n]∗OPicX/S

is surjective. As
this can be checked on stalks we see further that it is enough to show the
surjectivity assuming that S is a spectrum of a field. But under this condition the
claim follows from Lemma 3.1.2. Indeed, PicX/k is a reduced, zero dimensional

scheme. Hence all subschemes PicΦ
X/k being reduced, quasi-projective and zero

dimensional, are finite unions of points. Then the restrictions [n] : PicΦ
X/k →

⋃

i∈Cn
Φ

PicΦi

X/k are closed immersions and hence [n] : PicX/k → PicX/k is also a

closed immersion. Therefore OPicX/k
→ [n]∗OPicX/k

is surjective.

(ii): We may assume that S is connected. Then the intersection index
(λs̄, λs̄) is constant on S, say (λs̄, λs̄) = 2d. For any natural number n consider
the closed subscheme Sn of S defined by the following Cartesian diagram

Sn

��

// S

λ
��

PicX/S
[n]

// PicX/S .

Then the subset So of S can be identified with S \
⋃

n Sn where the union is taken
over all n ∈ N such that n2 divides d. So it has a structure of an open subscheme
of S. �

Remark 3.1.7. Note that if π : X → S is a K3 scheme, then the Picard
functor PicX/S can be constructed using the étale topology on S instead of the
fppf-topology. In other words PicX/S is also the étale sheafification of PX/S .
This follows from the fact that π is a proper morphism, using the Leray spectral
sequence for π and the sheaf Gm. For a proof we refer to the comments on p.
203 in [5, Ch. 8, §8.1].
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Example 3.1.8. Let A be an abelian surface over an algebraically closed
field k of characteristic different from 2 and let X be the associated Kummer
surface. Then one has that

Pic(X)Q = NS(X)Q
∼= NS(A)

[−1]A
Q ⊕ Q⊕16

where NS(A)[−1]A denotes the elements of NS(A) invariant under the action of
[−1]A. We refer to [32, §3, Prop. 3.1] for a proof.

3.2. Polarizations of K3 surfaces. Here we will define the notion of a
polarization on a K3 space.

Definition 3.2.1. Let k be a field. A polarization on a K3 surface X/k
is a global section λ ∈ PicX/k(k) which over k̄ is the class of an ample line bundle
Lk̄. The degree of Lk̄ is called the polarization degree of λ. A quasi-polarization
on X is a global section λ ∈ PicX/k(k) which over k̄ comes from a line bundle Lk̄
with the following property:

(i) Lk̄ is nef i.e.,
(

Lk̄,OXk̄
(C)

)

≥ 0 for all irreducible curves in Xk̄,

(ii) if
(

Lk̄,OXk̄
(C)

)

= 0 for a curve C in Xk̄ then (C,C)Xk̄
= (−2).

If (X,λ) is a polarized K3 surface over k, then one can find a finite
separable extension k′ of k such that λ comes from a line bundle Lk′ over k′.
Indeed, this follows either from Remark 3.1.7 or from Proposition 4 in [5, Ch. 8,
§8.1] taking T = Spec(ksp) and the fact that Br(ksp) is trivial.

Definition 3.2.2. Let S be scheme. A polarization on a K3 space
π : X → S is a global section λ ∈ PicX/S(S) such that for every geometric point s̄
of S the section λs̄ ∈ PicXs̄/κ(s̄)(κ(s̄)) is a polarization of Xs̄. A quasi-polarization
on X/S is a global section λ ∈ PicX/S(S) such that for every geometric point s̄
of S the section λs̄ ∈ PicXs̄/κ(s̄)(κ(s̄)) is a quasi-polarization of Xs̄.

Definition 3.2.3. A polarization (respectively quasi-polarization) λ on
a K3 space π : X → S is called primitive if for every geometric point s̄ of S the
polarization (respectively the quasi-polarization) λs̄ ∈ PicXs̄/κ(s̄)(κ(s̄)) is primitive
i.e., it is not a positive power of any element in PicXs̄/κ(s̄)(κ(s̄)).

Lemma 3.2.4. Let (π : X → S, λ) be a K3 space over S with a polariza-
tion λ. Then one can find an étale covering S ′ → S such that πS′ : XS′ → S′ is
a K3 scheme and λS′ is the class of a relatively ample line bundle LS′ on XS′.

P r o o f. By definition one can find an étale covering S1 → S such that
π1 : XS1 → S1 is a K3 scheme. The pull-back λS1 of λ is a polarization on XS1 .
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By Remark 3.1.7 the Picard functor PicXS1
/S1

can be computed using the étale

topology on S1. Hence one can find an étale covering S ′ → S such that λS′ is
equal to the class of a line bundle LS′ on XS′ . By definition LS′ is pointwise
ample hence using Lemma 1.2.5 we conclude that it is relatively ample. This
finishes the proof. �

The self-intersection (Ls̄′ ,Ls̄′) for a geometric point s̄′ on S′ is constant
on every connected component of S ′. We say that λ is a polarization of degree
2d if (Ls̄′ ,Ls̄′) = 2d for every geometric point s̄′ of S′.

3.3. Automorphism groups. Let S be a scheme and π : X → S be an
algebraic space over S. Define the automorphism functor in the following way:

AutS(X) : (Sch /S)0 → Groups

AutS(X)(T ) = AutT (XT )

for every S-scheme T .

Theorem 3.3.1. If π : X → S is a polarized K3 space over S, then
AutS(X) is representable by a separated group scheme which is unramified and
locally of finite type over S.

P r o o f. Let S ′ → S be an étale cover such that π′ : X ′ = X ×S S
′ → S′

is a projective K3 scheme over S ′. The existence of such an étale covering S ′

follows from Lemmas 1.2.5 and 3.2.4. Let S ′′ be the product S ′ ×S S
′. Denote

by πi the projection morphisms πi : X
′ ×X X ′ → X ′ → X → S for i = 1, 2. By

definition X ′ ×X X
′ is representable by a quasi-compact subscheme of X ′ ×S X

′.
Using Proposition 1.4 in [15, Ch. II] we can see that we have an exact

sequence of groups

(4) 0 // AutS(X)(T ) // AutS′(X ′)(T ) //
// AutS′′(X ′ ×X X ′)(T ).

It follows from [12, Exp. 221, §4.c] that the functors AutS′(X ′) and AutS′′(X ′×X

X ′) are representable by group schemes locally of finite type over S. For simplicity
we denote them by Y and W respectively. Then from the exact sequence (4) we
see that AutS(X) is representable by the fiber product

AutS(X)

��

// W

∆
��

Y
(pr∗1 ,pr

∗
2)

// W ×S W

where ∆: W → W ×S W is the diagonal morphism.
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The fact that the AutS(X) is separated follows directly from the valuative
criterion for separatedness.

To check that AutS(X) is unramified we may take S to be the spectrum
of an algebraically closed field k. A point in Autk(X)(k[ε]/(ε2)), which under the
natural homomorphism maps to the the identity in Autk(X)(k), may be identified
with a vector field on X. By Proposition 2.2.1 (1) a K3 surface has no non-trivial
vector fields hence we conclude that Autk(X) is reduced. �

Remark 3.3.2. The proof of the theorem shows that AutS(X) is 0-
dimensional over S. Its fibers are constant group schemes.

Let π : X → S be a K3 space and let λ be a polarization of X. Define
the subfunctor AutS(X,λ) of AutS(X) in the following way

AutS(X,λ) : (Sch /S)0 → Groups

AutS(X,λ)(T ) = {α ∈ AutS(X)(T ) | α∗λ = λ ∈ PicX/S(T )}

for every S-scheme T .

Proposition 3.3.3. The functor AutS(X,λ) is a closed subfunctor of
AutS(X). It is represented by a separated group scheme which is unramified and
of finite type over S. Its relative dimension over S is zero.

P r o o f. The functor AutS(X,λ) is a closed subfunctor of AutS(X). It
is representable by the subgroup scheme of G = AutS(X) (locally of finite type
over S) given by the following (Cartesian) diagram:

AutS(X,λ) //

��

S

(λ,id)
��

G = G×S S
ψ

// PicX/S ×SS = PicX/S .

Here we have that λ : S → PicX/S is the section given by λ and ψ is the
composition σ ◦ (id, λ) where

σ : G× PicX/S → PicX/S

is the action of G on PicX/S .
Just as in the proof of the preceding theorem we may take S to be the

spectrum of an algebraically closed field k in order to check that AutS(X,λ) is
unramified. If α ∈ Autk(X,λ)(k[ε]/ε2) which is the identity in Autk(X,λ)(k),
then by Theorem 3.3.1 above we see that α is the identity element of the group
Autk(X)(k[ε]/ε2). Since by definition we have an inclusion

Autk(X,λ)(k[ε]/ε2) ⊂ Autk(X)(k[ε]/ε2)
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we conclude that AutS(X,λ) is unramified over S.
Let s̄ : Spec(Ω) → S be a geometric point. Then by [18] (see also

Corollary 2 in [20]) the set AutS(X,λ)(Ω) is finite. Hence AutS(X,λ) is of finite
type over S. �

Note that in general, for a K3 surface X over a field k, the group
Autk(X)(k) might be infinite.

Example 3.3.4. For any complex K3 surface X with rkZ Pic(X) = 20
one has that AutC(X)(C) is infinite. For a proof see [33, §5, Thm. 5].

