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SUB- AND SUPER-SOLUTIONS OF A NONLINEAR PDE,
AND APPLICATION TO A SEMILINEAR SPDE

E. T. Kolkovska, J. A. López-Mimbela

Abstract. We obtain upper and lower bounds for the explosion time of
a semi-linear heat equation on a bounded d-dimensional domain, perturbed
by white noise. The bounds we get are expressed in terms of exponential
functionals of one-dimensional Brownian motion, whose density function can
be explicitly calculated.

1. Introduction and backgrownd. Consider the semilinear stochastic
partial differential equation

du(t, x) =
[
∆u(t, x) + u1+β(t, x)

]
dt+ κu(t, x) dWt,(1)

u(0, x) = f(x) ≥ 0, x ∈ D,

u(t, x) = 0, t ≥ 0, x ∈ ∂D,

where D ⊂ R
d is a bounded smooth domain, β > 0 is a constant, κ is a given

positive number, {Wt, t ≥ 0} is a standard one-dimensional Brownian motion
and f : D → IR+ is of class C2 and not identically zero. The nonlinear term
in Equation (1) is only locally Lipschitz, and therefore its solutions can exhibit
blow up in finite time. Our goal in this note is to obtain useful upper and lower
bounds for the explosion times of (1).
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Let Λ > 0 be the first eigenvalue of the Laplacian on D, and ψ the corre-
sponding eigenfunction normalized so that ‖ψ‖L1 = 1. We are going to show that
for initial values of the form u(0, x) = kψ(x), x ∈ D, where k > 0 is a parameter,
the explosion time ̺ of (1) satisfies σ∗ ≤ ̺ ≤ σ∗, where

σ∗ = inf

{
t ≥ 0 :

∫ t

0
exp{κβWr − β(Λ + κ2/2)r} dr ≥ 1/(βkβ

‖ψ‖β
∞

)

}
,

σ∗ = inf

{
t ≥ 0 :

∫ t

0
exp{κβWr − β(Λ + κ2/2)r} dr ≥ 1/(βkβ

(∫
ψ2(x) dx

)β
)

}
.

A remarkable fact is that the density of the Brownian functional

∫ t

0
exp{κβWr − β(Λ + κ2/2)r} dr, t > 0,

appearing in the above expressions, can be obtained from Yor’s formula ([5], Ch.
4 and [4]). This is a reason to consider initial values of the form given above.
Moreover, the random times σ∗ and σ∗ arise, respectively, as the explosion times
of a super- and a sub-solution of the nonlinear equation

∂v

∂t
(t, x) = ∆v(t, x) −

1

2
κ2v(t, x) + eκβWtv1+β(t, x), t > 0, x ∈ D,(2)

v(0, x) = f(x), x ∈ D,

v(t, x) = 0, x ∈ ∂D,

where f = kψ with k > 0. Recall [1] that ψ is nonnegative, with ψ > 0 on D,
and that

Ttψ = e−Λtψ, t ≥ 0.

Here {Tt, t ≥ 0} is the semigroup of bounded linear operators defined by

Ttf(x) = E [f(Xt), t < τD|X0 = x] , x ∈ D,

for all bounded and measurable f : D → R, where {Xt}t≥0 is the d-dimensional
Brownian motion with variance parameter 2, killed at the time τD at which
it hits ∂D. As before, we are going to assume that ψ is normalized so that∫
D
ψ(x) dx = 1.

Solutions of our equation are to be understood in the weak sense, namely,
letting τ ≥ 0 be a random time, we say that a continous adapted random field
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u = {u(t, x), t ≥ 0, x ∈ D} is a weak solution of (1) on the interval ]0, τ [ if, for
every ϕ ∈ C2(D) vanishing on ∂D, the equality

∫

D

u(t, x)ϕ(x) dx =

∫

D

f(x)ϕ(x) dx+

∫ t

0

∫

D

[u(s, x)∆ϕ(x) +G(u(s, x))ϕ(x)] dx ds

+κ

∫ t

0

∫

D

u(t, x)ϕ(x) dx dWs P – a.s.

holds for all t ∈ [0, τ [. A (random) time T is called blowup time of u if

lim
tրT

sup
x∈D

|u(t, x)| = +∞ P − a.s. on {T < +∞}.

2. Weak solutions of a random PDE. Our approach follows closely
the methods used in [2], where estimates for the probabilities of existence of global
and of non-global solutions of (1) were obtained. Here, however, the emphasis is
rather on getting information about blowup times.

Proposition 1. For any given continuous Brownian path W·, let us define

(3) v(t, x) = exp{−κWt}u(t, x), t ≥ 0, x ∈ D,

where u is a weak solution of Eq. (1). Then v is a weak solution of Equation (2).

P r o o f. In order to prove this assertion, let us recall that, according to Itô’s
formula for Brownian motion, for all g ∈ C2(R),

g(Wt) = g(0) +

∫ t

0
g′(Ws) dWs +

1

2

∫ t

0
g′′(Ws) ds, t ≥ 0.

