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1. Introduction. Let X be a Banach space. Let τ be a tvs topology

on X weaker than the norm topology. The norm on X is called τ -Kadec if the

norm topology coincides with τ on the unit sphere. When τ is the weak topology,

the norm is simply said to be Kadec. In our setting we consider mainly spaces of

the form X = C(K) for some compact space K. We shall be interested primarily

in the question of when there is a norm on X equivalent to the supremum norm

which is τp-Kadec where τp stands for the topology of pointwise convergence,

referred to henceforth as the pointwise topology.

Raja has shown in [20] that the existence of a τ -Kadec renorming for X

is equivalent to the existence of a countable collection {An : n ∈ N} of convex

subsets ofX such that the collection of sets of the form U∩An, where U ∈ τ , forms

a network for the norm topology. (A collection C of sets in a topological space

is a network for the topology if every open set is the union of a subcollection

of C. In other words, C is like a base except that its members do not have

to be open.) It is not known whether the word “convex” can be omitted in

this characterization. The notion obtained by deleting convexity goes by several

names in the literature. Following [11] (where the notion was introduced), we say

that (X, τ) has a countable cover by sets of small local norm-diameter, or more

briefly (X, τ) is norm-SLD, if there is a countable collection {An : n ∈ N} of

subsets of X such that the sets U ∩An, where n ∈ N and U ∈ τ , form a network

for the norm topology. The notion of norm-SLD is equivalent to the notion of a

descriptive Banach space introduced by R. Hansell in [9], as it is shown in [19].

It is shown in [12] that when K is an infinite compact F -space, then C(K) is not

σ-fragmentable, in particular C(K) has no Kadec renorming.

In the paper [14], it is shown that for every compact totally ordered

space K, C(K) has a τp-Kadec renorming. We shall show that the conclusion

remains true if K is an arbitrary product of compact linearly ordered spaces.

This improves the result in [3, Theorem 5.21(b)] (due to Jayne, Namioka and

Rogers for countable products, see [13, Remark (1), p. 329]) that for such a

product K, C(K) is norm-SLD in the pointwise topology. It is unknown whether

the existence of a τp-Kadec renorming for each of C(K1) and C(K2) implies the

existence of such a renorming for C(K1 ×K2). Ribarska has shown in [22] that

if C(K1) has a τp-Kadec renorming and C(K2) is norm-SLD in the pointwise

topology, then C(K1×K2) is norm-SLD in the pointwise topology. We establish

that if C(K1) has a τp-Kadec renorming and K2 belongs to the class of spaces

obtained by closing the class of compact metrizable spaces under inverse limits of

transfinite continuous sequences of retractions, then C(K1 ×K2) has a τp-Kadec
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renorming.

In [18], the authors establish, under certain conditions, the three-space

property for a sequential version of the Kadec property. (A property of Banach

spaces is a three-space property if X has the property whenever Y and X/Y

do, where Y is a subspace of X.) A Banach space is said to have the Kadec-

Klee property if every weakly convergent sequence on the unit sphere is strongly

convergent. (The terminology is not used consistently in the literature. In

particular, in [5] a norm which has the Kadec-Klee property is what we have

called a Kadec norm.) A norm is locally uniformly rotund (LUR) if whenever xn,

n ∈ N, and x are on the unit sphere and lim ‖xn +x‖ = 2 we have limxn = x. As

pointed out in [1], if the norm in a Banach space X is LUR and τ is a tvs topology

on X such that the unit ball is τ -closed (for example the weak topology), then the

norm is necessarily τ -Kadec. In [18], it is shown that ifX is a Banach space, Y is a

subspace of X, Y has the Kadec-Klee property and X/Y has an LUR renorming,

then X has the Kadec-Klee property. We show, solving a problem raised in [18],

that the Kadec-Klee property can be replaced by the Kadec property in their

result. It is not known whether the existence of a Kadec renoming is a three-

space property. Ribarska has shown in [21] that being norm-SLD in the weak

topology is a three-space property. Her proof also shows that for spaces L ⊆ K,

if C(L) and C0(K \L) are norm-SLD in the pointwise topology, then so is C(K).

We write lsc, usc for lower semi-continuous, upper semi-continuous, respec-

tively. Given a map f : X → Y , a level set of f is any set of the form {x ∈

X : f(x) = y0}, where y0 ∈ Y is fixed. Given a normed space (X, ‖ · ‖) we denote

by BX and SX the closed unit ball and the unit sphere of X respectively. A closed

(resp. open) ball centered at x and with radius r > 0 is denoted by B(x, r) (resp.

B(x, r)). Similarly, for a set A ⊆ X, B(A, r) denotes {x ∈ X : dist(x,A) < r} =

A+ B(0, r).

2. Preliminaries. We begin with a standard fact.

Proposition 2.1. Let K and L be compact spaces, and let ϕ : K → L be

a continuous surjection. Then the map T : C(L) → C(K) defined by T (f) = fϕ

is a linear isometry and a τp-homeomorphism onto its range. In particular, if

C(K) has an equivalent τp-Kadec norm, then so does C(L).

P r o o f. T is clearly linear. We have ‖T (f)‖∞ = ‖fϕ‖∞ = ‖f‖∞ because

ϕ is onto, so T is an isometry. The fact that T is a τp-homeomorphism onto its
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range follows from the fact that ϕ is onto and from the equality T (f)(x) = f(ϕx)

for x ∈ K. �

The following Proposition is given as [1, Proposition 1] for the case where

τ is generated by a total subspace of X∗. As pointed out in [20, Proposition 4],

the proof works for any linear topology.

Proposition 2.2. Let X be a Banach space whose norm is τ -Kadec.

Then the norm is τ -lsc, i.e., the unit ball is τ -closed.

Proposition 2.3. (Cf. [20, Lemma 1].) Let X be a Banach space, x0 ∈

SX , τ a weaker linear topology on X with respect to which the norm is τ -Kadec

at x0 (i.e., the norm and τ neighborhoods of x0 are the same). Then for any

r > 0, there exists δ > 0 and a neighborhood U ∈ τ of x0 such that

U ∩ B(0, 1 + δ) ⊆ B(x0, r).

P r o o f. Find a neighborhoodW ∈ τ of x0 such that W∩SX ⊆ B(x0, r/2).

By the τ -continuity of the addition, there are V, V ′ ∈ τ such that x0 ∈ V , 0 ∈ V ′

and V + V ′ ⊆ W . Fix δ > 0 such that δ 6 r/2 and B(0, δ) ⊆ V ′. Then

V ∩ (SX +B(0, δ)) ⊆ B(x0, r). Indeed, if y ∈ V and ‖y− z‖ < δ for some z ∈ SX

then z ∈ (V + V ′) ∩ SX ⊆ B(x0, r/2) so ‖y − x0‖ 6 ‖y − z‖ + ‖z − x0‖ <

r/2 + δ 6 r. As closed balls are τ -closed (Proposition 2.2), we may assume that

V ∩ B(0, 1 − δ) = ∅. Then V ∩ B(0, 1 + δ) ⊆ B(x0, r). �

We shall need the simple facts about lower semi-continuous maps given

by the next three propositions and their corollaries.

