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ON THE POISSON PROCESS OF ORDER k

Krasimira Y. Kostadinova∗ and Leda D. Minkova

Abstract. In this notes, the Poisson process of order k as a compound
Poisson process is analyzed. We give a brief review of the distributions
of order k. Then, some properties of the Poisson process of order k are
given as well as probability mass function and recursion formulas. We then
describe the defined process as a compound birth process. As application
we consider the standard risk model which counting process is the Poisson
process of order k. For the Poisson of order k risk model we derive the joint
distribution of the time to ruin and the deficit at ruin. As a limiting case
we obtain an equation for the ruin probability. We discuss in detail the
particular case of exponentially distributed claims.

1. Introduction. The homogeneous Poisson process with constant inten-
sity is the main counting process in the classical risk model, see for example,
Grandell (1991), [6] and Rolski et all. (1999), [14]. Having realized the necessity
of introducing more realistic model, we are faced with the problem of finding
suitable way to describe the counting process. In this paper we suppose that
the counting process is the Poisson process of order k, defined by Philippou A.
(1983), [11] and Charalambides (1986), [3]. The probability distributions of order
k are introduced by Philippou A., et all. (1983), [12] and Philippou and Makri
(1986), [13], see Philippou (1983), [11] and Hirano K. (1986) also, [7]. The geo-
metric distribution of order k, (Gek(p)) is defined by the number of trials until
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the first occurrence of k consecutive successes in a sequence of independent trials
with success probability p. The negative binomial (NBk(r, p)) distribution of
order k is the distribution of the sum of r independent, identically Gek(p) dis-
tributed random variables. Then, the Poisson distribution of order k, (Pok(λ)),
was obtained as a limiting distribution of a sequence of shifted NBk distributed
random variables. A good reference for the distributions of order k is the book
of Balakrishnan and Koutras (2002), [2].

Charalambides (1986), [3] proved that the discrete distributions of order k can
be represented as Compound Generalized Powers Series Distributions, see Aki et
all. (1984) also, [1]. The compounding distribution is a discrete distribution over
k ≥ 1 points.

Our interest is related to the application of a compound Poisson process in
risk models. Minkova (2010), [9], considered the case of truncated geometric
compounding distribution and the resulting process is called a Pólya-Aeppli of
order k process. In Chukova and Minkova (2013), [4], the Pólya-Aeppli of order
k risk model is defined and ruin probability is estimated.

In this study, in the next Section 2, we discuss the Poisson process of order k
as a compound Poisson process with discrete uniform compounding distribution.
Then, we consider this process as a pure birth process. In Section 3 we consider
the Poisson risk model of order k and derive a differential equation for the joint
distribution of the time to ruin and the deficit at the time of ruin and an expres-
sion for the ruin probability. The results are illustrated for the particular case of
exponentially distributed claims.

2. Poisson process of order k. In this section we consider some prop-
erties of the Poisson process of order k as a compound Poisson process and later
we give a second definition for this process as a compound birth process.

We consider the stochastic process N(t), t > 0 defined on a fixed probability
space (Ω,F , P ) and given by

(1) N(t) = X1 +X2 + . . .+XN1(t),

where Xi, i = 1, 2, . . . are independent, identically distributed (iid) as X random
variables, independent of N1(t). We suppose that the counting process N1(t) is a
Poisson process with intensity kλ > 0 (N1(t) ∼ Po(kλt)). In this case N(t) is a
compound Poisson process. The probability mass function (PMF) and probability
generating function (PGF) of N1(t) are given by

(2) P (N1(t) = i) =
(kλt)ie−kλt

i!
, i = 0, 1, . . .
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and

(3) ψN1(t)(s) = e−kλt(1−s).

Let the compounding random variable X be a discrete uniformly distributed over
k > 1 points with PMF

(4) P (X = i) =
1

k
, i = 1, 2, . . . , k.

The PGF of X, ψX(s) = E(sX), s ∈ (0, 1) is then given by

(5) ψX(s) =
s

k

1 − sk

1 − s
.

For the PGF of the process N(t), given in (1) we get

(6) ψN(t)(s) = e−kλt(1−ψX (s)),

where ψX(s) is the PGF of the compounding distribution, given by (5).

