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Vladimira Seckarova

ABSTRACT. Every process in our environment can be described with a sta-
tistical model containing inner properties expressed by parameters. These
are usually unknown and the determination of their values is of interest
in the statistical branch called parameter estimation. This branch involves
many methods solving different estimation cases, e.g. the estimation of lo-
cation and scale parameters. To obtain the parameter estimate we exploit
the data given by data sources. In particular, the estimate is their com-
bination. Improvement of the parameter estimates involve the assignment
of the weights to the data sources resulting in a weighted combination of
data. Unfortunately this approach brings difficulties regarding the determi-
nation of the weights and their subjective affection. In recently introduced
Supra-Bayesian approach it is proposed to use the Kerridge inaccuracy and
the maximum entropy principle to overcome the problem of subjective influ-
ence. In this paper we focus on the derivation of the weights arisen within
the Supra-Bayesian approach and on the simulation study of their behaviour
and the behaviour of the final estimate.
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1. Introduction. Our environment consists of various interesting processes.
These can be with a little bit of imagination described with specific statistical
models. Related processes can have similar model, but they differ in the inner
properties, which are called parameters (e.g. location and scale parameters).
These are often unknown. The need to find their values initiated the creation
of the statistical branch called parameter estimation, where we try to estimate
the true value of the parameters. This branch includes many methods solving
different estimation tasks, e.g. to obtain the estimate of the location parameter
we can use the least-squares method (see [1]).

The estimation depends heavily on the data available from one or several
sources, the resulting estimate is then combination of these data. In order to
improve the estimate of considered parameter, or roughly speaking, to obtain
the estimate closer to the true, but unknown, value of the parameter, we can
assign each of the sources a weight. This weight interprets the credibility of
the source and often coheres with a subjective opinion. The estimate is then
simply the weighted combination of available data. This type of methods and
their generalizations have been developed since the middle of the past century
(see [2]), but they often involve limitations regarding the determination of the
weights.

If the estimation of a probability density function (pdf) is of interest, several
weighting approaches are available (see [3]). In this paper we focus on the case
when discrete random variables are considered — on the probability mass func-
tion (pmf) estimation. To construct such estimate we use recently introduced
Supra-Bayesian approach [4]. We assume, that the data, provided by available
data sources, have also the form of pmf. The weights for data sources are then
determined without any subjective influence by defining the constraints as the
expected values of a particular information divergence. The final estimate, a
weighted combination of given pmfs, is obtained by exploiting this information
divergence and the constraints.

Since in the Supra-Bayesian approach the constraints are a part of yet un-
specified constrained optimization task, values of the weights will heavily depend
on arisen Lagrange multipliers. The novelty of this paper consists in the math-
ematical derivation of the multipliers and the simulation study regarding the
behaviour of the multipliers and the final estimate.

The paper is composed as follows: the second section contains the recapit-
ulation of the steps leading to a final estimate, the third section describes the
derivation of the Lagrange multipliers. In the fourth part of the paper we pro-
vide a simulation study on the behaviour of the Lagrange multipliers and the
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final estimate.

2. The estimation based on Supra-Bayesian approach. Recall the
problem drafted in the previous section. Let us consider n-dimensional parameter

n
h = (h(z1),...,Mzn))T, n < oo, which is (0,1)"-valued and satisfies Z h(z;) =
i=1
1 (h is a pmf of a discrete random vector X with n possible outcomes). We are
interested in estimation of this parameter based on given data D = (g1, .., gs)"
s < 00, where g; denotes a pmf given by jth data source describing the previously
mentioned random vector X. To obtain the estimate we will use the Kerridge

)

n
inaccuracy K(.,.) defined as K(h,g) = — Zh(wi)log g(x;), where h, g are two
i=1
pmfs describing a common random vector. In particular, we search for the element
minimizing the expected Kerridge inaccuracy in the following sense:

h = arg minE,p)[K(h, h)| D]
heH

(1) = arg min K(Exup)[2|D], h) = Exny ) [P|D],
heH

where mw(h|D) stands for the posterior pdf of pmf h based on the data in D
and E[.|.] denotes the conditional expectation with respect to this posterior pdf.
Roughly speaking, the expected energy expended in transition from every possible
pmf A (from the set H) to a particular pmf & (from the set H) is minimal when
h has form (1). Sets H and H are not constrained by any additional condition,
thus both contain all possible pmfs on (0,1)" and in fact, they coincide.