Proposition 2.4. Let X be a topological space and let f, g : X → R be

functions whose sum is identically equal to a constant value k ∈ R. For any

x ∈ X, if f is lsc at x, then g is usc at x.

P r o o f. Fix ε > 0 and find a neighborhood V of x such that f(x′) >

f(x)− ε for x′ ∈ V . Thus g(x′) = k − f(x′) < k − f(x) + ε = g(x) + ε whenever

x′ ∈ V . �

Corollary 2.5. Let X be a topological space.

(a) If f, g : X → R are lsc, then the restrictions of f and g to any level set for

f + g are continuous.
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(b) If fn : X → R, n ∈ N, are nonnegative lsc functions such that
∑

n∈N
fn

converges pointwise, then the restriction of each fn to a level set for
∑

n∈N
fn

is continuous.

P r o o f. (a) Applying Proposition 2.4 to the restrictions of f and g to a

level set S = {x ∈ X : f(x) + g(x) = k} shows that because these functions are

lsc at every point, they are also usc at every point.

(b) Apply part (a) to f = fn and g =
∑

m6=n fm. �

It will be useful to have a slightly stronger version of Corollary 2.5(b).

Proposition 2.6. Let X be a topological space, {fn}n∈ω a sequence of

nonnegative lsc real-valued functions on X such that θ(x) =
∑

n∈ω fn(x) is finite

for every x ∈ X. Assume {xσ}σ∈Σ is a net in X converging to x ∈ X and

limσ∈Σ θ(xσ) = θ(x) for every σ ∈ Σ. Then limσ∈Σ fk(xσ) = fk(x) for every

k ∈ ω.

P r o o f. Fix k ∈ ω and let g =
∑

n6=k fn. Observe that g is lsc as

the supremum of a set of lsc functions. Fix ε > 0. There exists σ0 such that

θ(xσ) − θ(x) 6 ε/2, fk(xσ) > fk(x) − ε and g(xσ) > g(x) − ε/2 for σ > σ0. Fix

σ > σ0 and suppose fk(xσ) 6< fk(x) + ε. Then

θ(xσ) = fk(xσ) + g(xσ) > fk(x) + ε+ g(x) − ε/2 = θ(x) + ε/2,

so θ(xσ)− θ(x) > ε/2, a contradiction. �

Proposition 2.7. Let X be a topological space, n ∈ N, fi : X → R for

1 ≤ i ≤ n. Let x ∈ X. Suppose
∑
fi ≤ 0,

∑
fi(x) = 0, and each fi is lsc at x.

Then each fi is continuous at x.

P r o o f. Fix i and ε > 0. For y in some neighborhood of x we have

fi(x)− ε < fi(y) ≤ −
∑

j 6=i fj(y) < −
(∑

j 6=i(fj(x)− ε/(n− 1))
)

= fi(x) + ε.

�

Corollary 2.8. Let X be a topological space, n ∈ N, fi : X → R for

1 ≤ i ≤ n, h : X → R. Let x ∈ X. Suppose
∑
fi ≤ h,

∑
fi(x) = h(x), each fi is

lsc at x and h is usc at x. Then h and each fi is continuous at x.

P r o o f. f0 + · · ·+ fn−1− h ≤ 0, f0(x) + · · ·+ fn−1(x)− h(x) = 0 and −h

is lsc at x. �

An inverse sequence is a family of mappings pβ
α : Xβ → Xα, α < β < κ,

where κ is a limit ordinal, such that α < β < γ =⇒ pβ
αp

γ
β = pγ

β. Usually, the
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maps pβ
α are surjections. We refer the reader to [6, Section 2.5] for the basic

properties of inverse systems. We recall here some of the relevant terminology.

We write S = {Xα; pβ
α : α < β < κ} and we call pβ

α’s the bonding mappings

of S. The inverse limit of S, denoted by lim←−S is defined to be the subspace of the

product
∏

α<κXα consisting of all x such that pβ
α(x(β)) = x(α) for every α < β <

κ. If each Xα is compact then lim←−S 6= ∅. If moreover each pβ
α is a surjection then

the projection pα : lim
←−

S → Xα is also a surjection. From a category-theoretic

perspective, the inverse limit of S is a spaceX together with a family of continuous

maps (called projections) {pα : α < κ} which has the property that for every

space Y and a family of continuous maps {fα : α < κ} such that pβ
αfβ = fα holds

for every α < β < κ, there exists a unique continuous map h : Y → X such

that pαh = fα for every α < κ. The limit is uniquely determined in the sense

that if X ′ with projections p′α, α < κ, is another, then the unique continuous

map h : X ′ → X such that pαh = p′α for all α < κ is a homeomorphism. The

definition of lim←−S given above is one of the possibilities. We will use the property

that lim
←−
{Xα; pβ

α : α < β < κ} is isomorphic to lim
←−
{Xα; pβ

α : α < β, α, β ∈ C} for

every cofinal set C ⊆ κ.

An inverse sequence S = {Xα; pβ
α : α < β < κ} is continuous if for every

limit ordinal δ < κ the space Xδ together with {pδ
α : α < δ} is homeomorphic to

lim
←−
{Xα; pβ

α : α < β < δ}.

A retraction is a continuous map f : X → Y which has a right inverse,

i.e. a continuous map j : Y → X with fj = idY . Note that j is an embedding

and f restricted to j[Y ] is a homeomorphism.

Finally, we point out that many of our results about Banach spaces

equipped with a weaker linear topology τ with respect to which the norm is

lsc have conclusions which assert the existence of an equivalent norm with a

certain property. In all such results, the assumption that the norm is τ -lsc can

be weakened to the assumption that the τ -closure of the unit ball is bounded,

since the Minkowski functional of this closure provides an equivalent τ -lsc norm.

3. Finite products of linearly ordered spaces. In this section we

show that C(L0× · · · ×Ln−1) has a τp-Kadec renorming, whenever L0, . . . , Ln−1

are compact linearly ordered spaces. In Theorem 4.9, this result will be extended

to arbitrary products.

Lemma 3.1. If X is a compact linearly ordered space, (Y, d) is a metric
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space, f : X → Y is continuous, and for each m ∈ ω we set

vm(f) = sup
{∑

i<m

d(f(ai), f(ai+1)) : a0 6 a1 6 . . . 6 am

}
,

where 0 and 1 denote the first and last elements of X, then

lim
m→∞

vm+1(f)− vm(f) = 0.

P r o o f. Fix ε > 0. Let I be a finite cover of X by open intervals I such

that f [I] has diameter < ε. Fix any m > |I|. By compactness, we can choose

a0 6 a1 6 . . . 6 am 6 am+1 so that vm+1(f) =
∑

i<m+1 d(f(ai), f(ai+1)). For

some I ∈ I and i0 < m+ 1, we have ai0 , ai0+1 ∈ I. Suppose i0 < m. Then

d(f(ai0), f(ai0+1))+d(f(ai0+1), f(ai0+2))6d(f(ai0), f(ai0+2))+2d(f(ai0), f(ai0+1))

<d(f(ai0), f(ai0+2))+2ε

and we get

vm(f) ≥ d(f(a0), f(a1)) + · · ·+ d(f(ai0−1), f(ai0)) + d(f(ai0), f(ai0+2))

+d(f(ai0+2), f(ai0+3)) + · · · + d(f(am), f(am+1))

>
∑

i<m+1

d(f(ai), f(ai+1))− 2ε

= vm+1(f)− 2ε,

which gives 0 6 vm+1(f) − vm(f) < 2ε. If i0 = m, replace the triple (f(ai0),

f(ai0+1), f(ai0+2)) by the triple (f(ai0−1), f(ai0), f(ai0+1)) in the argument

above. �

Let L be a linearly ordered space. We say that points x, y ∈ L are adjacent

if x 6= y and no point is strictly between x, y.