There are also examples of K3 surfaces X having a finite group of auto-
morphisms. An example of a complex K3 surface with rkZ Pic(X) = 18 and finite
automorphism group is given in the remark on page 132 in [33].

3.4. Automorphisms of finite order. In this section k will be an
algebraically closed field. If it is a field of characteristic p, then we will denote
by W the ring of Witt vectors with coefficients in k and K will be the field of
fractions of W .

Let X be a K3 surface over k. If k = C, then it is a well-known theorem
that AutC(X)(C) acts faithfully on H2

B(X,Z). Here we prove a similar result for
the automorphisms of finite order of X acting trivially on H 2

et(X,Zl) where l is
a prime number different from char(k). The only restriction we impose is that
char(k) 6= 2. Later on in Section 5.1 we will introduce level structures on K3
surfaces and we will use this result to show that the corresponding moduli stacks
are algebraic spaces.

Lemma 3.4.1. Let X be a K3 surface over k and assume that char(k) =
0. Then Autk(X)(k) acts faithfully on H2

et(X,Zl) for every prime l.

P r o o f. Without loss of generality we may assume that the field k
can be embedded into C. Fix an embedding σ : k ↪→ C. By the comparison
theorem between Betti and étale cohomology we have an isomorphism
H2

et(X,Zl)
∼= H2

B(X ⊗σ C,Z) ⊗Z Zl. Let α ∈ Autk(X)(k) be an automorphism
acting trivially on H2

et(X,Zl). Then αC acts trivially on H2
B(X ⊗σ C,Z) ⊗ Zl.

Since H2
B(X ⊗σ C,Z) is a free Z-module we conclude from [17, Prop. 7.5] that

α = idX . �

Proposition 3.4.2. Let (X,λ) be a polarized K3 surface over k and
assume that char(k) = p is different from 2. Then the finite group Autk(X,λ)(k)
acts faithfully on H2

et(X,Zl) for any l 6= p.

Remark 3.4.3. This result can be viewed as an analogue of Theorem
3 in [22, Ch. IV] for (polarized) K3 surfaces.
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We will reduce the proof of Proposition 3.4.2 to the preceding lemma. To
do so we will use crystalline cohomology and compare the action of an element
in Autk(X,λ)(k) on H2

et(X,Ql) and H2
cris(X/K).

LetX be a K3 surface over a field k. We denote byHn(X) andHn(X×X)
either Hn

et(X,Ql) and Hn
et(X ×X,Ql) for any l prime to char(k) or Hn

cris(X/K)
and Hn

cris(X × X/K). Note that we will be working with classes of certain
algebraic cycles on X and X × X so we should consider some Tate twists of
these cohomology groups. But since k is algebraically closed and the Galois
action does not play any role in our consideration (we shall only consider some
characteristic polynomials of automorphisms of X) we will omit these twists.

For an isomorphism α : X → Y we will denote by α∗
l and α∗

cris the
isomorphisms induced on H2

et(X,Ql) and H2
cris(X/K) respectively.

Lemma 3.4.4. The Künneth components of the class cl(u) ∈ H 4(X×X)
of any algebraic cycle on X ×X are algebraic.

P r o o f. We have that H1
et(X,Ql) = H3

et(X,Ql) = 0 and H1
cris(X/W ) =

H3
cris(X/W ) = 0. Then the Künneth isomorphism reads

H4(X ×X) =
(

H4(X) ⊗H0(X)
)

⊕
(

H2(X) ⊗H2(X)
)

⊕
(

H0(X) ⊗H4(X)
)

.

Using this decomposition we write

cl(u) = u0 ⊕ u2 ⊕ u4.

Every element of the one dimensional spaces H4(X) ⊗ H0(X) and H0(X) ⊗
H4(X) is algebraic. These are rational multiple of the classes of {pt} × X and
X × {pt}. Hence u0 and u4 are algebraic. It follows that u2 is expressed as a
linear combination of algebraic classes, hence it is algebraic. �

In particular, if ∆ = δ(X) ⊂ X × X is the diagonal, then its Künneth
components cl(∆) = π0 ⊕ π2 ⊕ π4 ∈ H4(X × X) are algebraic. Denote by 〈·, ·〉
the intersection pairing on CH2(X ×X)Q.

Corollary 3.4.5. Let u ∈ CH2(X × X)Q be a rational cycle and let
cl(u) ∈ H4(X × X) be its algebraic class. Then its characteristic polynomial
det

(

1 − t · cl(u)|H2(X)
)

has rational coefficients which are independent of l and
p (i.e., of H2

et(X,Ql) and H2
cris(X/K)). The coefficient in front of ti is given by

si = 〈ui, π2〉

for i = 1, . . . , 22.

P r o o f. The proof follows from the preceding lemma and by Theorem 3.1
in [34]. �
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Theorem 3.4.6 (Ogus). If p > 2 then the natural morphism of groups

Autk(X)(k) → Aut
(

H2
cris(X/W )

)

is injective.

P r o o f. This is a result of A. Ogus and can be found in his paper on
Supersingular K3 crystals [24, §2, Cor. 2.5]. �

P r o o f o f P r o p o s i t i o n 3.4.2. Take an element α ∈ Autk(X,λ)(k).
According to Proposition 3.3.3 it has finite order. Denote by u = Γσ ⊂ X ×
X the graph of α. Then the automorphism of H2

et(X,Ql) induced by cl(u) ∈
H4

et(X ×X,Ql) is the one induced by α. By assumption it is the identity hence
its characteristic polynomial is (t − 1)22. By Corollary 3.4.5 it is exactly the
characteristic polynomial of the automorphism α∗

cris of H2
cris(X/K) induced by

α. Since α is an automorphism of finite order the induced map α∗
cirs on the

crystalline cohomology is semi-simple (K has characteristic zero). Hence α∗
cris

acts trivially onH2
cris(X/K) and by Theorem 3.4.6 it is the identity automorphism

as H2
cris(X/W ) is torsion free. �

Remark 3.4.7. Note that the only property of α which we used in the
proof of Proposition 3.4.2 is that it has finite order. This is really essential as in
general the characteristic polynomial of α∗

l will not give enough information to
conclude that the action of αcris on H2

cris(X/W ) is trivial. The proof given above
shows actually that any automorphism of finite order α of X acting trivially on
H2

et(X,Zl) for some l 6= p is the identity automorphism idX .

4. The moduli stack of polarized K3 surfaces. We are ready to
define moduli functors of (primitively) polarized K3 surfaces over Spec(Z). We
will follow the line of thoughts in [9] in order to prove that these functors define
Deligne-Mumford stacks. Shortly, this can be given in three steps.

1. Describe the deformations of primitively polarized K3 surfaces.

2. Construct a Hilbert scheme parameterizing K3 surfaces embedded in PN

for some appropriate N ∈ N.

3. Construct a “Hilbert morphism” πHib from the Hilbert scheme to the moduli
stack which is surjective and smooth. Use this morphism to conclude that
the moduli stack is a Deligne-Mumford stack.

These steps are spelled out in detail in Sections 4.1–4.3.
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4.1. Deformations of K3 surfaces. Let k be an algebraically closed
field. Denote by W the ring of Witt vectors W (k) in case char(k) = p > 0 and
W = k otherwise. Let A be the category of local artinian W -algebras (A,mA)
together with an isomorphism A/mA

∼= k compatible with the isomorphism
W/pW ∼= k.

Let X0 be a K3 surface over k. Consider the covariant functor

DefSch(X0) : A→ Sets

given by

DefSch(X0)(A) =
{

isom. classes of pairs (X,φ0) |where X → Spec(A)

is a K3 scheme and φ0 is

an isom. φ0 : X ⊗A k ∼= X0

}

.

Proposition 4.1.1. The functor DefSch(X0) is pro-representable by a
formal scheme S over Spf(W ) which is formally smooth of relative dimension 20,
i.e. it is (non-canonically) isomorphic to Spf(W [[t1, . . . , t20]]).

P r o o f. This is Corollary 1.2 in [8] in case char(k) = p > 0 and [17, Cor.
5.7] in case char(k) = 0. �

Let L0 be a line bundle on X0. For moduli problems one should study
the deformations of the pair (X0,L0). Define

DefSch(X0,L0) : A→ Sets

to be the functor sending an object A of A to the isomorphism classes of triples
(X,L, φ0) of flat deformations X of X0 over A, an invertible sheaf L on X and
an isomorphism φ0 : (X,L) ⊗A k ∼= (X0,L0). We have a morphism

(5) DefSch(X0,L0) → DefSch(X0).

Theorem 4.1.2. If the line bundle L0 is non-trivial, then the functor
DefSch(X0,L0) is pro-representable by a formally flat scheme of relative dimen-
sion 19 over W and the morphism (5) is a closed immersion, defined by a single
equation.

P r o o f. See [8, Prop. 1.5 and Thm. 1.6]. �

Deligne proves that if L0 is an ample line bundle over X0 then one can find
a discrete valuation ring R which is a finiteW module and a lift (X → Spec(R),L)
of (X0,L0) over R. In general one needs ramified extensions of W in order to
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find a lift of (X0,L0). The next lemma shows that one can find a lift over W if
the self-intersection of L0 is prime to the characteristic of k. More precisely one
has:

Lemma 4.1.3. Let L0 be an ample line bundle over X0. If the polarizati-
on degree (L0,L0)X0 = 2d is prime to the characteristic of k, then DefSch(X0,L0)
is formally smooth.