Definition 1. The stochastic process, defined by the PGF (6) and compound-

ing distribution, defined by (5) is called a Poisson process of order k with para-

meter λ, (N(t) ∼ Pok(λt)).

Remark 1. If k = 1, the discrete uniform distribution in (4) degenerates at
point one, and the process N(t) is a homogeneous Poisson process.

Theorem 1. The probability mass function of the Pok(λt) process is given

by:

p0 = e−kλt,

pi = e−kλt
i∑

j=1

(
i− 1

j − 1

)
(λt)j

j!
, i = 1, 2, . . . , k

pi = e−kλt




i∑

j=1

(
i− 1

j − 1

)
(λt)j

j!
−

−

l∑

n=1

(−1)n−1 (λt)n

n!

i−n(k+1)∑

j=0

(
i− n(k + 1) + n− 1

j + n− 1

)
(λt)j

j!


 ,

i = l(k + 1) +m, m = 0, 1, . . . k, l = 1, 2, . . .∞.
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P r o o f. The PMF is obtained by equating the coefficients of si on both
sides of the Taylor expansion of the PGF in (6). �

Remark 2. The mean and the variance of the Poisson process of order k are
given by

E(N(t)) =
1 + k

2
kλt and V ar(N(t)) =

(k + 1)(2k + 1)

6
kλt.

For the Fisher index of dispersion we get

FI(N(t)) =
V ar(N(t))

E(N(t))
= 1 +

2

3
(k − 1) > 1,

i. e. the Poisson process of order k is over-dispersed.

The following proposition gives an extension of the Panjer recursion formulas,
(see Panjer (1981), [10]).

Proposition 1. The PMF of the Poisson process of order k satisfies the

following recursions:

pi =





λtp0, i = 1,

(
2 +

λt− 2

i

)
pi−1 −

(
1 −

2

i

)
pi−2, i = 2, 3, . . . , k

(
2 +

λt− 2

i

)
pi−1 −

(
1 −

2

i

)
pi−2 −

k + 1

i
λtpi−k−1 +

k

i
λtpi−k−2,

i = k + 1, k + 2, . . .

P r o o f. Differentiation in (6) leads to

(7) ψ′

N(t)(s) = kλtψ′

X(s)ψN(t)(s),

where ψN(t)(s) =
∞∑

i=0

pis
i, ψ′

N(t)(s) =
∞∑

i=0

(i+ 1)pi+1s
i, and

ψ′

X(s) =
1 − (k + 1)sk + ksk+1

k(1 − s)2
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is the derivative of (5). So, the equation (7) has the form

(1 − s)2
∞∑

i=0

(i+ 1)pi+1s
i = λt(1 − (k + 1)sk + ksk+1)

∞∑

i=0

pis
i.

The recursions are obtained by equating the coefficients of si on both sides for
fixed i = 0, 1, 2, . . . . �

In a similar way, substituting ψ′

X(s) =
1

k

k∑

j=1

jsj−1 in (7), we obtain the recursions

in the following proposition.

Proposition 2. The PMF of the Poisson process of order k satisfies the

recursions:

(8) pi =





λt

i−1∑

j=0

(
1 −

j

i

)
pj, i = 1, 2, . . . , k

λt
i−1∑

j=i−k

(
1 −

j

i

)
pj, i = k + 1, k + 2, . . .

Remark 3. It is easy to check that the recursions (8) are equivalent to

pi =





λt

i∑

j=1

j

i
pi−j, i = 1, 2, . . . , k

λt

k∑

j=1

j

i
pi−j, i = k + 1, k + 2, . . .

2.1. Poisson process of order k as a pure birth process. Let {N(t), t ≥
0} be the number of times a certain event occurs in time interval (0, t]. The
transition probabilities of the counting process N(t), for every m = 0, 1, . . . are
specified by the following postulates:

P (N(t+ h) = n | N(t) = m) =

{
1 − kλh+ o(h), n = m,

λh+ o(h), n = m+ i, i = 1, 2, . . . , k,

where o(h) → 0 as h→ 0. Note that the postulates imply that for i = k + 1, k +
2, . . . , P (N(t+ h) = m+ i | N(t) = m) = o(h).
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Let Pm(t) = P (N(t) = m), m = 0, 1, 2, . . . . Then the above postulates yield
the following Kolmogorov forward equations:

(9)

P ′

0(t) = −kλP0(t),

P ′

m(t) = −kλPm(t) + λ
m∧k∑

j=1

Pm−j(t), m = 1, 2, . . . .

with initial conditions

(10) P0(0) = 1 and Pm(0) = 0, m = 1, 2, . . . .