Theorem 3.2. Assume Li, i < n are compact linearly ordered spaces and

Di ⊆ Li is dense in Li and contains all pairs of adjacent points for each i < n.

Then C(
∏

i<n Li) has an equivalent τp(D)-Kadec norm, where D =
∏

i<nDi.

(See Theorem 4.9 for the case of arbitrary products.)

P r o o f. For f ∈ C(
∏

i<n Li), we will need to consider expressions of the

form

(3.1) f(x0, x1, . . . , xk−1, a, xk+1, . . . , xn−1).
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For notational convenience, we sometimes permute the arguments so that a comes

first. Letting hk : Lk ×
∏

`<n, `6=k L` →
∏

`<n L` be given by

hk(a, x0, x1, . . . , xk−1, xk+1, . . . , xn−1) = (x0, x1, . . . , xk−1, a, xk+1, . . . , xn−1),

we can then write

f(hk(a, x0, x1, . . . , xk−1, xk+1, . . . , xn−1))

instead of (3.1).

For each k < n and m ∈ ω, define vk
m(f) on C(

∏
i<n Li) by letting

vk
m(f) = sup

{∑

i<m

‖f(hk(a
k
i , · )) − f(hk(a

k
i+1, · ))‖∞ : ak

1 6 . . . 6 ak
m

}
.

The function vk
m is a τp(D)-lsc seminorm and

lim
m→∞

vk
m+1(f)− vk

m(f) = 0,

by Lemma 3.1.

Define | · | on C(
∏

i<n Li) as follows.

|f | = ‖f‖∞ +
∑

k<n

∑

m∈ω

1

m · 2m
vk
m(f).

It is readily seen that | · | is a norm on C(
∏

i<n Li) and is equivalent to the

sup norm. We now verify that it is a τp(D)-Kadec norm. Since the terms in the

definition of |f | are all τp(D)-lsc functions of f , Corollary 2.5(b) implies that they

are all τp(D)-continuous functions of f when restricted to S := {f : |f | = 1}. Fix

f ∈ S and ε > 0.

For each k < n, the map x 7→ f(hk(x, · )) is continuous (with the norm

topology on the range), so there is a finite collection Ik of open intervals covering

Lk such that the diameter in C(
∏

`<n, 6̀=k L`) of {f(hk(x, · )) : x ∈ I} is less than

ε for each I ∈ Ik. We may assume that inf I ∈ Dk ∪{0} and sup I ∈ Dk ∪{1} for

each I ∈ Ik. Let Ak = {inf I : I ∈ Ik} ∪ {sup I : I ∈ Ik}. Then Ak ⊆ Dk ∪ {0, 1}.

Let m ∈ ω be such that for each k < n, vk
m+3(f)− vk

m(f) < ε.

For each k < n, fix ak
0 6 ak

1 6 . . . 6 ak
m in Dk such that

vk
m(f) <

∑

i<m

‖f(h(ak
i , · ))− f(h(ak

i+1, · ))‖∞ + δ,
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where δ = ε/(m+ 4). Let Hk = {ak
i : i 6 m} ∪ (Ak ∩Dk).

Fix a τp(D)-open neighborhood U of f such that for g ∈ S ∩ U we have,

for all k < n, that vk
m+i(g) is strictly within ε of vk

m+i(f) for i 6 3. This gives

|vk
m+i(g)− v

k
m+i(f)| < ε and |vk

m+i(f)− vk
m(f)| < ε

and hence

|vk
m+i(g) − v

k
m(f)| < 2ε.

For each k < n and for each pair of elements a < b of Dk, choose x = xk
a,b

and y = yk
a,b in D such that x(k) = a, y(k) = b, x(`) = y(`) for all ` 6= k and

‖f(hk(a, · ))− f(hk(b, · ))‖∞ < |f(x)− f(y)|+ δ.

Write

Hk = Hk ∪ {z(k) : z = x`
a,b or z = y`

a,b for some ` < n and some a < b in H`}.

Then Hk ⊆ Dk. Let g ∈ U agree sufficiently closely with f on H =
∏

k<nHk so

that |g(h) − f(h)| < ε for each h ∈ H and the following condition is satisfied.

(∗) For each k < n, for each i0 < m, and any choice of elements of Hk of the

form

ak
i0 = b0 6 b1 6 b2 6 b3 = ak

i0+1

we have, for each j0 < 3,

∑

i6=i0

|g(xk
ak

i ,ak
i+1

)− g(yk
ak

i ,ak
i+1

)|+
∑

j 6=j0

|g(xk
bj ,bj+1

)− g(yk
bj ,bj+1

)|

>
∑

i6=i0

|f(xk
ak

i ,ak
i+1

)− f(yk
ak

i ,ak
i+1

)|+
∑

j 6=j0

|f(xk
bj ,bj+1

)− f(yk
bj ,bj+1

)| − ε.

Assume also that for each k < n we have

(∗1)
∑

i<m

|g(xk
ak

i ,ak
i+1

)− g(yk
ak

i ,ak
i+1

)| >
∑

i<m

|f(xk
ak

i ,ak
i+1

)− f(yk
ak

i ,ak
i+1

)| − ε.

From (∗) it follows that for any x ∈ [bj0 , bj0+1], writing

s = ‖f(hk(bj0 , · ))− f(hk(x, · ))‖∞ + ‖f(hk(x, · ))− f(hk(bj0+1, · ))‖∞
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and

t = ‖g(hk(bj0 , · )) − g(hk(x, · ))‖∞ + ‖g(hk(x, · )) − g(hk(bj0+1, · ))‖∞

we have

vk
m(f) + 2ε− t > vk

m+3(g) − t

>
∑

i6=i0

‖g(hk(ak
i , · ))− g(hk(ak

i+1, · ))‖∞

+
∑

j 6=j0

‖g(hk(bj , · ))− g(hk(bj+1, · ))‖∞

>
∑

i6=i0

|g(xk
ak

i ,ak
i+1

)− g(yk
ak

i ,ak
i+1

)|+
∑

j 6=j0

|g(xk
bj ,bj+1

)− g(yk
bj ,bj+1

)|

>
∑

i6=i0

|f(xk
ak

i ,ak
i+1

)− f(yk
ak

i ,ak
i+1

)|+
∑

j 6=j0

|f(xk
bj ,bj+1

)− f(yk
bj ,bj+1

)| − ε

>
∑

i6=i0

(‖f(hk(a
k
i , · ))− f(hk(a

k
i+1, · ))‖∞ − δ)

+


 ∑

j 6=j0

(‖f(hk(bj , · )) − f(hk(bj+1, · ))‖∞ − δ) + s


− s− ε

>
∑

i<m

‖f(hk(a
k
i , · ))− f(hk(a

k
i+1, · ))‖∞ − s− ε− (m+ 3)δ

> vk
m(f)− s− 2ε

and hence t < s+ 4ε, i.e., for any x ∈ [bj0 , bj0+1],

(∗∗) ‖g(hk(bj0 , · ))− g(hk(x, · ))‖∞ + ‖g(hk(x, · ))− g(hk(bj0+1, · ))‖∞

< ‖f(hk(bj0 , · ))− f(hk(x, · ))‖∞ + ‖f(hk(x, · ))− f(hk(bj0+1, · ))‖∞ + 4ε.