Hence, for a g of the form g(Wt) = e−κWt we get, by Ito’s formula,

e−κWt = 1 − κ

∫ t

0
e−κWsdWs +

κ2

2

∫ t

0
e−κWsds

or, in differential form,

(4) de−κWt = −κe−κWtdWt +
κ2

2
e−κWt dt.

Recall also that, if {X(t), t ≥ 0} and {Y (t), t ≥ 0} are real-valued stochastic
processes admitting stochastic differentials

dX(t) = µX(t,X(t)) dt + σX(t,X(t)) dWt,

dY (t) = µY (t, Y (t)) dt + σY (t, Y (t)) dWt,
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with continuous coefficients, then the integration-by-parts formula holds, i.e.

(5) X(t)Y (y) = X(0)Y (0) +

∫ t

0
X(s) dY (s) +

∫ t

0
Y (s) dX(s) + [X,Y ](t),

where [X,Y ](t) =
∫ t

0 σX(s,X(s))σY (s, Y (s)) ds. In our setting, the processes
X(t) = e−κWt and Y (t) = u(t, x) have, respectively, the stochastic differentials
(4) and (1). Hence we get

[
e−κW· , ui(·, x)

]
(t) = −κ2

∫ t

0
e−κWsu(s, x) ds, t ≥ 0.

Putting u(t, ϕ) =
∫
D
u(t, x)ϕ(x) dx, where ϕ is any smooth function with compact

support, we see that a weak solution of (1) is given by

(6) u(t, ϕ) = u(0, ϕ) +

∫ t

0
u(s,∆ϕ) ds +

∫ t

0
u1+β(s, ϕ) ds + κ

∫ t

0
u(s, ϕ) dWs.

By applying the integration by parts formula we further obtain that

v(t, ϕ) :=

∫

D

v(t, x)ϕ(x) dx

= v(0, ϕ) +

∫ t

0
e−κWs du(s, ϕ)

+

∫ t

0
u(s, ϕ)

(
−κe−κWsdWs +

κ2

2
e−κWs ds

)
+

[
e−κW., u(·, ϕ)

]
(t),

where the quadratic variation in the last line is given by

[
e−κW., u(·, ϕ)

]
(t) = −κ2

∫ t

0
e−κWsu(s, ϕ) ds, t ≥ 0.

Therefore,

v(t, ϕ) = v(0, ϕ) +

∫ t

0
v(s,∆ϕ) ds +

∫ t

0
e−κWs

(
eκWsv

)1+β
(s, ϕ) ds

−

κ2

2

∫ t

0
e−κWsu(s, ϕ) ds

= v(0, ϕ) +

∫ t

0

[
v(s,∆ϕ) −

κ2

2
v(s, ϕ)

]
ds+

∫ t

0
eκβWsv1+β(s, ϕ) ds.(7)

Hence, the function v(t, x) is a weak solution of the random PDE (2). �
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Remark. Notice that the integral form of Equation (2) is given by
(8)

v(t, x) = e−κ2t/2Ttf(x) +

∫ t

0
eβκWt−r−κ2r/2Tr

[
v(t− r, ·)1+β

]
(x) dr, t ≥ 0.

In what follows, we write ̺ for the blow up time of Equation (8) when the
initial value is of the form f = kψ for some constant k > 0. Due to (3) and to
the a.s. continuity of Brownian paths, ̺ is also the explosion time of Equation
(1) with initial value of the above form.

3. An upper bound for ̺. Due to ∆ψ = −Λψ,

v(s,∆ψ) =

∫

D

v(s, x)∆ψ(x) dx = −Λv(s, ψ).

From Proposition 1 we know that

v(t, ψ) = v(0, ψ) +

∫ t

0

[
v(s,∆ψ) −

κ2

2
v(s, ψ)

]
ds+

∫ t

0
eκβWsv1+β(s, ψ) ds,

where, by Jensen’s inequality,

v1+β(s, ψ) =

∫

D

v1+β(s, x)ψ(x) dx ≥

[∫

D

v(s, x)ψ(x) dx

]1+β

= v(s, ψ)1+β .

Therefore
d

dt
v(t, ψ) ≥ −

(
Λ +

κ2

2

)
v(t, ψ) + eκβWtv(t, ψ)1+β .

Hence v(t, ψ) ≥ I(t) for all t ≥ 0, where I(·) solves

d

dt
I(t) = −

(
Λ +

κ2

2

)
I(t) + eκβWsI(t)1+β , I(0) = v(0, ψ),

and is given by

I(t) = e−(Λ+κ2/2)t

[
v(0, ψ)−β

− β

∫ t

0
e−(Λ+κ2/2)βs+κβWs ds

]
−

1

β

, 0 ≤ t < τ,

with

(9) τ := inf

{
t ≥ 0

∣∣∣∣
∫ t

0
e−(Λ+κ2/2)βs+κβWs ds ≥

1

β
v(0, ψ)−β

}
.