In the next part we derive the estimate of the posterior pdf 7(h|D).

2.1. Determination the posterior probability density function. To
compute the estimate (1) we need to determine the posterior probability density
function w(h|D). In order to do that, we introduce the following task of convex
optimization:

(2) 7(h|D) = arg min [/ 7(h|D)log(h|D)dh| ,
#hD)eM L1

where M = {7(h|D) : Bz p)(K(gy, h)|D) < B;(D), j=1,...,s,
t/%MWMh:H.
H
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The rationale behind this particular choice of objective function (2) is the
following: for determination of the estimate of any pdf under no knowledge avail-
able, the maximum entropy principle is satisfactory (see [5]). This principle claims
that from the set of all possible pdfs we should choose the one with the highest
entropy as the estimate of 7(h|D). For our purpose this principle is interpreted
as an unconstrained optimization task.

In case when the additional information is available, we would like to in-
corporate it into computation, i.e. we set up the constraints dependent on this
information, which leads to a constrained optimization task. Since in our case the
pmfs g1, ..., gs are available, we use the information divergence, i.e. the Kerridge
inaccuracy, to connect them with h (as depicted in the definition of the set M in
(2)). These constraints interpret that for each source the energy needed to change
its pmf onto every possible A is bounded. Or in other words, we monitor how far
is each of the sources from each h in the sense of expected Kerridge inaccuracy
and assume it is bounded.

To determine the estimate of the posterior pdf w(h|D) we reformulate the
Lagrangian L(.,.) of the optimization task (2) as follows:

_ _ #(h|D)
LEMDIAD) = [ FhID)1og | B e |
Z0u(D), s (D))
3) ~10g Z(u(D),-.. (D) [ FAID)AA= 30\, (D)5,(D)

—_— =1
=1

~Aea(0) [ FuiD)an 1))

where Z(A1(D),...,As(D)) is a normalizing constant, A\;(D) > 0 are Lagrange
multipliers, 7 = 1,...,s + 1 and A(D) = (A (D),...,As(D)). We see that the
first term is minimal for 7(h|D) being the pdf of the Dirichlet distribution with

S
parameters Z Ni(D)gj(z)+1,i=1,...,n. Since/ 7(h|D)dh = 1, it is obvious
j=1 H
that the last term is then equal to zero and is omitted from further computation.
The other terms do not depend on 7(h|D) and do not influence the minimization.
Thus the estimate 7(h|D) in (2) is a pdf of Dirichlet distribution with parameters

mentioned above.
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2.2. Determination of the parameter estimate. According to the for-
mula (1) and the results of Subsection (2.1) we now construct the estimate h of
pmf h. In particular, we exploit the formula for the expected value of random
vector having Dirichlet distribution and conclude the following;:

(4)  Ezmp)(h(z)|D) = h(x;) = N5(D +Z)\ )gi(zi), i=1,...,n,

where
1 i (D)
n+2j:1 Aj(D) ! n+2j:1 Aj(D

It is easy to see that the estimate his a weighted combination of the given pmfs
gi,---,9s. To obtain the weights we have to compute the Lagrange multipliers
(D), j=1...,s. As will be shown in the next section, their computation does
not require any subjective influence.

Since we avoided the derivatives in minimization of the Lagrangian (3), the
values of its Lagrange multipliers are still unknown. In the next section we derive
the multipliers A;(D) for the final estimate (4).

Mo(D) =

3. Determination of the Lagrange multipliers. Recall the optimiza-
tion task (2), in particular the constraints

Exnp)(K(gj, WD) < 5;(D), j=1,....5

In order to obtain the Lagrange multipliers A;(D), j = 1,..., s, we have to set the
upper bounds (D) on the expected values for each source. Before we actually
do that, we provide a straightforward derivation of the multipliers. We compute
the first derivatives of Lagrangian (3) with respect to A;(D), j =1,...,s and set
each derivative equal to zero in order to find a minimum of this Lagrangian. Here,
we omit the first and the last term of considered Lagrangian from differentiation,
since they are already minimized. The first derivative with respect to Ap looks
then as follows:

—log Z(\(D), ..., (D)) — Z)\j(D)ﬁj(D)
A [TT(+ >, A (D)gk(:))
T\ YT Ty, 6(D)

e

) — Br(D)
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21/1(14—2/\ )Gk xz)*gk(xi)—l—w(n—i—Z/\j(D))*lﬁk(D)