Consider a point p ∈
∏

k<n Lk. Define

T = {k < n : pk 6∈ Hk}.

We will show by induction on r = |T | that |g(p)− f(p)| < (7r+ 1)ε. This is true

if r = 0 since then p ∈ H. For the inductive step, suppose |T | = r+1. Choose an

open neighborhood of p of the form
∏

k<n Ik, where Ik ∈ Ik for each k < n. For

each k < n, let −1 6 i0(k) 6 m be such that ak
i0(k) 6 pk 6 ak

i0(k)+1, where ak
−1 =

0, ak
m+1 = 1. Define rk = max{ak

i0(k), inf Ik} and sk = min{ak
i0(k)+1, sup Ik}. Pick
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any k ∈ T . Assume first that −1 < i0(k) < m, so in particular rk, sk ∈ Dk and

hence rk, sk ∈ Hk. If q1, q2 denote the modifications of p obtained by replacing

the k-th coordinate of p by rk and sk respectively, then |g(qi)−f(qi)| < (7r+1)ε,

i = 1, 2, by the induction hypothesis. Using (∗∗) with j0 = 1 and “ak
i0(k) 6 rk 6

pk 6 sk 6 ak
i0(k)+1” in the place of “ak

i0
= b0 6 b1 6 x 6 b2 6 b3 = ak

i0+1” we get

|g(q1)− g(p)| + |g(p)− g(q2)| 6 ‖g(hk(rk, · ))− g(hk(pk, · ))‖∞

+‖g(hk(pk, · )) − g(hk(sk, · ))‖∞

< ‖f(hk(rk, · )) − f(hk(pk, · ))‖∞

+‖f(hk(pk, · ))− f(hk(sk, · ))‖∞ + 4ε

< 6ε

and hence

|g(p)− f(p)| 6 |g(p)− g(q1)|+ |g(q1)− f(q1)|+ |f(q1)− f(p)|

< 6ε+ (7r + 1)ε + ε = (7(r + 1) + 1)ε.

Assume now that i0(k) = m (the case i0(k) = −1 is similar). We have ak
0 ≤

· · · ≤ ak
m ≤ pk. Let q denote the modification of p obtained by replacing the k-th

coordinate with ak
m. Then

|f(q)− f(p)| 6 ‖f(hk(a
k
m, · ))− f(hk(pk, · ))‖∞

6 vk
m+1(f)−

∑

i<m

‖f(hk(a
k
i , · ))− f(hk(a

k
i+1, · ))‖∞

< vk
m+1(f)− vk

m(f) + δ < 2ε.

Similarly, using (∗1), we get

|g(q) − g(p)| 6 ‖g(hk(ak
m, · ))− g(hk(pk, · ))‖∞

6 vk
m+1(g) −

∑

i<m

‖g(hk(ak
i , · )) − g(hk(ak

i+1, · ))‖∞

< vk
m+1(f) + ε−

∑

i<m

|g(xk
ak

i ,ak
i+1

)− g(yk
ak

i ,ak
i+1

)|

< vk
m+1(f) + ε−

∑

i<m

|f(xk
ak

i ,ak
i+1

)− f(yk
ak

i ,ak
i+1

)|+ ε

< vk
m+1(f)−

∑

i<m

‖f(hk(a
k
i , · ))− f(hk(a

k
i+1, · ))‖∞ +mδ + ε

< vk
m+1(f)− vk

m(f) + (m+ 1)δ + 2ε < 4ε.
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Thus |f(p)− g(p)| < 6ε+ |f(q)− g(q)| and by the induction hypothesis, |f(q)−

g(q)| < (7r + 1)ε. Hence also in this case we get |f(p)− g(p)| < (7(r + 1) + 1)ε.

Finally, ‖f − g‖∞ < (7n+ 1)ε which completes the proof. �

Remark 3.3. The above result is no longer valid if we drop the

requirement that the sets Di contain all pairs of adjacent points. For example,

if L is the double arrow line and D is a countable dense set then τp(D) is

second countable, while C(L) is not second countable, and the same is true when

restricted to any sphere of C(L).

We also cannot replace the assumption on the sets Di by “dense countably

compact”. It is shown in [3, Example 5.17] that the space of continuous functions

on D = (ω1 + ω∗
1)

ω1 endowed with the topology induced by the lexicographic

order (ω∗
1 means ω1 with the reversed order) is not norm-SLD for the pointwise

topology. In particular, it has no τp-Kadec renorming. On the other hand, D

is a countably compact linearly ordered space. If we take L to be the Čech-

Stone compactification of D, then L is linearly ordered—it is obtained from the

Dedekind completion of D by doubling the points which are not endpoints and

are not in D—and C(L) is isomorphic to C(D) via the restriction map. Since this

map is also a (τp(D), τp)-homeomorphism, C(L) has no τp(D)-Kadec renorming.

4. Inverse limits and projectional resolutions of the identity.

In this section we show the existence of a τp-Kadec renorming on a space C(K)

when K is a suitable inverse limit of spaces K ′ for which C(K ′) has a τp-Kadec

renorming. As an application, we obtain in particular that C(K × L) has a

τp-Kadec renorming, whenever C(K) has a τp-Kadec norm and L is a Valdivia

compact space.

We begin with a technical lemma inspired by a very useful result of

Troyanski. (See [5, VII Lemma 1.1].)

Lemma 4.1. Let (X, ‖·‖) be a Banach space and let τ be a linear topology

on X such that the unit ball of X is τ -closed. Fix a function h : N→ N. Suppose

there are

(a) families F0,F1, . . . of bounded (τ, τ)-continuous linear operators on X such

that for each n, Fn is uniformly bounded,

(b) for each T ∈
⋃

n∈N
Fn, an equivalent τ -Kadec norm | · |T on the range of

T , and



Kadec norms on spaces of continuous functions 239

(c) for each n ∈ N and T ∈ Fn, a set Sn(T ) ⊆ F0 ∪ · · · ∪ Fn of cardinality at

most h(n),

so that

(d) for each x ∈ X and each ε > 0, we can find n ∈ N and T ∈ Fn such

that ‖x − T0x‖ < ε for some T0 ∈ Sn(T ) and |Tx|T > sup{|T ′x|T ′ : T ′ ∈

Fn, T
′ 6= T}.

Then there exists an equivalent τ -Kadec norm on X.

P r o o f. We may assume that | · |T 6 ‖ · ‖ for each T ∈
⋃

n∈ω Fn. Define

|x|k,n = sup{|Tx|T +
1

k

∑

T ′∈Sn(T )

|T ′x|T ′ + ‖x− T ′x‖ : T ∈ Fn}

and

|x| = ‖x‖+
∑

k,n<ω

βk,n|x|k,n,

where βk,n > 0 are such that βk,n|x|k,n 6 2−(k+n)‖x‖. (These constants exist

because for each fixed n, the operators in Fn are uniformly bounded and the sets

Sn(T ), T ∈ Fn, are bounded in cardinality.)