P r o o f. According to [24, §2, Prop. 2.2 ] (see also Lemma 2.2.6 in [7]) it is
enough to see that c1(L0) 6∈ F 2H2

DR(X0/k). Since we have that (c1(L0), c1(L0)) =
2d 6= 0 in k it follows that c1(L0) 6∈ F 2H2

DR(X0/k). For the proof in the case k
has characteristic zero we refer to [27, §2, Thm. 1]. �

4.2. The Hilbert scheme. Recall that if X is a K3 surface over a field k
with an ample line bundle L, then the Hilbert polynomial of L is hL(x) = dx2+2,
where (L,L) = 2d.

We fix two natural numbers n and d assuming that n ≥ 3. Let Pd,n(x)

be the polynomial n2dx2 + 2 and let N = Pd,n(1) − 1. Denote by Hilb
Pd,n

N the
Hilbert scheme over Z representing the subvarieties of PN with Hilbert polynomial
Pd,n(x). Let

π : Z → Hilb
Pd,n

N

be the universal family over the Hilbert scheme. For any morphism of schemes

f : S → Hilb
Pd,n

N we consider the following (Cartesian) diagram:

(6) X = S ×(

Hilb
Pd,n
N

) Z f ′
//

π′

��

Z

π

��

S
f

// Hilb
Pd,n

N

Proposition 4.2.1. There is a unique subscheme Hd,n of Hilb
Pd,n

N with
the property:

A morphism of schemes f : S → Hilb
Pd,n

N factors through Hd,n if and only if the
following conditions are satisfied.

(i) The pull-back X of the universal family over Hilb
Pd,n

N is a K3 scheme over
S (see Diagram (6) above),

(ii) the line bundle f ′∗OPN (1) is isomorphic to Ln⊗π′∗M for some ample line
bundle L on X and some line bundle M on S,
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(iii) for every geometric point s̄ : Spec(Ω) → S the natural homomorphism

H0(PN ,OPN (1)) ⊗ Ω → H0(Xs̄,L
n
s̄ )

is an isomorphism.

There exists an open subscheme Hpr
d,n of Hd,n such that: A morphism of schemes

f : S → Hilb
Pd,n

N factors through Hpr
d,n if and only if conditions (i), (ii) and (iii)

are satisfied and in addition for every geometric point s̄ of S the line bundle L s̄
from (ii) is primitive.

P r o o f. The proof of the proposition is standard and can be found in the
case of curves in Mumford’s book [21, Ch. 5, §2, Prop. 5.1]. We shall sketch only
the additional arguments needed in our situation.

There is a maximal open subscheme U1 of Hilb
Pd,n

N such that every fiber of
the pull-back X1 of the universal family Z over U1 is a non-singular variety. Let U2

be the open subscheme of U1 consisting of the points s for whichH1(X1,s,OX1,s) =
0 (see [13, Ch. III, §12, Thm. 12.8]). Denote by X2 the pull-back of the universal
family over U2.

Let PicX2/U2
be the relative Picard scheme of X2 over U2. The two line

bundles Ω2
X2/U2

and OX2 define two morphisms: ω, λ : U2 → PicX2/U2
. Define U2

to be the fiber product:

U3

��

// U2

(λ,ω)
��

PicX2/U2

∆
// PicX2/U2

×U2 PicX2/U2

where ∆ is the diagonal morphism. Since PicX2/U2
is separated U3 is a closed

subscheme of U2. The pull-back X3 → U3 of the universal family over Hilb
Pd,n

N
is a K3 scheme.

Let [n] : PicX3/U3
→ PicX3/U3

be the multiplication by-n-morphism. The
pull-back of OPN (1) over U3 defines a morphism λ : U3 → PicX3/U3

. Define U4 to
be the fiber product

U4

��

// U3

λ
��

PicX3/U3

[n]
// PicX3/U3

.

By Lemma 3.1.6 the morphism [n] is a closed immersion hence U4 is a closed

subscheme of U3. Clearly, U4 is the subscheme of Hilb
Pd,n

N for which properties
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(i) and (ii) hold. One takes Hd,n to be the (closed) subscheme of U4 obtained
as in the end of the proof of Proposition 5.1 in [21, Ch. 5, §2] (where instead
of Ω1

Γ/U2
one works with the pull-back L′ of the bundle OPN (1)). It satisfies all

conditions of the proposition.
To show the existence of Hpr

n,d one has to take the open subscheme U 0
4 of

U4 above corresponding to the points in U4 over which the class of the pull-back
of OPN (1) in PicX4/U4

is only divisible by n. The existence of such a subscheme
can be seen, in a way similar to the proof of Lemma 3.1.6 (ii), using the fact that
the homomorphisms [n] : PicX4/U4

→ PicX4/U4
are closed immersions. �

We will use the schemes Hd,n and Hpr
d,n to construct moduli stacks of

polarized K3 surfaces over Z.

4.3. The moduli stack. One way to construct the coarse moduli space
of complex K3 surfaces with a primitive polarization of degree 2d is to use period
maps. This approach is taken up in [4, Exposé XIII, §3]. Here we will use rather
different techniques to deal with this problem in positive and more generally in
mixed characteristic.

Definition 4.3.1. Let d be a natural number. Consider the category F2d

defined in the following way:

Ob: The objects of F2d are pairs (π : X → S, λ) consisting of a K3 space π : X →
S with a primitive polarization λ of degree 2d over S ∈ Sch.

Mor: For two objects X1 = (π1 : X1 → S1, λ1) and X2 = (π2 : X2 → S2, λ2) we
define the morphisms to be

Hom(X1,X2) =
{

pairs (fS , f) | fS : S1 → S2 is a morph. of

schemes and f : X1 → X2 ×S2,fS
S1

is an isom. over S1 with f∗λ2 = λ1

}

.

The functor pF2d
: F2d → Sch sending a pair (π : X → S, λ) to S makes

F2d into a category over Sch. We will denote by F2d,S the full subcategory of F2d

consisting of the objects over S.

Definition 4.3.2. For a natural number d we define the category M2d of
K3 spaces with a polarization of degree 2d in the same way as in Definition 4.3.1
but taking as objects pairs of polarized K3 spaces (π : X → S, λ) over a scheme S.

We have that F2d is a full subcategory of M2d. Those two categories are
the same if and only if d is square-free.
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Theorem 4.3.3. The categories F2d and M2d are separated Deligne-
Mumford stacks of finite type over Z. The inclusion F2d ↪→ M2d is an open
immersion.

Definition 4.3.4. We will call F2d the moduli stack of primitively
polarized K3 surfaces of degree 2d and M2d the moduli stack of polarized K3
surfaces of degree 2d.

Remark 4.3.5. Let us explain first why we want to consider moduli
of primitively polarized K3 surfaces. For various reasons we will have to work
with algebraic spaces rather than with algebraic stacks. Just like in the case of
abelian varieties one can introduce level structures on K3 surfaces and hope that
the corresponding moduli problems are representable by algebraic spaces. We
will define level structures on a polarized K3 surface (X,λ) using its primitive
cohomology groups P 2

et(Xk̄,Zl(1)) for certain primes l (see Section 5.1). To be
able to do that we will need that P 2

et(Xk̄,Zl(1)) belongs to a single isometry class
of quadratic lattices, which is the case, if λ is primitive.

We will prove the theorem in a sequence of steps.

Lemma 4.3.6. The categories F2d and M2d are groupoids.

P r o o f. We have to check two axioms. See for instance [16, Ch. 2, Def.
2.1] or p. 96 of [9]. One sees immediately that the usual notions of pull-backs
satisfy these two axioms. �

Lemma 4.3.7. The groupoids F2d and M2d are stacks for the étale
topology.

P r o o f. The proofs for M2d and F2d are exactly the same so we will
prove the lemma for F2d. We have to check two properties. Namely, first we
will show that for any scheme S ∈ Sch and any two objects X and Y over S the
functor

IsomS(X ,Y) : (Sch /S) → Sets

defined by

(π : S′ → S) 7→ Hom(π∗X , π∗Y)

is a sheaf for the étale topology on S. Then we prove that descent data are
effective (cf. [16, Ch. 2, Def. 3.1] or Definition 4.1 in [9]).

The functor IsomS(X ,Y) is an étale sheaf: Take two objects X = (X →
S, λX) and Y = (Y → S, λY ) over S. Let S ′ be an S-scheme.
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Let {S′
i}i∈I be an étale covering of S ′ and fj ∈ IsomS(X ,Y)(S′) for

j = 1, 2 are two elements such that f1|S′

i
= f2|S′

i
. Then clearly f1 = f2 as

isomorphisms of the pair (XS′ ,YS′).

Let {S′
i}i∈I be an étale covering of S ′. Suppose given elements fi ∈

IsomS(X ,Y)(S′
i) such that fi|S′

ij
= fj|S′

ij
where S′

ij = S′
i ×S′ S′

j. We have to

show that those come from a global “isomorphism”. Note that without loss of
generality we may assume that Xi → S′

i are K3 schemes. Combining [15, Ch.
II, Prop. 1.4] and effectiveness of descent for morphisms of schemes (see [5, Ch.
6, §1, Thm. 6(a)]) we conclude that f ′ descends to a morphism f : XS′ → YS′

such that fS′

i
= fi. Since PicX/S and PicY/S are algebraic spaces (in particular

sheaves for the étale topology on S) and f ∗λYS′
|S′

i
= λXS′

|S′

i
we see that f ∗λYS′

=

λXS′
. Hence we have that f ∈ IsomS(X ,Y)(S′) and f |S′

i
= fi. This shows that

IsomS(X ,Y) is an étale sheaf.