:_Z¢i*gk($i)+¢o—ﬁk(D) VA, j=1,...,s,

where v is the digamma function.
We obtain the following system of nonlinear equations (using one-sided inverse
— left inverse):

_P(sxn)w(nxl) + w(),(sxl) = /6(3><1
_P(sxn)d’(nxl) = ﬁ sx1) 'wO ,(sx1)

In¢(NX1) left (nxs) (ﬁ(sxl w(),(sxl))
PYnx1) = Pleft (nxS)ﬁ(sm)-

+Z>‘ )gj (1)) = Z leftlj

That is:

+Z)\ g] $n = Z leftn] * )
To obtain the multlphers we use the inverse dlgamma function:

ZA )gj(x1) = Z leftlg* ) —1

ZA )gj(n) = ¥ —Pig 08;(D)) — 1.
j

The final matrix interpretation is:

(PT) (nxs)Asx1 = (1/171(—131;&,(%”)@?”1)))(nx1) — 1k

(6) Asx1) = (P i (sxm) (W (P;ft(nmf’?sxl)))(nxl)—1(nx1>>-

Since the derivation is done, we now discuss the choice of the upper bounds 3;(D).
In particular we set the value of §; (D) because v in (5) is unknown.



On weighted combination determined by Kerridge inaccuracy and entropy 165

Since the expected Kerridge inaccuracy does not have the least upper bound
property (its upper bound can rise to infinity), we will focus on a fixed bound
based on given pmfs gi,...,gs. For k' data source we will use the mean value
of the Kerridge inaccuracy as follows:

_ 21 Ko 9)

/82;< 5 :K(gk,hdata); kzl:"'737

where

(7) haata (i) =

S
ng(l’i) i=1,...,n.
j=1

The behaviour of the multipliers A\;(D), j = 1,...,s and the final combination h
(estimate of the unknown pmf &) is shown in the next section.

4. Simulation results. In this section we study the behaviour of the La-
grange multipliers \;(D), j = 1,..., s and the weighted combination (4) based on
them. Regarding the information given in the previous section, we set the upper
bound for j source as follows: ﬁ;‘ (D) = K(gj, hdata), Where hgata is defined in
(7). We explore the changes in the value of \;(D) when decreasing these [3; (D)
but keeping the ratio between 3} and 3y, j # k, j,k = 1,..., s, the same.

4.1. Illustrative example 1. Consider the case of four sources providing
the pmfs g1,...,94:

(91(21), g1(2)) (0.45,0.55)
(0.4,0.6)
D =
. (0.15,0.85)
(94(21), ga(x2)) (0.1,0.9)
We decrease the bounds in the following way: 37, = 3 * (1 — [ * 0.0099) for

instants [ = 1,...,100, 87, = K(g;,hdata). The results using Matlab built-in
functions are shown in Figure 1.

In the upper part of Figure 1. we see that for 100 instants first few \; are
negative, which is at odds with the property of Lagrange multipliers (A\; > 0,
j=1,...,4). This is probably caused by the properties of the inverse digamma
function in (6).

In the bottom part we notice that in the majority of cases the final weighted
combination is closer to the pmfs with higher entropy (g1 — the highest entropy, g4
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Lagrange multipliers
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Fig. 1. The behaviour of the \;(D), j =1,...,4 and the final weighted combination
h(z;), i = 1,2 for 100 instants

— the lowest entropy). There is also a significant difference among these weighted
combinations, that can be fixed by choosing different starting point for 5; (D),
j=1,...,4.

4.2. Illustrative example 2 In another situation, where

(91(21), 91(22)) (0.8,0.2)
(0.75,0.25)
D= _
. (0.55,0.45)
(94(21), ga(2)) (0.85,0.15)

the results are similar to the results in Subsection (4.1) (see Figure 2). Although
there are three sources with obviously lower entropy (g1, g2, g4), the final estimate
is still closer to the one with higher entropy (gs) in the majority of cases.

5. Future work. Since the determination of the Lagrange multipliers in
the final weighted combination (4) is still not fully satisfactory, the future work
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Lagrange multipliers
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Fig. 2. The behaviour of the A;, j = 1,...,4 and the final weighted combination h(z;),
1 = 1,2 for 100 instants.

involves the reformulation of the optimization task (2) with use of different infor-
mation divergence, i.e. the Kullback-Leibler divergence, and the minimum cross
entropy principle. Also the use of numerical methods is of interest.
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