It is clear that | · | is equivalent to ‖ · ‖. We will show that | · | is τ -Kadec.

It is τ -lsc since ‖ · ‖ and all the | · |k,n are (use (b) and Proposition 2.2). Thus,

by Corollary 2.5(b), on S := {x ∈ X : |x| = 1}, each of these functions is τ -

continuous. Fix x ∈ S and ε > 0. By (d), there are n ∈ N and T ∈ Fn such that

‖x− T0x‖ < ε for some T0 ∈ Sn(T ) and

δ = |Tx|T − sup{|T ′x|T ′ : T ′ ∈ Fn, T
′ 6= T} > 0.

Choose k so that

h(n)

k
sup{2‖T ′‖+ 1: T ′ ∈ F0 ∪ · · · ∪ Fn} · ‖x‖ < δ.

Then

|x|k,n = |Tx|T +
1

k

∑

T ′∈Sn(T )

|T ′x|T ′ + ‖x− T ′x‖.

(To see this, consider the effect on the expression on the right-hand side of the

equation of replacing T by some other T̃ ∈ Fn. The first term drops by at least δ

(by definition of δ). By the choice of k, the second term cannot make up for the
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decrease.) By Proposition 2.3. and the (τ, τ)-continuity of T0, there is an η > 0

and there is a U ∈ τ containing x such that if |T0y|T0
is within η of |T0x|T0

and

y ∈ U then ‖T0y − T0x‖ < ε.

From the τ -lsc of each of the terms in the expression for |x|k,n as functions

of x and the τ -continuity of | · |k,n on S, it follows from Corollary 2.8 that y 7→

|T0y|T0
and y 7→ ‖y − T0y‖ are continuous at x on S. Thus, by shrinking U to a

smaller τ -neighborhood of x, we may arrange that y 7→ |T0y|T0
and y 7→ ‖y−T0y‖

vary by less than min{η, ε} on U∩S. Since ‖x−T0x‖ < ε, this means in particular

that ‖y − T0y‖ < 2ε for y ∈ U ∩ S.

For y ∈ U ∩ S, we have

‖y − x‖ 6 ‖y − T0y‖+ ‖T0y − T0x‖+ ‖T0x− x‖ < 2ε+ ε+ ε = 4ε.

This completes the proof. �

Remark 4.2. The above lemma, as well as its corollaries, could be

stated in a more general form saying that on each TX there is a weaker linear

topology τT for which T is (τ, τT )-continuous and TX has a τT -Kadec renorming.

The proofs require only minor changes.

Theorem 4.3. Let X be a Banach space and let {Pn : X → X}n∈N be

a uniformly bounded sequence of projections such that
⋃

n∈N
PnX is dense in X.

Let τ be a weaker linear topology on X such that the unit ball is τ -closed. If

for each n ∈ N, Pn is (τ, τ)-continuous and there exists a τ -Kadec renorming of

PnX, then there exists a τ -Kadec renorming of X.

P r o o f. We apply Lemma 4.1 with Fn = {Pn} and Sn(Pn) = {Pn}.

Condition (d) of Lemma 4.1 reduces in this case to the fact that for every x ∈ X

and ε > 0 there exists n ∈ ω such that ‖x − Pnx‖ < ε. To see that this is true,

fix x ∈ X and ε > 0 and set δ = ε/(1+M), where M is a constant which bounds

the norms of all Pn’s. Then, by assumption, there are n ∈ N and y ∈ PnX such

that ‖x− y‖ < δ. We have y = Pny and hence ‖Pnx− y‖ 6 ‖Pn‖ · ‖x− y‖ < Mδ.

Thus

‖x− Pnx‖ 6 ‖x− y‖+ ‖y − Pnx‖ < δ +Mδ = ε. �

Theorem 4.4. Let (X, ‖·‖) be a Banach space and assume that {Tα : X →

X}α<κ is a sequence of uniformly bounded linear operators on X such that for

each x ∈ X,

(i) the sequence {‖Tαx‖}α<κ belongs to c0(κ),
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(ii) for every ε > 0 there exists a finite set A ⊆ κ such that

∥∥∥x−
∑

α∈A

Tαx
∥∥∥ < ε,

(iii) TαX ∩ TβX = {0} whenever α 6= β.

Assume further that τ is a linear topology on X such that the the unit ball of

X is τ -closed and for each α < κ, TαX has a τ -Kadec renorming and Tα is

(τ, τ)-continuous. Then X has an equivalent τ -Kadec norm.

P r o o f. Let QA =
∑

α∈A Tα and define Fn = {QA : A ∈ [κ]n}, S(QA) =

{QA′ : A′ ⊆ A} (so S(QA) has cardinality at most 2|A|). If ‖·‖α is a τ -Kadec norm

on TαX then ‖ · ‖QA
=

∑
α∈A ‖ · ‖α is a τ -Kadec norm on QAX. We may assume

that ‖ · ‖α 6 ‖ · ‖ for each α < κ. We need to check condition (d) of Lemma 4.1.

Fix x ∈ X, ε > 0. By (ii) there exists A0 ∈ [κ]<ω such that ‖x−QA0
x‖ < ε. By

(i), there exists a finite set A ⊇ A0 such that

max
α/∈A
‖Tαx‖α < min

α∈A
‖Tαx‖α.

It follows that ‖QAx‖QA
> sup{‖QBx‖QB

: |B| = |A| & B 6= A}. Thus, by

Lemma 4.1, we get a τ -Kadec renorming of X. �

Theorem 4.5. Assume X is a Banach space and {Pα : X → X}α6κ is

a sequence of projections such that

(a) P0 = 0, Pκ = idE and PβPα = Pα = PαPβ whenever α 6 β 6 κ.

(b) There is M < +∞ such that ‖Pα‖ 6 M for every α < κ.

(c) If λ 6 κ is a limit ordinal then
⋃

ξ<λ PξE is dense in PλE.

Assume that τ is a linear topology on X such that the unit ball of X is τ -closed

and for each α < κ, (Pα+1 − Pα)X has a τ -Kadec renorming and Pα+1 − Pα is

(τ, τ)-continuous. Then X has a τ -Kadec renorming.

P r o o f. Let Tα = Pα+1 − Pα. A standard and well known argument (see

e.g. [5, pp. 236, 284]) shows that {Tα}α<κ satisfies the assumptions of Theorem

4.4. We write out the proof of condition (ii) for the sake of completeness because

it is not given explicitly in [5].