Multiplying themth equation of (9) by sm and summing for all m = 0, 1, 2, . . .
we get the following differential equation for the PGF

(11)
∂ψN(t)(s)

∂t
= −kλ[1 − ψX(s)]ψN(t)(s).

The solution of (11) with the initial condition ψN(t)(0) = 1 is given by

(12) ψN(t)(s) = e−kλt(1−ψX (s)),

where ψX(s) is the PGF of the discrete uniform distribution over k points. (12)
is the PGF of the Pok(λt) process. This leads to the second definition.

Definition 2. The stochastic process, defined by (9) and (10) is called a

Poisson process of order k.

Remark 4. For k = 1, the process is a homogeneous Poisson process with
intensity λ.

2.2. Compound Poisson decomposition. Let us rewrite the PGF of
N(t) ∼ Pok(λt) in the following way:

ψN(t)(s) = exp

(
−kλt

[
1 −

1

k
(s + s2 + . . .+ sk)

])

=

k∏

i=1

e−λt(1−s
i).

This means that N(t) can be represented as a sum of k independent com-
pound Poisson processes M1(t), . . . ,Mk(t) with means EMi(t) = iλt and PGFs

ψMi(t)(s) = e−λt(1−s
i), i = 1, 2, . . . , k.
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3. Application to Risk Theory. Consider the standard risk model
{X(t), t ≥ 0}, defined on the complete probability space (Ω,F , P ) and given
by

(13) X(t) = ct−

N(t)∑

i=1

Zi,

(
0∑

1

= 0

)
.

Here c is a positive real constant representing the risk premium rate. The se-
quence {Zi}

∞

i=1 of non-negative iid random variables is independent of the count-
ing process N(t), t ≥ 0. The claim sizes {Zi}

∞

i=1 are distributed as the random
variable Z with distribution function F, F (0) = 0 and mean value µ.

We consider the risk model (13), where N(t) is a Poisson process of order
k and we call this process Poisson of order k risk model. The interpretation of
the counting process is the following. If the insurance policies are separated in
independent groups, then the number of groups has a Poisson distribution. We
suppose that the groups are homogeneous, identically distributed. The number
of policies in each of the groups has a discrete uniform distribution over k points.

The relative safety loading θ for the Poisson of order k risk model in (13), is
given by

θ =
EX(t)

E
∑N(t)

i=1 Zi
=

2c

k(k + 1)λµ
− 1.

In the case of positive safety loading θ > 0, the premium income per unit time c
should satisfy the following inequality

c >
k(k + 1)

2
λµ.

Let τ = inf{t : X(t) < −u} with the convention of inf ∅ = ∞ be the time
to ruin of an insurance company having initial capital u ≥ 0. We denote by
Ψ(u) = P (τ < ∞) the ruin probability and by Φ(u) = 1 − Ψ(u) the non-ruin
probability. The main in the application is to analyze for this model the joint
probability distribution G(u, y) of the time to ruin τ and the deficit at the time of
ruin D = |u+X(t)|. The function G(u, y) was introduce by Gerber et al. (1987),
[5], see Klugman et al. (2004) also, [8], and is given by

(14) G(u, y) = P (τ <∞,D ≤ y), y ≥ 0.

It is clear that

(15) lim
y−→∞

G(u, y) = Ψ(u).
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Using the postulates, we get

G(u, y) = (1 − kλh)G(u+ ch, y)

+λh



u+ch∫

0

G(u+ ch− x, y)dF (x) + (F (u+ ch+ y) − F (u+ ch))


+

+λh



u+ch∫

0

G(u+ ch− x, y)dF ⋆2(x) +
(
F ⋆2(u+ ch+ y) − F ⋆2(u+ ch)

)



+ · · ·

+λh



u+ch∫

0

G(u+ ch− x, y)dF ⋆k(x) +
(
F ⋆k(u+ ch+ y) − F ⋆k(u+ ch)

)

+ o(h),

where F ⋆i(x), i = 1, 2, . . . , k is the distribution function of Z1 + Z2 + . . . + Zi.
Rearranging the terms leads to

(16)
G(u+ ch, y) −G(u, y)

ch
=
kλ

c
G(u+ ch, y)−

−

λ

c

k∑

i=1



u+ch∫

0

G(u+ ch− x, y)dF ⋆i(x) +

+F ⋆i(u+ ch+ y) − F ⋆i(u+ ch)


 +

o(h)

h
.