Effectiveness of descent: Suppose given an étale cover S ′ of S and an
object X ′ = (π′ : X ′ → S′, λ′) with descent datum over S. Without loss of
generality we may assume that the algebraic space X ′ is actually a scheme (by
refining the étale covering S ′ if needed). We have to show that (π′ : X ′ → S′, λ′)
descends to a polarized K3 space (π : X → S, λ) over S.

Denote by S ′′ the product S ′ ×S S
′ and let pri for i = 1, 2 be the two

projection maps. The descent datum on X ′ → S′ over S identifies the two
schemes pr∗1X

′ and pr∗2X
′. Denote this scheme by R. Then we have two étale

morphisms

R
//
// X ′

which make R ⊂ X ′ ×S X
′ into an étale equivalence relation. Following the

constructions of [15, Ch. I, §5, 5.4] we obtain an algebraic space X over S such
that X ×S S

′ is isomorphic to X ′. Hence π : X → S is a K3 space.

Since PicX/S is an étale sheaf the local section λ′ over S′ together with
descent datum over S give rise to a global section λ ∈ PicX/S(S) such that
λS′ = λ′. Clearly, λ is a polarization of X → S. �

Next we deal with the representability of the isomorphism functors of
polarized K3 surfaces. For two algebraic spaces X and Y over a base scheme S
define the contravariant isomorphism functor

IsomS(X,Y ) : (Sch /S) → Sets

by

IsomS(X,Y )(T ) = {f : XT → YT | f is an isomorph. of alg. spaces over T}
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for any S-scheme T .

Lemma 4.3.8. For any S ∈ Sch and two objects X and Y of F2d

(respectively M2d) over S, the functor IsomS(X ,Y) is representable by a separated
scheme which is unramified and of finite type over S.

P r o o f. Let X and Y be the objects (X → S, λX) and (Y → S, λY )
respectively.

Step 1: We can find an étale cover S ′ of S such that X ′ = X ×S S
′

and Y ′ = Y ×S S
′ are projective K3 schemes over S ′. Denote by S ′′ the

product S ′ ×S S
′. By [12, Exp. 221, §4.c]) the functors IsomS′(X ′, Y ′) and

IsomS′′(X ′ ×X X ′, Y ′ ×Y Y
′) are representable by schemes U and V, locally of

finite type over S. By Proposition 1.4 in [15, Ch. II] one has an exact sequence
of sets

0 // IsomS(X,Y )(T ) // IsomS′(X ′, Y ′)(T )
//
// IsomS′′(X ′ ×X X ′, Y ′ ×Y Y

′)(T ).

Then we see that IsomS(X,Y ) is representable by the scheme defined by the
following Cartesian diagram

IsomS(X,Y )

��

// V

∆
��

U
(pr∗1 ,pr

∗

2)
// V ×S V

where ∆: V → V ×S V is the diagonal morphism.

Step 2: By Step 1 the functor IsomS(X,Y ) is represented by a scheme
locally of finite type over S. Then the functor IsomS(X ,Y) is represented by the
scheme defined by the following Cartesian diagram:

IsomS(X ,Y) //

��

S

λX

��

IsomS(X,Y ) ×S S
(id,λY )

// IsomS(X,Y ) ×S PicY/S // PicX/S

where the bottom-right arrow is just the pull back morphism.

Step 3: We are left to show that IsomS(X ,Y) is unramified over S. As
in the proof of Theorem 3.3.1 it is enough to check the properties of IsomS(X ,Y)
when S is a spectrum of an algebraically closed field. In this case IsomS(X ,Y) is
either empty or it is isomorphic to Autk(X,λ). As the latter is separated, reduced
and of finite type over k we conclude that the same holds for IsomS(X ,Y). �
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P r o o f o f Th e o r e m 4.3.3. We will give the proof for F2d in several
steps. For the proof that M2d is a Deligne-Mumford stack one should only replace
Hpr
d,3 by Hd,3 below.

Step 1: We saw in Proposition 4.2.1 that there exists a Hilbert scheme
Hpr

3,d, of finite type over Z, classifying K3 surfaces with a polarization of degree 2d
which are embedded in a projective space via the third power of the polarization.
One has then the universal family f : X → Hpr

3,d and we know that OX (1) ∼=

L3 ⊗ f∗M for some ample line bundle L on X of degree 2d and an invertible
sheaf M on Hpr

3,d. Although the line bundle L with this property is not unique,

its class λX = cl(L) ∈ PicX/Hpr
3,d

is uniquely determined as λ3
X = cl(OX (1)).

Define the morphism of stacks

πHilb : Hpr
3,d → F2d.

sending Hpr
3,d to the pair (f : X → Hpr

3,d, λX ). By construction the self-intersection

index (λX ,h, λX ,h) is 2d for any h ∈ Hpr
3,d and λX is primitive so this morphism is

correctly defined.

Step 2: The morphism πHilb is surjective. This follows form the definition
(cf. [16, Def. 3.6]) and Lemma 3.2.4. Indeed, for any (π : X → S, λ) ∈ F2d(S)
one can find an étale cover S ′ → S such that πS′ : XS′ → S′ is a K3 scheme and
λS′ is equal to the class of a relatively ample line bundle L′ on XS′ . By Lemma
1.2.5 the line bundle L′3 defines a closed immersion XS′ ↪→ P(πS′∗L

′3). Refining
S′ further if needed we may assume that P(πS′∗L

′3) is isomorphic with P9d+1
S′ .

Then the inclusion XS′ ↪→ P(πS′∗L
′3) satisfies the conditions of Proposition 4.2.1

by construction. Hence it corresponds to a morphism fX : S′ → Hpr
3,d and we have

that

πHilb(fX : S′ → Hpr
3,d) = (πS′ : XS′ → S′, λS′).

Step 3: The morphism πHilb is representable and smooth. Let S be a
scheme and suppose given a morphism S → F2d corresponding to a primitively
polarized K3 space (π : X → S, λ). We have to show that the product S×F2d

Hpr
3d

is representable by an algebraic space which is smooth over S (via pr1). By the
surjectivity of πHilb one can find an étale cover S ′ of S and a projective embedding
XS′ ↪→ P9d+1

S′ , defined by a very ample line bundle L3. It gives rise to a morphism
S′ → Hpr

3,d with

πHilb(S
′ → Hpr

3,d) = (XS′ → S′, λS′) ∈ F2d(S
′).
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We claim that the product S ′ ×F2d
Hpr

3,d is representable by a scheme isomorphic

to PGL(9d+ 2)S′ . For any S ′-scheme U we have that

S′ ×F2d
Hpr

3,d(U) =

{

(

(U → S′), (U → Hpr
3,d), g

) ∣

∣

g ∈ Hom
(

(XU → U, λU ), πHilb(U → Hpr
3,d)

)

in F2d

}

where πHilb(U → Hpr
3,d) = (XU → U, λX |U ). Any such morphism g gives rise to an

isomorphism L3 ∼= OXU
(1) ⊗ f∗UM for some invertible sheaf M on U and hence

an isomorphism
P(πU∗L

3) ∼= P
(

fU∗OXU
(1) ⊗M

)

.

But by condition (iii) of Proposition 4.2.1 we have an isomorphism

P(fU∗OXU
(1) ⊗M) ∼= P

(

prU∗OP
9d+1
U

(1)
)

= P9d+1
U

and hence we obtain an isomorphism P(πU∗L
3) ∼= P9d+1

U . This correspondence
gives a bijection

S′ ×F2d
Hpr

3,d(U) ↔
{

isomorphisms P(πU∗L
3) ∼= P9d+1

U

}

and the right hand set can be identified with PGL(9d+1)S′(U). For this we refer
to the arguments given on pp. 101-103 in [21]. Hence S ′×F2d

Hpr
3,d is representable

by the scheme PGL(9d+ 1)S′ which is smooth over S ′.
We will show next that S ×F2d

Hpr
3,d is a smooth algebraic space over S.

We have a surjective map of étale sheaves

S′ ×F2d
Hpr

3,d → S ×F2d
Hpr

3,d.

The product

R :=
(

S′ ×F2d
Hpr

3,d

)

×(

S×F2d
Hpr

3,d

)

(

S′ ×F2d
Hpr

3,d

)

can be identified with the smooth S-scheme (S ′ ×S S
′) ×F2d

Hpr
3,d. The natural

morphism
R→ (S′ ×F2d

Hpr
3,d) × (S′ ×F2d

Hpr
3,d)

is quasi-compact and the two projection maps

R
//
// S ×F2d

Hpr
3,d
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are étale as they correspond to the two étale projection morphisms

S′ ×S S
′ //

// S . Hence S ×F2d
Hpr

3,d is an algebraic space, which is moreover

smooth over S as it possesses a smooth atlas S ′ ×F2d
Hpr

3,d (over S).