Proceed by induction on limit ordinals λ < κ. If λ = ω then Pωx =

limn→∞ Pnx =
∑

n∈ω(Pn+1x − Pnx) =
∑

n∈ω Tnx (recall that P0 = 0), so
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∑
n<k Tnx can be taken arbitrarily close to Pωx. Now let λ > ω and assume

the statement is true for limit ordinals below λ (and for every ε > 0). There

exists ξ0 < λ such that ‖Pλx− Pβx‖ < ε/2 for ξ > ξ0. If there is a limit ordinal

β such that ξ0 6 β < λ then, by induction hypothesis

(∗ ∗ ∗)
∥∥∥Pβx−

∑

α∈A

Tαx
∥∥∥ < ε/2.

for some finite set A ⊆ β and we have ‖Pλx−
∑

α∈A Tαx‖ < ε. Otherwise, ξ0 =

β+n, where β > ω is a limit ordinal and again (∗∗∗) holds for some finite set A ⊆

β. Now we have Pβ+nx− Pβx =
∑β+n−1

α=β Tαx and hence ‖Pλx −
∑

α∈B Tαx‖ 6

‖Pλx−Pβ+nx‖+‖Pβx−
∑

α∈A Tαx‖ < ε, whereB = A∪{β, β+1, . . . , β+n−1}. �

A sequence {Pα : α 6 κ} satisfying conditions (a), (b) and (c) of the above

theorem with M = 1 and such that the density of PαX is 6 |α| + ℵ0, is called a

projectional resolution of the identity (PRI) on X, see [5] or [7].

The following proposition is a purely category-theoretic property of inverse

limits. It is standard but we do not know a reference for it, so we write out the

proof.

Proposition 4.6. Let {Xα; pβ
α : α < β < κ} be a continuous inverse

sequence of topological spaces such that each pα+1
α is a retraction and let X, with

projections {pα : α < κ}, be the inverse limit of the sequence. Then there exists

a collection of continuous embeddings {iβα : Xα → Xβ}α<β<κ, such that

(1) pβ
αi

β
α = idXα for all α < β < κ and iβγ i

γ
α = iβα for all α < γ < β < κ.

Moreover, there exist continuous embeddings iα : Xα → X such that

(2) pαiα = idXα and iβi
β
α = iα, whenever α < β < κ.

P r o o f. We can treat (2) as a special case of (1) by allowing β = κ in

(1) and setting Xκ = X and pκ
α = pα for α < κ. We construct the maps iβα by

induction on β ≤ κ. Assume iηξ have been constructed for every ξ < η < β; for

convenience we set iξξ = idXξ
. Suppose first that β is a successor, i.e. β = δ + 1.

Fix any continuous map iδ+1
δ : Xδ → Xδ+1 which is a right inverse of pδ+1

δ .

For α < δ, define iδ+1
α = iδ+1

δ iδα. To see that (1) holds, observe that

pδ+1
α iδ+1

α = pδ+1
α iδ+1

δ iδα = pδ
αp

δ+1
δ iδ+1

δ iδα = pδ
αi

δ
α = idXα ,

and

iδ+1
γ iγα = iδ+1

δ iδγi
γ
α = iδ+1

δ iδα = iδ+1
α .
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Suppose now that β is a limit ordinal. Fix α < β. Observe that for

α 6 ξ < η < β we have

pη
ξ i

η
α = pη

ξ i
η
ξ i

ξ
α = iξα.

Since Xβ together with {pβ
ξ : ξ ∈ [α, β)} is the limit of {Xξ ; p

η
ξ : α 6 ξ < η < β},

there exists a unique continuous map iβα : Xα → Xβ such that

pβ
ξ i

β
α = iξα

holds for every ξ ∈ [α, β). In particular pβ
αi

β
α = idXα . Thus we have defined

mappings iβα, for α < β. It remains to check that iβγ i
γ
α = iβα for α < γ < β. To

see this, observe that for ξ ∈ [γ, β) we have

pβ
ξ (iβγ i

γ
α) = iξγi

γ
α = iξα,

and for ξ ∈ [α, γ) we have

pβ
ξ (iβγ i

γ
α) = pγ

ξp
β
γ (iβγ i

γ
α) = pγ

ξ i
γ
α = iξα.

Since iβα is the unique map satisfying pβ
ξ i

β
α = iξα for ξ ∈ [α, β), we get iβγ i

γ
α = iβα. �

Lemma 4.7. Let {K; pα : α < κ} be the inverse limit of the continuous

inverse sequence of compact spaces

{Kα; pβ
α : α < β < κ}

in which the bonding maps pα+1
α are retractions.

(a) If for each α < κ, C(Kα) has a τp-Kadec renorming, then C(K) has a

τp-Kadec renorming.

(b) Let {iβα : α < β < κ} and {iα : α < κ} be collections of right inverses

satisfying (1) and (2) of Proposition 4.6. Assume that D ⊆ K is dense, and

for each α < κ, iαpα[D] ⊆ D and C(Kα) has a τp(pα[D])-Kadec renorming.

Then C(K) has a τp(D)-Kadec renorming.

P r o o f. (a) (Cf. the proof of [5, VI Theorem 7.6].) Let {iβα : α < β < κ}

and {iα : α < κ} be collections of right inverses given by Lemma 4.6. Let Rα =

iαpα. Rα is a retraction of K onto iα[Kα]. If α < β then

RαRβ = iα pα iβ pβ = iα p
β
α pβ iβ pβ = iα p

β
α pβ = iα pα = Rα
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and

RβRα = iβ pβ iα pα = iβ pβ iβ i
β
α pα = iβ i

β
α pα = iα pα = Rα.

We also have RαRα = Rα.

Let Pα : C(K)→ C(K) be given by Pα(f) = fRα.

C(Kα) can be identified with the range of Pα via the linear map T defined

by Tg = gpα. T is norm-preserving, and in particular one-to-one, because pα

maps onto Kα. From Tg = gpα = gpαiαpα = gpαRα = Pα(gpα) and Pα(f) =

fRα = fiαpα = T (fiα), we see that the range of T is indeed the same as the range

of Pα. Note that T−1(h) = hiα. T is a τp-homeomorhism because for x ∈ K and

y ∈ Kα, the maps g 7→ (Tg)(x) = g(pαx) and h 7→ (T−1h)(y) = h(iαy) are τp-

continuous. It follows from our assumption that the range of Pα has an equivalent

τp-Kadec norm.

Then {Pα : α < κ} is a sequence of projections of norm one satisfying the

condition

α < β =⇒ PαPβ = PβPα = Pα.

For any x ∈ K, the map f 7→ Pα(f)(x) is τp-continuous since it coincides with

f 7→ f(Rαx). Hence, Pα is (τp, τp)-continuous.

We now check that
⋃

α<β PαC(K) is dense in PβC(K) for every limit

ordinal β 6 κ. It will then follow that {Pα}α<κ satisfies the assumptions of

Theorem 4.5 and the proof of (a) will be complete. We show that for each

f ∈ C(K),

lim
α→β

Pα(f) = Pβ(f).

Fix ε > 0. Kβ has a base consisting of open sets of the form (pβ
α)−1[U ] where

α < β and U is open in Kα. Hence, Kβ is covered by finitely many such sets

on which the oscillation of f iβ is at most ε. By replacing the finitely many α’s

involved here by the largest of them, we may assume that they are all equal to

some α0 < β. (If α < α′ < β and U is open in Kα, then since pβ
α = pα′

α p
β
α′ , we

have (pβ
α)−1[U ] = (pβ

α′)−1[V ] where V = (pα′

α )−1[U ].) Thus we have open sets

U1, . . . , Un in Kα0
such that the sets

(pβ
α0

)−1[U1], . . . , (p
β
α0

)−1[Un]

cover Kβ and on each of them the oscillation of f iβ is at most ε. For any α

such that α0 ≤ α < β and for any x ∈ K, letting j ∈ {1, . . . , n} be such that

pα0
(x) ∈ Uj, we have

pβ
α0

(iβαpα(x)) = pα
α0
pα(x) = pα0

(x) ∈ Uj,
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so that

iβα pα(x) ∈ (pβ
α0

)−1[Uj ].