Let us denote by

(17) H(x) =
λ

k

k∑

i=1

F ∗i(x),

the probability distribution function of the aggregated claims. It follows from
(17), that H(0) = 0 and H(∞) = λ, i.e., H(x) is a defective distribution function.
By letting h→ 0 in (16), we obtain the following differential equation

(18)
∂G(u, y)

∂u
=
kλ

c
G(u, y) −

k

c

[∫ u

0
G(u− x, y)dH(x) + [H(u+ y) −H(u)]

]
.
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Let

(19) H1(x) =
H(x)

λ

be the proper distribution function of the aggregated claims. In terms of H1(x),
the equation (18) has the form

(20)
∂G(u, y)

∂u
=
kλ

c

[
G(u, y) −

∫ u

0
G(u− x, y)dH1(x) − [H1(u+ y) −H1(u)]

]
.

Theorem 2. The function G(0, y) is given by

(21) G(0, y) =
kλ

c

∫ y

0
[1 −H1(u)]du.

P r o o f. Integrating (20) from 0 to ∞ with G(∞, y) = 0 leads to

−G(0, y) =
kλ

c

[∫
∞

0
G(u, y)du −

∫
∞

0

∫ u

0
G(u− x, y)dH1(x)du−

∫
∞

0
(H1(u+ y) −H1(u))du

]

The change of variables in the double integral and simple calculations yield

G(0, y) =
kλ

c

∫
∞

0
[H1(u+ y) −H1(u)]du

and then (21). �

3.1. Ruin probability.

Theorem 3. For u ≥ 0, the ruin probability Ψ(u) satisfies the equation

(22)
∂Ψ(u)

∂u
=
kλ

c

[
Ψ(u) −

∫ u

0
Ψ(u− x)dH1(x) − [1 −H1(u)]

]
,

P r o o f. The result follows from (20) and (15). �

Remark 5. The nonruin probability Φ(u) satisfies the equation

(23)
∂Φ(u)

∂u
=
kλ

c

[
Φ(u) −

∫ u

0
Φ(u− x)dH1(x)

]
.
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Theorem 4. The ruin probability with no initial capital satisfies

(24) Ψ(0) =
k(k + 1)λµ

2c
.

P r o o f. According to (15) and (21)

Ψ(0) = lim
y→∞

G(0, y) =
kλ

c

∫
∞

0
[1 −H1(u)]du.

IfX is a random variable with distribution function H1(x), then, by the definition
of H1(x) and EZ = µ we obtain

EX =
1

k
(µ+ 2µ+ . . .+ kµ) =

(k + 1)µ

2
.

Using the fact that EX =

∫
∞

0
[1 −H1(x)]dx we obtain (24). �

Remark 6. Based on (24), it is easy to see that the ruin probability with no
initial capital does not depend on t.

3.2. Exponentially distributed claims. Let us consider the case of expo-
nentially distributed claim sizes, i.e. F (x) = 1− e

−
x

µ , x ≥ 0, µ > 0. In this case,
the function H1(x) is a mixture of Erlang distribution functions:

H1(x) =
1

k

k∑

i=1

F ∗i(x),

where F ∗i(x) is the distribution function of Erlang(i, µ) distributed random vari-
able. The corresponding density function is given by

h1(x) =
1

µk

k∑

i=1

(
x
µ

)i−1

(i− 1)!
e
−

x

µ , x > 0.

Denote by Γ(x, α) =

∫
∞

x

tα−1e−tdt and γ(x, α) =

∫ x

0
tα−1e−tdt the incom-

plete Gamma functions. Then, for the survival function we obtain

(25) H1(x) =
1

k

k∑

i=1

Γ
(
x
µ
, i
)

Γ(i)
, x > 0.
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The initial condition (21), in the case of exponentially distributed claims is given
by

G(0, y) =
λ

c

k∑

i=1

1

Γ(i)

[
γ

(
y

µ
, i+ 1

)
+ yΓ

(
y

µ
, i

)]
.
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