Step 4: Using Remark 4.1.2 (i) in [16, Ch. 4] (or Prop. 4.4 in [9])
and Lemma 4.3.8 we see that the diagonal morphism ∆: F2d → F2d ×Z F2d is
representable, separated and quasi-compact. Then we can apply Theorem 4.21
of [9] to the morphism πHilb : Hpr

3,d → F2d and conclude that F2d is a Deligne-
Mumford stack of finite type over Z.

Step 5: We will show that the algebraic stack F2d is separated. As F2d

is of finite type over Z one can use the valuative criterion for separateness from
[9, Thm. 4.18] (cf. [16, Prop. 7.8 and Thm. 7.10]). It reduces to showing that
if (πi : Xi → S, λi), for i = 1, 2, are two primitively polarized K3 spaces over the
spectrum S of a discrete valuation ring R with field of fractions K, then every
isomorphism f : (X1⊗K,λ1⊗K) → (X2⊗K,λ2⊗K) extends to a S-isomorphism
between (X1, λ1) and (X2, λ2). Note that after taking a finite étale covering of S
we may assume that:

(a) Xi are schemes,

(b) λi = c1(Li) for some ample line bundle Li,

(c) f gives an isomorphism of pairs f : (X1 ⊗K,L1 ⊗K) → (X2 ⊗K,L2,⊗K).

Then using [20, Thm. 2] (as a K3 surface is non-ruled) we see that f extends
uniquely to an isomorphism between (X1,L1) and (X2,L2).

Step 6: We are left to show that the natural inclusion F2d ↪→ M2d is
an open immersion. Take a noetherian scheme S and suppose given a morphism
S → M2d corresponding to a polarized K3 space (π : X → S, λ). Let f : S ′ → S
be an étale covering such that πS′ : XS′ → S′ is strongly projective (cf. Step 2 in
the proof of Theorem 4.3.3). According to Lemma 3.1.6 the set of points

S′o = {s ∈ S′ | such that λS′,s is primitive}

is an open subscheme of S ′. The morphism f is étale and hence f(S ′o) ⊂ S is
also an open subscheme which represents S ×M2d

F2d. �

Remark 4.3.9. Another possible proof of Theorem 4.3.3 is to use
Artin’s criterion ([16, Cor. 10.11]). This approach is taken up in [25, Thm. 6.2]
where M. Olsson constructs a compact stack of “polarized log K3 spaces” over Q.

An immediate consequence of Theorem 4.3.3 is the existence of a coarse
moduli space of polarized K3 surfaces. More precisely Corollary 1.3 in [14] says
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Corollary 4.3.10. The moduli stacks F2d and M2d have coarse moduli
spaces which are separated algebraic spaces.

Note that this argumet shows that F2d and M2d are global quotient
stacks.

Before going on we will shortly outline how one can obtain stronger results
on coarse moduli schemes of polarized K3 surfaces in characteristic zero.

Approach via periods of K3 surfaces. As we mentioned in the
beginning of this section one can use analytic methods to construct a coarse
moduli scheme of primitively polarized K3 surfaces. Consider the complex space

Ω± = {ω ∈ P(L2d ⊗ C)| ψ2d(ω, ω) = 0 and ψ2d(ω, ω̄) > 0}

which consists of two connected components. It can be identified with the space

SO(2, 19)(R)/
(

SO(2)(R) × SO(19)(R)
)

.

Let Ω+ denote one of its connected components, say corresponding to

SO(2, 19)(R)+/
(

SO(2)(R) × SO(19)(R)
)

,

where SO(2, 19)(R)+ is the connected component of SO(2, 19)(R) containing the
identity. It is a bounded symmetric domain of type IV and of dimension 19. Let
Γ be the group {g ∈ O(V0)(Z) | g(e1 − df1) = e1 − df1} and denote by Γ+ the
subgroup of Γ of index 2 which consists of isometries preserving the connected
components of Ω±. Then Γ+ acts on Ω+ properly discontinuously and the space
Ω+/Γ+ is a coarse moduli scheme for primitively quasi-polarized complex K3
surfaces of degree 2d. There is an open part Ω0 of Ω+ such that Ω0/Γ+ is a
coarse moduli scheme for primitively polarized complex K3 surfaces of degree 2d.
For details and proofs we refer to [4, Exp. XIII]. The existence of a coarse moduli
scheme is Proposition 8 in loc. cit.

Approach via geometric invariant theory. Let k be an algebraically
closed field of characteristic zero. Then using the techniques of [35, Ch. 8], and
more precisely §8.2 (see Theorem 8.23), one can prove that the moduli functor
F2d⊗ k (respectively M2d⊗ k) has a quasi-projective coarse moduli scheme over
k. Indeed, one has that Assumptions 8.22 in [35, §8.2] are satisfied:

(i) The functor is locally closed. This follows from the proof of Proposition
4.2.1.

(ii) The separateness property is shown in Step 2 of the proof of Theorem 4.3.3.
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(iii) The functor is bounded by Theorem 1.2.2. See also Remark 8.24 in loc. cit.
and note that the condition ‘ω2 is trivial’ is a locally closed condition.

One actually shows that the scheme in question is H pr
3,d ⊗ k/PGL(N)k (respecti-

vely H3,d ⊗ k/PGL(N)k) for a suitable N ∈ N.

Combining the approach to coarse moduli schemes via geometric invariant
theory and Corollary 4.3.10 we conclude that F2d,Q (respectively M2d,Q) has a
quasi-projective coarse moduli scheme.

Proposition 4.3.11 The moduli stacks F2d and M2d are smooth of
relative dimension 19 over Z[ 1

2d ].

P r o o f. According to [16, Prop. 4.15] we have to show that for any
strictly henselian local ring R and surjection Spec(R) → Spec(R ′) defined by a
nilpotent sheaf of ideals one has that the natural map

Hom(Spec(R′),F2d,Z[1/2d]) → Hom(Spec(R),F2d,Z[1/2d])

is surjective. Since R is strictly henselian every K3 space over Spec(R) is a K3
scheme and the same holds for spaces over Spec(R′) (see [11, EGA IV, 18.1.2]).
Hence by Lemma 4.1.3 we conclude that F2d,Z[1/2d] is smooth over Z[1/2d].

The same argument applies also to the dimension claim. Since every K3
space over Spec(k[ε]/ε2) is a K3 scheme we conclude from Theorem 4.1.2 that the
dimension of F2d,Z[1/2d] at every point is 19.

This proof also shows that M2d is smooth of relative dimension 19. �

Remark 4.3.12. Since smoothness will be essential for all our further
considerations, unless explicitly stated, by F2d (respectively M2d) we will mean
the smooth stack F2d ⊗Z Z[ 1

2d ] (respectively M2d ⊗Z Z[ 1
2d ]) over Spec(Z[ 1

2d ]).

We will end this section speculating about other possible moduli spaces
and functors of polarized K3 surfaces. Note first that one could have started with
a moduli functor F ′

2d of (primitively) polarized K3 schemes of degree 2d. The
problem we came up with restricting only to schemes was proving effectiveness
of descent for K3 schemes. For this reason one takes the “étale sheafification”
of F ′

2d considering (primitively) polarized K3 spaces. This makes the descent
obstruction essentially trivial.

Next, one can consider deformations of polarized K3 surfaces as in Section
4.1 by algebraic spaces and not only schemes. For a polarized K3 surface (X0, λ0)
over an algebraically closed field k define

DefAlgSp(X0, λ0) : A→ Sets
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to be the functor sending an object A of A to the isomorphism classes of triples
(X , λ, φ0) where (X → Spec(A), λ) is a polarized K3 space and φ0 is an isomor-
phism φ0 : (X ,L)⊗A k ∼= (X0,L0). Combining Theorem 4.3.3, Lemma 4.3.11 and
[16, Cor. 10.11] we conclude that DefAlgSp is pro-representable, formally smooth
and of dimension 19.

5. Level structures of polarized K3 surfaces. Recall that for
an abelian scheme (A, λ) over a base scheme S and a natural number n which is
invertible in S one defines a (Jacobi) level n-structure on A to be an isomorphism
θ : A[n] → (Z/nZ)S of étale sheaves on S satisfying some further properties.
In other words, one uses the Tate module of an abelian variety in order to
define level structures. For a K3 surface X we will use the same idea applied
to H2

et(Xk̄,Zl(1)). More precisely, we will introduce the notion of level structures
on primitively polarized K3 surfaces of degree 2d corresponding to open compact
subgroups of SO(V2d, ψ2d)(Af ) (see below) and define moduli spaces of primitively
polarized K3 surfaces with level structures. We set up some notations first.

• All schemes in this section will be assumed to be locally noetherian.

• For a finite set of primes B = {p1, . . . , pr} we denote by ZB the product
∏

p∈B
Zp and by NB the product of the primes in B.

• We fix a natural number d. We shall use the notations L2d,B and L0,B for
the quadratic lattices L2d ⊗ ZB and L0 ⊗ ZB (cf. Section 2.1).

• Let K ⊂ SO(V2d)(Ẑ) be a subgroup of finite index and let B = {p1, . . . , pr}
be the set of prime divisors of 2d and primes p for which Kp 6= SO(V2d)(Zp).
We denote by KB the product

∏

p∈B
Kp.