Clearly we also have

pβ(x) ∈ (pβ
α0

)−1[Uj ],

and hence

|Pα(f)(x)− Pβ(f)(x)| = |fRα(x)− fRβ(x)| = |f iα pα(x)− f iβ pβ(x)|

= |f iβ(iβαpα(x)) − f iβ(pβ(x))| ≤ ε.

This completes the proof of (a).

The proof of (b) is obtained by making suitable adjustments to the proof

of (a). We check that T is a (τp(pα[D]), τp(iα pα[D]))-homeomorphism. When

d ∈ D, g 7→ (Tg)(iα pα(d)) = g(pα iα pα(d)) = g(pα(d)) is τp(pα[D])-continuous

and h 7→ (T−1h)(pα(d)) = h(iα pα(d)) is τp(iα pα[D])-continuous. Hence, our

assumption gives that the range of Pα has an equivalent τp(iα pα[D])-Kadec norm.

It follows that the range of Pα has an equivalent τp(D)-Kadec norm. For any

d ∈ D, the map f 7→ Pα(f)(d) = f(Rα(d)) = f(iα pα(d)) is τp(D)-continuous.

Hence, Pα is (τp(D), τp(D))-continuous. Finally, the fact that D is dense ensures

that the unit ball of C(K) is τp(D)-closed. The rest of the proof is as for (a). �

Given a family of spaces {Xα}α<κ, their product
∏

α<κXα is the limit

of a continuous inverse sequence of smaller products
∏

ξ<αXξ, with the usual

projections as bonding maps. This leads to the following.

Corollary 4.8. Let {Kα : α < κ} be a family of compacta and assume

that for every finite S ⊆ κ, C(
∏

α∈S Kα) has a τp-Kadec renorming. Then

C(
∏

α<κKα) has a τp-Kadec renorming.

P r o o f. Proceed by induction on the cardinality of the index set, which

we can assume is infinite. The induction hypothesis ensures that for each β < κ,

C(
∏

α<β Kα) has a τp-Kadec renorming. Now apply Lemma 4.7(a). �

In [13] an analogous result on the σ-fragmentability (with a version on

LUR renormability) of products is proved. In [2] it is shown that the property of

having a τp-lsc LUR renorming is productive in the sense that C(
∏

α<κKα) has

a τp-lsc LUR renorming if (and trivially only if) each C(Kα) has a τp-lsc LUR

renorming. It is unknown whether the property of having a τp-Kadec renorming

is productive in this sense.

Lemma 4.7 allows us to generalize Theorem 3.2 to infinite products.
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Theorem 4.9. Let {Lα : α < κ} be a collection of compact linearly

ordered spaces and for each α < κ let Dα be a dense subset of Lα which contains

all pairs of adjacent points. Then C(
∏

α<κ Lα) has an equivalent τp(
∏

α<κDα)-

Kadec norm.

P r o o f. Proceed by induction on the cardinality of the index set. Theo-

rem 3.2 takes care of the case κ < ω. Assume that κ is an infinite cardinal and

write K =
∏

α<κ Lα and Kα =
∏

ξ<α Lξ for α < κ. Note that K, equipped with

the usual projections pα : K → Kα, is the inverse limit of the continuous inverse

sequence {Kα; pβ
α : α < β < κ}, where the pβ

α’s are the usual projections. Fix a

base point dα ∈ Dα for each α < κ. For α < β < κ, define embeddings

iβα :
∏

ξ<α Lξ →
∏

ξ<β Lξ

by iβα(x)(ξ) = x(ξ) for ξ < α and iβα(x)(ξ) = dξ for α ≤ ξ < β. By the induction

hypothesis, C(Kα) has an equivalent τp(
∏

ξ<αDξ)-Kadec norm for each α, κ. The

assumptions of part (b) of Lemma 4.7 are satisfied with D =
∏

α<κDα. �

Denote by R the minimal class of compact spaces which contains all

metric compacta and is closed under limits of continuous inverse sequences of

retractions. More formally, R is the smallest class of spaces which satisfies the

following conditions:

1. Every metrizable compact space is in R.

2. If S = {Xα; pβ
α : α < β < κ} is a continuous inverse sequence such that each

Xα is in R and each pα+1
α is a retraction, then every space homeomorphic

to lim
←−

S belongs to R.

Note that every Valdivia compact space belongs to R (see e.g. [15]). Also, for

every ordinal ξ, the compact linearly ordered space ξ+ 1 belongs to R. If ξ > ℵ2

then ξ + 1 is not Valdivia compact (see [15]). It is easy to see that class R is

closed under products and direct sums.

Theorem 4.10. (a) Assume K is a compact space such that C(K) has

a τp-Kadec renorming and assume L ∈ R. Then C(K × L) has a τp-Kadec

renorming.

(b) For every L ∈ R, C(L) has a τp-lsc LUR renorming.

P r o o f. (a) Denote by R0 the class of all spaces L ∈ R such that C(K ×

L) has a τp-Kadec renorming. It suffices to show that R0 contains all metric

compacta and is closed under limits of continuous inverse sequences of retractions.
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The latter fact follows from Lemma 4.7, because if L = lim←−{Lα; pβ
α : α < β < κ}

then K × L = lim
←−
{K × Lα; qβ

α : α < β < κ}, where qβ
α = idK ×p

β
α. It remains to

show that R0 contains all metric compacta. As every compact metric space is a

continuous image of the Cantor set, it is enough to show that C(K × 2ω) has a

τp-Kadec renorming.

We have 2ω = lim
←−
{2n; pm

n : n < m < ω} so

K × 2ω = lim←−{K × 2n; qm
n : n < m < ω},

where qm
n = idK ×p

m
n . Clearly, C(K×2n) has a τp-Kadec renorming being a finite

power of C(K), so again Lemma 4.7 gives a τp-Kadec renorming of C(K × 2ω).

(b) It is enough to check that the class of all compact spaces K for which

C(K) has a τp-lsc LUR renorming is closed under inverse limits of retractions.

Assume K = lim←−S, where S = {Kα; rβ
α : α < β < κ} is a continuous inverse

sequence of retractions and for each α < κ, C(Kα) has a τp-lsc LUR renorming.

As in the proof of Lemma 4.7(a), there is a sequence of projections {Pα : α < κ}

on C(K) such that Pα is adjoint to the retraction rα : K → Kα. Now apply

Proposition VII.1.6 and Remark VII.1.7 from [5] to obtain a τp-lsc LUR renorming

of C(K). In fact, [5, Proposition VII.1.6] deals with projectional resolutions of

the identity, but no assumption about the density of imPα is used in the proof. �

Remark 4.11. Note that by Proposition 2.1, Theorem 4.10(a) applies

also when L is a continuous image of a space from R. (If L′ is a continuous image

of L, then K × L′ is a continuous image of K × L.)