It follows that I exhibits finite time blowup on the event [τ < ∞]. Since I ≤

v(·, ψ), τ is an upper bound for the blow-up time of v(·, ψ), and therefore for the
blowup times of v and u.
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Corollary 2. The function

v(t, ψ) =

∫

D

v(t, x)ψ(x) dx

explodes in finite time on the event [τ < ∞]. Moreover, since by assumption∫
D
ψ(x) dx = 1, v(t, x) cannot be bounded on [τ <∞]. Therefore

lim sup
t↑τ

sup
x∈D

v(t, x) = +∞ a.s. on [τ <∞].

Hence u(t, x) = eκWtv(t, x) also explodes in finite time if τ <∞.

Remark. In the deterministic case κ = 0, with a nonnegative f ∈ L2(D),
Fujita proved that the condition

(10)

∫

D

f(x)ψ(x) dx > Λ1/β

implies finite time blowup of (1); see [3]. For κ 6= 0 we have shown above that

P [τ = +∞] = P

[∫
∞

0
exp(−(Λ + κ2/2)βs + κβWs) ds ≤

1

β
v(0, ψ)−β

]
.

Putting κ = 0 in this equality we recover Fujita’s result, namely

P [τ < +∞] =





1
∫
D
f(x)ψ(x) dx > Λ1/β

according to

0
∫
D
f(x)ψ(x) dx ≤ Λ1/β .

Remark. Setting the initial value f = kψ with k > 0, gives

v(0, ψ) = k

∫

D

ψ2(x) dx.

Plugging this into (9) yields the random time σ∗ defined in Section 1.

4. A lower bound for ̺. In this section we are going to obtain a random
time σ∗ which satisfies σ∗ ≤ ̺.

Let v solve Equation (8). We define the operator R by

Rw(t, x) = e−tκ2/2Ttf(x) +

∫ t

0
eκβWr−κ2(t−r)/2Tt−r

(
w(r, ·)1+β

)
(x) dr,

x ∈ D, t ≥ 0,
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where w is any nonnegative, bounded and measurable function. Moreover, we
put

B(t) =

[
1 − β

∫ t

0
eκβWr

‖e−rκ2/2Trf‖
β
∞
dr

]
−1/β

, 0 ≤ t < τ,

where

τ = inf

{
t > 0 :

∫ t

0
eκβWr

‖e−rκ2/2Trf‖
β
∞
dr ≥ 1/β

}
.

Then we have

dB(t)

dt
= eκβWt

‖e−tκ2/2Ttf‖
β
∞

B
1+β(t), B(0) = 1,

hence

B(t) = 1 +

∫ t

0
eκβWr

‖e−rκ2/2Trf‖
β
∞

B(r)1+βdr.

Choose w ≥ 0 such that w(t, x) ≤ e−tκ2/2Ttf(x)B(t) for x ∈ D and t < τ . Then
e−tκ2/2Ttf(x) ≤ Rw(t, x) and

Rw(t, x)

= e−tκ2/2Ttf(x) +

∫ t

0
eκβWr−κ2(t−r)/2Tt−r

(
w(r, ·)1+β

)
(x) dr

≤ e−tκ2/2Ttf(x)

+

∫ t

0
eκβWr−κ2(t−r)/2

B(r)βe−rβκ2/2
‖Trf‖

β
∞

B(r)e−rκ2/2Tt−r(Trf)(x) dr

= e−tκ2/2Ttf(x)

[
1 +

∫ t

0
eκβWr

∥∥∥e−rκ2/2Trf
∥∥∥

β

∞

B
1+β(r) dr

]

= e−tκ2/2Ttf(x)B(t).

(11)

For x ∈ D and 0 ≤ t ≤ τ , let

v(0)(t, x) = e−tκ2/2Ttf(x) and v(n)(t, x) = Rv(n−1)(t, x), n ≥ 1.

Using induction, one can easily prove that the function sequence {v(n)
} is increas-

ing, and therefore the limit

v(t, x) = lim
n→∞

v(n)(t.x)



116 E. T. Kolkovska, J. A. López-Mimbela

exists for all x ∈ D and 0 ≤ t < τ . The monotone convergence theorem implies
that

v(t, x) = Rv(t, x) for x ∈ D and 0 ≤ t < τ,

i.e. the function v(t, x) solves (8) on [0, τ) ×D. Moreover, because of (11),

v(t, x) ≤
e−tκ2/2Ttf(x)

[
1 − β

∫ t

0 e
κβWr‖e−rκ2/2Trf‖

β
∞ dr

]1/β
< ∞

as long as
∫ t

0 e
κβWr

‖e−rκ2/2Trf‖
β
∞ dr < 1/β. It follows that the blowup time of

(8) is lower bounded by τ . Setting the initial value of (8) of the form f(x) = kψ(x)
with k > 0, we obtain τ = σ∗.
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