5.1. Level structures. Let S be a connected scheme over Z[ 1
p1...pr

] and

suppose given a polarized K3 space (π : X → S, λ) of degree 2d. Let P 2
etπ∗ZB(1)

be the sheaf of primitive cohomology i.e., the orthogonal complement of c1(λ) in
R2

etπ∗ZB(1). Take a geometric point b̄ of S and let b̄ : Spec(k(b̄)) → S be the
corresponding morphism of schemes. Consider the free ZB-module of rank 21

P 2(b̄) := b̄∗P 2
etπ∗ZB(1),

i.e. the fiber of P 2
etπ∗ZB(1) at b̄ with its action of πalg

1 (S, b̄) and the bilinear form
ψλ,ZB

.
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Suppose given an class αb̄ in the set

{

KB\Isometry
(

L2d,ZB
, P 2(b̄)

)

}πalg
1 (S,b̄)

where KB acts on Isometry
(

L2d,ZB
, P 2(b̄)

)

on the right via its action on L2d,ZB

and πalg
1 (S, b̄) acts on the left via its action on P 2(b̄). Let b̄′ be another geometric

point in S. The αb̄ determines uniquely a class in

{

KB\Isometry
(

L2d,ZB
, P 2(b̄′)

)

}πalg
1 (S,b̄′)

in the following way: One can find an isomorphism

(7) δπ : πalg
1 (S, b̄) ∼= πalg

1 (S, b̄′)

and an isometry

δet : H
2
et(Xb̄,ZB(1)) → H2

et(Xb̄′ ,ZB(1))

determined uniquely by δπ, mapping c1(λb̄) to c1(λb̄′), such that δet(γ · x) =

δπ(γ) · δet(x) for every x ∈ H2
et(Xb̄,ZB(1)) and γ ∈ πalg

1 (S, b̄). The isometry
δet defines an isometry between P 2(b̄) and P 2(b̄′) which we will denote again by
δet. Let α̃ be a representative of the class αb̄. Then the class αb̄′ of δet ◦ α̃ in

KB\Isometry
(

L2d,B, P
2(b̄′)

)

is πalg
1 (S, b̄′)-invariant. Any other representative α̃1

of αb̄ differs by an element in KB and hence gives rise to the same class αb̄′ in
KB\Isometry

(

L2d,B, P
2(b̄′)

)

.

Any two isomorphisms (7) differ by an inner automorphism of πalg
1 (S, b̄)

and therefore we see that that class of δet ◦ α̃ is independent of the choice of an
isomorphism (7).

This remark allows us to make the following definition.

Definition 5.1.1. A level K-structure on a primitively polarized K3
space (π : X → S, λ) over a connected scheme S ∈ (Sch /Z[1/p1 . . . pr]) is an
element of the set

{

KB\Isometry
(

L2d,ZB
, P 2(b̄)

)

}πalg
1 (S,b̄)

.

The group KB acts on Isometry
(

L2d,ZB
, P 2(b̄)

)

on the right via its action on

L2d,ZB
and πalg

1 (S, b̄) acts on the left via its action on P 2(b̄). In general, a level
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K-structure on (π : X → S, λ) is a level K-structure on each connected component
of S.

If α̃ : L2d,B → P 2
et(b̄) is a representative of the class α, then via the

isomorphism
α̃ad : O(V2d)(ZB) ∼= O(P 2(b̄))(ZB)

the monodromy action

ρ : πalg
1 (S, b̄) → O(P 2(b̄))(ZB)

factorizes through α̃ad(KB).

Remark 5.1.2. If all residue fields of the points in S in Definition 5.1.1
are of characteristic zero, then one can define a level K-structure to be an element
of set

{

K\Isometry
(

L2d,Ẑ, P
2(b̄)

)

}πalg
1 (S,b̄)

where P 2(b̄) := b̄∗P 2
etπ∗Ẑ(1).

We will consider two important examples of level structures on primitively
polarized K3 spaces.

Example 5.1.3. Fix a natural number n and consider the group

Kn =
{

γ ∈ SO(V2d)(Ẑ)| γ ≡ 1 (mod n)
}

.

Then the set B consists of the prime divisors of 2dn. We will give a direct
interpretation of level Kn-structures.

Let S be a scheme over Z[1/2dn] and consider a primitively polarized K3
space (π : X → S, λ) of degree 2d. As usual we denote by P 2

etπ∗(Z/nZ)(1) the
orthogonal complement of c1(λ) in R2

etπ∗(Z/nZ)(1) with respect to the bilinear
form ψn = ψ ⊗Z Z/nZ. Then a level Kn-structure amounts to giving an isomor-
phism

αN :
(

P 2
etπ∗(Z/nZ)(1), ψL,n

)

→ (L2d,Z/nZ, ψ2d,Z/nZ)S

of étale sheaves on S, where (L2d,Z/nZ, ψ2d,Z/nZ)S is the constant polarized étale
sheaf over S with fibers (L2d, ψ2d) ⊗ Z/nZ.

We will call level a Kn-structure on X simply a level n-structure.

Example 5.1.4. Let G be the algebraic group SO(V2d) over Q. Consider
the even Clifford algebra C+(V2d, ψ2d) over Q and let G1 be the even Clifford
group over Q. In other words we set

G1 = CSpin(V2d) =
{

g ∈ C+(V2d)
∗ | gV2dg

−1 = V2d

}

.
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The natural homomorphism of linear algebraic groups G1 → G given by g 7→
(v 7→ gvg−1) fits into an exact sequence (see [6, §3.2])

0 → Gm → G1 → G→ 0.

Set G1(Z) to be G1(Q) ∩ C+(L2d)
∗. We have an exact sequence (see [2, §4.4])

(8) 0 → Z/2Z → G1(Z) → G(Z).

For a natural number n denote

Γn =
{

γ ∈ G(Z) | γ ≡ 1 (mod n)
}

and
Γsp
n =

{

γ ∈ G1(Z) | γ ≡ 1 (mod n) in C+(L2d)
}

.

If n > 2, then Γn and Γsp
n are torsion free. Hence one sees from the exact sequence

(8) that Γsp
n is isomorphic with its image Γa

n in G(Q).
Consider the group

Ksp
n =

{

γ ∈ G1(Ẑ) |γ ≡ 1 (mod n) in C+(L2d,Ẑ)
}

.

We have that K
sp
n ∩ G1(Q) = Γsp

n . Moreover the image Ka
n of K

sp
n in G(Ẑ) is of

finite index. Indeed, for every l not dividing 2nd, the l-component of Ka
n is G(Zl)

as shown in [2, §4.4]. Hence the set B for Ka
n is the set of prime divisors of 2dn.

We consider polarized K3 surfaces with level Ka
n-structure. Note that

this level structure is in general finer than level Kn-structure as Ka
n ⊂ Kn is of

finite index. We will call it spin level n-structure.

5.2. Motivation. We will pause here and give a motivation for the
rest of the definitions we make in this section. So far we have defined level
K-structures using the primitive second étale cohomology group of a polarized
K3 surface. Using these level structures one can define moduli stacks F2d,K of
primitively polarized K3 surfaces of degree 2d with a level K-structure and show
that they are algebraic spaces (cf. Theorem 6.1.2 below). Over C, we can relate
these spaces to the orthogonal Shimura variety associated to the group SO(2, 19).
More precisely in Chapter 3, Section 3.4.2 of [28] we define a period morphism

jd,K,C : F2d,K,C → ShK(SO(2, 19),Ω±)C

which is étale. This is similar to the case of moduli of abelian varieties where one
can identify Ag,1,n ⊗ C with ShΛn(CSp2g,H

±
g )C. In general, due to the fact that

the injective homomorphism (2)

iad : {g ∈ SO(V0)(Z) | g(e1 − df1) = e1 − df1} ↪→ SO(V2d)(Z)
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defined in Section 2.1 is not surjective, the period map jd,K,C need not be injective.
In order to construct an injective period morphism we will define level structures
using the “full” second étale cohomology group of a K3 surface. We use these
full level structures in [28, Ch. 3] to show that every complex K3 surface with
complex multiplication by a CM-field E is defined over an abelian extension of E.

5.3. Full level structures. The inclusion of lattices i : L2d ↪→ L0 (see
Section 2.1) defines injective homomorphisms of groups

iad : {g ∈ O(V0)(Ẑ) | g(e1 − df1) = e1 − df1} ↪→ O(V2d)(Ẑ)

and
iad : {g ∈ SO(V0)(Ẑ) | g(e1 − df1) = e1 − df1} ↪→ SO(V2d)(Ẑ).

Definition 5.3.1. A subgroup K ⊂ SO(V2d)(Ẑ) of finite index is called
admissible if it is contained in the image

iad
(

{g ∈ SO(V0)(Ẑ) | g(e1 − df1) = e1 − df1}
)

⊂ SO(V2d)(Ẑ).

If K is an admissible subgroup of SO(V2d)(Ẑ) then all its subgroups of
finite index K′ ⊂ K are also admissible.

Example 5.3.2. The group K2d is admissible. Hence all its subgroups
of finite index are admissible, as well.

Example 5.3.3. If d = 1 then Kn is admissible for any n ≥ 2.

Let K be an admissible subgroup of SO(V2d)(Ẑ) and let B be the set,
consisting of all prime divisors of 2d and, of the primes p for which Kp 6=
SO(V2d)(Zp). Using the notations introduced before Definition 5.1.1 we set

H2(b̄) := b̄∗R2
etπ∗ZB(1).

In order to simplify the notations we will identify a subgroup of {g ∈ SO(V0)(Ẑ) |
g(e1 − df1) = e1 − df1} with its image in SO(V2d)(Ẑ) under the injective homo-
morphism iad.

Definition 5.3.4. A full level K-structure on a primitively polarized K3
space (π : X → S, λ) over a connected scheme S ∈ (Sch /Z[1/p1 . . . pr]) is an
element of the set

{

KB\
{

g ∈ Isometry
(

L0,ZB
,H2(b̄)

)

| g(e1 − df1) = c1(λb̄)
}

}πalg
1 (S,b̄)

.
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The group KB acts on
{

g ∈ Isometry
(

L0,ZB
,H2(b̄)

)

| g(e1 − df1) = c1(λb̄)
}

on

the right via its action on L0,ZB
and πalg

1 (S, b̄) acts on the left via its action on
H2(b̄). A full level K-structure on (π : X → S, λ) over a general base S is a full
level K-structure on each connected component of S.

Again, a class αb̄ for a geometric point b̄ as above determines uniquely a
class αb̄′ for any other geometric point b̄′. If α̃ : L0,B → H2(b̄) is a representative
of the class α, then via the isomorphism

α̃ad : O(V0)(ZB) ∼= O(H2(b̄))(ZB)

the monodromy action ρ : πalg
1 (S, b̄) → O(H2(b̄))(ZB) factorizes through

α̃ad(KB).

Example 5.3.5. Let n ≥ 3 be an integer. Define the group

Kfull
n =

{

g ∈ SO(V0)(Ẑ)| g(e1 − df1) = e1 − df1 and g ≡ 1 (mod n)
}

.

By definition it is an admissible subgroup of SO(V2d)(Ẑ). Let S be a scheme over
Z[1/2dn] and consider a K3 space (π : X → S, λ) with a primitive polarization
of degree 2d. Then a full level Kfull

n -structure amounts to giving an isomorphism

αN :
(

R2
etπ∗(Z/nZ)(1), ψ

)

→ (L0,Z/nZ, ψ0,Z/nZ)S

of étale sheaves on S, where (L0,Z/nZ, ψ0,Z/nZ)S is the constant polarized étale
sheaf over S with fibers (L0, ψ0) ⊗ Z/nZ.

We will call a full level Kfull
n -structure on X simply a full level n-structure.

6. Moduli spaces of polarized K3 surfaces with a level struc-
ture. In this section we will use the notion of a (full) level structure level
structure to define moduli functors of primitively polarizedK3 spaces with a (full)
level structure. Using Artin’s criterion and Proposition 3.4.2 we will show that
these functors are representable by algebraic spaces over open parts of Spec(Z).

We shall be using the notations established in the beginning of Section
5.1. In particular we fix a natural number d. To a subgroup K of SO(V2d)(Ẑ)
we associated a finite set of primes B and NB will denote the product of these
primes.

6.1. Moduli of K3 surfaces with level structure. Let K be a
subgroup of SO(Ẑ) of finite index. We will assume further that it is contained
in Kn for some n ≥ 3. Let X1 = (π1 : X1 → S1, λ1) and X2 = (π2 : X2 →
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S2) be two objects of F2d. Suppose that S1 and S2 are connected and let
(f, fS) ∈ Hom(X1,X2) (in F2d). Let b̄1 and b̄2 be two geometric points of S1

and S2 such that fS(b̄1) = b̄2. Then the morphism f defines a homomorphism
f∗et : P

2(b̄2) → P 2(b̄1). Hence we obtain a map

f∨ : KB\Isometry
(

L2d,Z0,B
, P 2(b̄2)

)

→ KB\Isometry
(

L2d,ZB
, P 2(b̄1)

)

given by α 7→ f ∗et ◦α and commuting with the monodromy actions on both sides.

Definition 6.1.1. For d and K as above consider the category F2d,K

defined in the following way:

Ob: Triples (π : X → S, λ, α) of a K3 space π : X → S with a primitive polari-
zation λ of degree 2d and with a level K-structure α on (π : X → S, λ).

Mor: Suppose given two triples X1 = (π1 : X1 → S1, λ1, α1) and X2 = (π2 : X2 →
S2, λ2, α2). Let fS : S1 → S2 be a morphism of schemes. Choose base
geometric points b̄′1 and b̄′2 on any two connected components S ′

1 and S′
2

of S1 and S2 for which f : S ′
1 → S′

2 such that fS(b̄′1) = b̄′2. Define the
morphisms between X1 and X2 in the following way

Hom(X1,X2) =
{

pairs (fS , f) |fS : S1 → S2 is a morph. of spaces,

f : X1 → X2 ×S2,fS
S1 is an isom. of

S1 − spaces with f ∗λ2 = λ1 and

f∨(α1) = α2 on any conn. cmpt . of S1

}

Next we define three projection functors.

1. Consider the following forgetful functor

prF2d,K
: F2d,K → (Sch /Z[1/NB ])

sending a triple (π : X → S, λ, α) to S. It makes F2d,K into a category over
(Sch /Z[1/NB ]).

2. For any K, satisfying the assumptions of the beginning of the section, one
has a projection functor

(9) prK : F2d,K → F2d,Z[1/NB]

sending a triple (π : X → S, λ, α) to (π : X → S, λ) and an element (f, fS) ∈
Hom(X ,Y) of F2d,K to (f, fS).
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3. For any two subgroups K1 ⊂ K2 of finite index in SO(V2d)(Ẑ) (contained in
some Kn for n ≥ 3) one has a projection functor

(10) pr(K1,K2) : F2d,K1,Z[1/NB1∪B2
] → F2d,K2,Z[1/NB1∪B2

].

It sends an object (X → S, λ, αK1) to (X → S, λ, αK2) where αK2 is the class
of αK1 in K2,B\Isometry

(

L2d,ZB
, P 2(b̄)

)

. Morphism of F2d,K1,Z[1/NB1∪B2
]

are mapped to morphism of F2d,K2,Z[1/NB1∪B2
] in the obvious way.

From the definitions of the functors we see that prK1 = pr(K1,K2) ◦ prK2 over
Z[1/NB1∪B2 ].

Theorem 6.1.2. The category F2d,K is a separated algebraic space over
Z[1/NB ]. It is smooth of relative dimension 19 and the forgetful morphism (9)

prK : F2d,K → F2d,Z[1/NB ]

is finite and étale.

P r o o f. We divide the proof into several steps.
Step 1: The category F2d,K is a stack. The proof goes exactly in the

same lines as the one of Lemma 4.3.7. We will use Artin’s criterion (cf. [16, Cor.
10.11]) to show that F2d,K is an algebraic space.

We claim that the diagonal morphism ∆: F2d,K → F2d,K ×Z[1/NB] F2d,K

is representable, separated and of finite type. By Remark 4.1.2 in [16] it is
equivalent to showing that for any two objects X = (X → S, λX , αX) and Y =
(Y → S, λY , αY ) the functor IsomS(X ,Y) has these properties. We will prove
first the following result.

Lemma 6.1.3. For any object X of F2d,K we have that AutS(X ) =
{idX }.

P r o o f. By assumption the group K is contained in Kn for some n ≥ 3.
Hence a level K-structure on a primitively polarized K3 space (X → S, λ) defines
in a natural way (using the functor pr(K,Kn)) a level n-structure αn on X. We
have that

AutS
(

(X → S, λ, α)
)

(U) ⊂ AutS
(

(X → S, λ, αn)
)

(U)

for an S-scheme U hence it is enough to prove the lemma assuming that K = Kn.
Let X = (X → S, λ, α) be an object in F2d,K, let f ∈ AutS(X )(U) and

assume that U is connected. Take a geometric point b̄ : Spec(Ω) → U . Then
for the finite set B = {the prime divisors of n} the morphism f induces an
automorphism

f∗et : H
2
et(Xb̄,ZB(1)) → H2

et(Xb̄,ZB(1))
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fixing c1(λb̄) and such that

f∗et : P
2
et(Xb̄,Z/nZ(1)) → P 2

et(Xb̄,Z/nZ(1))

is the identity (cf. Example 5.1.3). As the automorphism f is of finite order
we have that f ∗et ∈ O

(

P 2
et(Xb̄,ZB(1))

)

is semi-simple and its eigenvalues are
roots of unity. We have further that f ∗

et ≡ 1 (mod n) so we conclude by [22,
Ch. IV, Application II, p. 207, Lemma] that f ∗

et is the identity automorphism
of P 2

et(Xb̄,ZB(1)). As it fixes c1(λb̄) we see that it acts as the identity on
H2

et(Xb̄,ZB(1)). Therefore by Proposition 3.4.2 we that f = idXb̄
. As the

geometric point b̄ can be chosen arbitrary we have that f = idXU
. �

We see from the lemma that for a S-scheme U the set IsomS(X ,Y)(U)
is either empty or it consists of one element. Indeed, suppose that
fi ∈ IsomS(X ,Y)(U) for i = 1, 2. Then the composition f−1

2 ◦ f1 belongs
to AutS(X )(U) and hence it is the identity. This shows that IsomS(X ,Y) is
representable and of finite type. The fact that it is unramified and separated
over S follows from Lemma 4.3.8 as one has that

IsomS(X ,Y)(U) ⊂ IsomS

(

(X → S, λX), (Y → S, λY )
)

(U).

Next we claim that the stack F2d,K is locally of finite presentation. This follows
from [1, Exposé IX, 2.7.4] and the fact that F2d is locally of finite presentation.
Conditions (iii) and (iv) of [16, Cor. 10.11] follow from the corresponding
properties of F2d and the fact that for any small surjection of rings R → R′ the
category of étale schemes over R is equivalent to the category of étale schemes
over R′ ([11, EGA IV, 18.1.2]).

Thus F2d,K is an algebraic stack. As AutS(X ) = {idX } for any object we
have that F2d,K is an algebraic space ([16, Cor. 8.1.1]).

Step 2: We will show that the morphism of algebraic stacks prK : F2d,K →
F2d,Z[1/NB] is representable and étale. Indeed, let S be a connected scheme and
suppose given a morphism S → F2d i.e., a polarized K3 space (π : X → S, λ) over
S. Let b̄ : Spec(Ω) → S be a geometric point of S. Let ρ : πalg(S, b̄) → O(P 2(b̄))
be the monodromy representation and let ã : L2d,B → P 2(b̄) be an isometry.

Then the preimage ρ−1 ◦ αad(KB) is an open subgroup of πalg
1 (S, b̄) (of finite

index) and hence it defines an étale cover Sα̃ of S. One has that the class α of

α̃ in KB\Isometry
(

L2d,ZB
, P 2(b̄)

)

is πalg
1 (Sα̃, b̄)-invariant by construction (for a

fixed geometric point b̄ ∈ Sα̃ over b̄). Therefore we obtain a primitively polarized
K3 space (XSα̃

→ Sα̃, λSα̃
, α) with a level K-structure α. For two markings α̃1

and α̃2 we have that α̃ad
1 (KB) = α̃ad

2 (KB) if and only if α̃−1
2 ◦ α̃1 is an element of

the normalizer NO(V2d)(ZB)(KB) of KB in O(V2d)(ZB).
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Denote by S ′ the disjoint union of Sα̃ where α̃ runs over all (finitely many)
classes in O(V2d)(ZB)/NO(V2d)(ZB)(KB). Let (X ′ → S′, λS′ , α) be the primitively
polarizedK3 space with a level K-structure given by the triple (XSα̃

→ Sα̃, λSα̃
, α)

on the α̃-th connected component Sα̃ of S′. Then by construction we have a
morphism of algebraic spaces

π : S′ → S ×F2d,Z[1/NB]
F2d,K

over S. This morphism is surjective. Indeed, by [16, Prop. 5.4] this condition can
be checked on points, in which case it is obvious by construction. The morphism
S′ → S is étale and therefore we conclude that prK,S : S ×F2d,Z[1/NB]

F2d,K → S
and π are also étale. Hence prK is étale.

Step 3: By Step 2 and Theorem 4.3.3 the algebraic space F2d,K is smooth
and of relative dimension 19 over Z[1/NB ]. �

Remark 6.1.4. Let K1 ⊂ K2 ⊂ Kn be subgroups of finite index in
SO(V2d)(Ẑ) and suppose that n ≥ 3. Then the morphism (10) of algebraic spaces

pr(K1,K2) : F2d,K1,Z[1/NB1∪B2
] → F2d,K2,Z[1/NB1∪B2

]

is finite and étale. This follows from the theorem above and the relation prK1 =
prK2 ◦ pr(K1,K2).

Example 6.1.5. Let n ≥ 3 be a natural number. Consider the group
Kn defined in Example 5.1.3. We define F2d,n = F2d,Kn to be the moduli space of
primitively polarized K3 surfaces with level n-structure over Z[1/2dn].

Example 6.1.6. Fix a natural number n ≥ 3 and consider the group Ka
n

defined in Example5.1.4. We define F2d,nsp = F2d,Ka
n

to be the moduli space of
polarized K3 surfaces with spin level n-structure over Z[1/2dn].

6.2. Moduli K3 spaces with full level structures. Suppose that
K ⊂ Kn for some n ≥ 3 is an admissible subgroup of SO(V2d)(Ẑ). Let X1 =
(π1 : X1 → S1, λ1) and X2 = (π2 : X2 → S2) be two objects of F2d. Suppose that
S1 and S2 are connected and let (f, fS) ∈ Hom(X1,X2) (in F2d). Let b̄1 and b̄2
be two geometric points of S1 and S2 such that fS(b̄1) = b̄2. Then the morphism
f defines a homomorphism f ∗

et : H
2(b̄2) → H2(b̄1) sending the class of λb̄2 to the

class of λb̄1 . Hence we obtain a map

f∨ : KB\
{

g ∈ Isometry
(

L0,ZB
,H2(b̄2)

)

| g(e1 − df1) = c1(λ2,b̄2)
}

→

→ KB\
{

g ∈ Isometry
(

L0,ZB
, P 2(b̄1)

)

| g(e1 − df1) = c1(λ1,b̄1
)

}
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given by α 7→ f ∗et ◦α and commuting with the monodromy actions on both sides.

Definition 6.2.1. For a natural number d and an admissible subgroup K

of SO(V2d)(Ẑ) as above consider the category F full
2d,K defined in the following way:

Ob: Triples (π : X → S, λ, α) of a K3 space π : X → S over S with a primitive
polarization λ of degree 2d and with a full level K-structure α on (π : X →
S, λ).

Mor: Suppose given two triples X1 = (π1 : X1 → S1, λ1, α1) and X2 = (π2 : X2 →
S2, λ2, α2). Let fS : S1 → S2 be a morphism of schemes. Choose base
geometric points b̄′1 and b̄′2 on any two connected components S ′

1 and S′
2

of S1 and S2 for which f : S ′
1 → S′

2 such that fS(b̄′1) = b̄′2. Define the
morphisms between X1 and X2 in the following way

Hom(X1,X2) =
{

pairs (fS , f) |fS : S1 → S2 is a morph. of spaces,

f : X1 → X2 ×S2,fS
S1 is an isom. of

S1 − spaces with f ∗λ2 = λ1 and

f∨(α1) = α2 on any conn. cmpt . of S1

}

A full level K-structure α on a primitively polarized K3 space (X → S, λ) defines
in a natural way a level K-structure via the injective morphism

i∨ZB
: KB\

{

g ∈ Isometry
(

L0,ZB
,H2(b̄)

)

| g(e1 − df1) = c1(λb̄)
}

↪→

↪→ KB\Isometry
(

L2d,ZB
, P 2(b̄)

)

commuting with the monodromy action. This morphism is defined by the embed-
ding of lattices i : L2d ↪→ L0 (see (1) in Section 2.1). Using this, just like in the
case of moduli of primitively polarized K3 surfaces with a level structure, we
define natural functors.

4. Define a functor
iK : F full

2d,K → F2d,K

sending (X → S, λ, α) to (X,→ S, λ, i∨(α)) which makes F full
2d,K into a full

subcategory of F2d,K over (Sch /Z[1/NB ]).

5. One has the forgetful functor

(11) prK : F full
2d,K → F2d,Z[1/NB]

sending a triple (π : X → S, λ, α) to (π : X → S, λ) and an element (f, fS) ∈
Hom(X ,Y) of F full

2d,K to (f, fS).
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6. For any two admissible subgroups K1 ⊂ K2 of SO(V2d)(Ẑ), contained in
some Kn for n ≥ 3, one has a projection functor

(12) pr(K1,K2) : F
full
2d,K1,Z[1/NB1∪B2

] → F full
2d,K2,Z[1/NB1∪B2

]

defined in a similar way as the corresponding morphism (10) in 3.

The functors prK and pr(K1,K2) defined above are the restrictions of the corres-
ponding functors (9) and (10) to the category of primitively polarized K3 surfaces
with full level Kj-structures via iKj for j = 1, 2.

Theorem 6.2.2. Let K be an admissible subgroup of SO(V2d)(Ẑ) con-
tained in Kn for some n ≥ 3. The category F full

2d,K is a separated, smooth algebraic

space of relative dimension 19 over Z[1/NB ]. The morphism p2d,K : F full
2d,K →

F2d,Z[1/NB] is étale and the morphism iK : F full
2d,K ↪→ F2d,K is an open immersion.

P r o o f. To prove that F full
2d,K is representable by an algebraic space of

finite type over Z[1/NB ] one follows the steps of the proof of Theorem 6.1.2. In
this way we also see that the projection morphism p2d,K : F full

2d,K → F2d,Z[1/NB] is
finite and étale. Therefore we have a commutative diagram

F full
2d,K

p2d,K

%%KKKKKKKKKK

iK
// F2d,K

p2d,K
yyssssssssss

F2d,Z[1/NB ]

where the two morphisms p2d,K are étale and surjective. Hence iK is also étale
and therefore it is open. �

Remark 6.2.3. Let K1 ⊂ K2 be two admissible subgroups of SO(V2d)(Ẑ).
Then the morphism of algebraic spaces

pr(K1,K2) : F
full
2d,K1,Z[1/NB1∪B2

] → F full
2d,K2,Z[1/NB1∪B2

]

is finite and étale. This follows from the theorem above and the relation prK1 =
prK2 ◦ pr(K1,K2).

Example 6.2.4. Let n ≥ 3 be a natural number. Consider the group
Kfull
n defined in Example 5.3.5. We define F full

2d,n = F full
2d,Kfull

n
to be the moduli space

of primitively polarized K3 surfaces with full level n-structure over Z[1/2dn].
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Cohomologie étale des Schémas. Lecture Notes in Mathematics, vol. 269,

270, 305, Springer-Verlag, 1971.
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