Example 4.12. In [23] an example of a compact, non-separable ccc

space of countable π-character which has a continuous map onto the Cantor set

in such a way that the fibers are relatively small linearly ordered spaces (their

order type is an ordinal less than the additivity of Lebesgue measure). This space

belongs to R.

As in [23], we use Boolean algebraic language and work with the Boolean

algebra whose Stone space is the required example.

Let N denote the set of positive natural numbers and denote by N[i] the

set of all numbers of the form 2i(2j − 1), where j ∈ N. Define K = {x ⊆

N : (∀ i) |x[i]| 6 i}, where x[i] = x ∩ N[i], and

Z = {x ∈ K : lim
i→∞
|x[i]|/i = 0}.

Denote by ⊆∗ the almost inclusion relation, i.e. a ⊆∗ b if a \ b is finite.

Define

T = {(t, n) : n ∈ N, t ∈ K and t ⊆ n}.
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We are going to define a subalgebra of P(T )/fin, where fin is the ideal of finite

subsets of T . Let

T(t,n) = {(s,m) ∈ T : m > n and s ∩ n = t}

and

Ta = {(s,m) ∈ T : a ∩m ⊆ s}.

Define B0 to be the subalgebra of P(T )/fin generated by the classes of the sets

T(t,n), (t, n) ∈ T . Then B0 is a countable free Boolean algebra. In what follows

we shall identify subsets of T with their equivalence classes in P(T )/fin. The

context should make it clear when classes are intended.

By [8, p. 151], there exists a sequence A = {aα : α < κ} of elements of Z

such that α < β =⇒ aα ⊆
∗ aβ and for every a ∈ K there is α < κ such that

aα 6⊆
∗ a. Moreover κ equals the additivity of the Lebesgue measure, so κ > ℵ0.

Let Bα be the subalgebra of P(T )/fin generated by

B0 ∪ {Ta : a ∈ K & (∃ ξ < α) a =∗ aξ}.

Finally, let B =
⋃

α<κ Bα and let X be the Stone space of B. It has been shown in

[23] that X is a non-separable ccc space with countable π-character. Moreover,

the inclusion B0 ⊆ B induces, by duality, a map from X onto the Cantor set such

that all fibers are well-ordered of size < κ.

Theorem 4.13. X ∈ R and consequently C(X) has a τp-lsc LUR

renorming.

P r o o f. We will show by induction on α < κ that Ult(Bα) ∈ R for every

α < κ and that each quotient mapping rα : Ult(Bα+1) → Ult(Bα) induced by

Bα ⊆ Bα+1 is a retraction. The latter property is equivalent to the existence of a

retraction h : Bα+1 → Bα, i.e. a homomorphism such that h � Bα = idBα .

Fix α < κ and assume Ult(Bα) ∈ R. Given Boolean algebras A ⊆ B and

x ∈ B \A we will denote by A[x] the algebra generated by A∪{x} (A[x] is called

a simple extension of A). Note the following

Claim 4.14. Assume a ⊆ a′ are in K and a′ \ a is finite. Then

Ta′ ∈ B0[Ta].

P r o o f. Let n ∈ ω be such that a′ \ a ⊆ n. Let S = {s ⊆ n : s ∈ K and

a′ ∩ n ⊆ s}. Then Ta′ = Ta ∩
⋃

s∈S T(s,n). �

Define B
−1
α+1 = Bα and B

n+1
α+1 = B

n
α+1[Taα\n]. By the above claim, Bα+1 =⋃

n∈ω B
n
α+1. We need to check that B

n
α+1 is a retract of B

n+1
α+1 and that Ult(Bn+1

α ) ∈

R for every n > −1.
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Note that, by Sikorski’s extension criterion (see e.g. [17, p. 67]), if A is a

Boolean algebra and A[x] is a simple extension of A then A is a retract of A[x]

iff there exists c ∈ A such that for every a0, a1 ∈ A with a0 6 x 6 a1 we have

a0 6 c 6 a1. This holds for example, if {a ∈ A : a 6 x} has a least upper bound

in A.

We will need the following easy fact about our Boolean algebra. We leave

the verification to the reader. Part (a) is like Claim 1 from the proof of [23,

Theorem 8.4].

Claim 4.15. (a) The sets Ta ∩ T(t,n), where a =∗ aξ for some ξ < α,

are dense in Bα.

(b) For every nonnegative integer n, every element of B
n
α+1 is a finite sum

of elements of the form Ta ∩T(t,n) ∩¬Tb0 ∩ · · · ∩¬Tbk−1
, where bi =∗ aηi

for some

ηi 6 α and a =∗ aξ for some ξ < α or a = aα \ i where i < n.

(c) If x = Ta ∩ T(t,n) and 0B < x 6 Tb then b ⊆ a ∪ t.

We consider separately the cases n = −1 and n > −1.

Case 1. n = −1. By Claim 4.15 (a) and (c), no non-zero element of Bα

is below Taα . Thus Bα = B
−1
α+1 is a retract of B

0
α+1. To see that Ult(B0

α+1) ∈ R

it is enough to show that Bα/I is countable (and hence its Stone space is second

countable), where I = {x ∈ Bα : x ∩ Taα = 0B}, because Ult(B0
α+1) is the direct

sum of Ult(Bα) and Ult(Bα/I). Let q : Bα → Bα/I be the quotient map. Observe

that for ξ < α, q(Taξ∩aα\n) = 1Bα/I , because Taα 6 Taξ∩aα\n. Now, by Claim

4.14, Bα is generated by B0 ∪ {Ta : a = aξ ∩ aα \ n & n ∈ ω & ξ < α}. It follows

that Bα/I is countable.

Case 2. n > −1. By Claim 4.15, we have sup{x ∈ B
n
α+1 : x 6 Taα\n} =

Taα\(n−1) ∈ B
n
α+1. Hence B

n
α+1 is a retract of B

n+1
α+1. In order to see that

Ult(Bn+1
α+1) ∈ R it is enough to show that, as in Case 1, the quotient algebra

B
n
α+1/I is countable, where I = {x ∈ B

n
α+1 : x ∩ Taα\n = 0B}. This can be done

by an argument similar to the one used as in Case 1. We now have new generators

of the form Taα\i, i < n, but only finitely many of them, so the quotient B
n
α+1/I

is still countable. �

Remark 4.16. If the additivity of the Lebesgue measure is > ℵ2 then

the space X from the above example is not a continuous image of a Valdivia

compact space. Indeed, let κ denote the additivity of the Lebesgue measure

and suppose that X is a continuous image of a Valdivia compact space. Let

h : X → 2ω be a continuous map such that all fibers of h are well ordered of order

type < κ (see [23]). One can show that in fact there are fibers of arbitrary large
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order type below κ (see the proof of Claim 4 in [23, p. 74]). Hence, assuming

κ > ℵ2, there is p ∈ 2ω such that F = h−1(p) has order type > ℵ2. Observe that

F is a Gδ subset of X and therefore it is also a continuous image of a Valdivia

compact space (see [15]). On the other hand, a well ordered continuous image of

a Valdivia compact space has order type < ℵ2 (see [16]).

It can be shown that X is Valdivia compact if κ = ℵ1. We do not know

whether X is Valdivia compact if κ = ℵ2.

5. A three-space property. We show that the three-space property

for Kadec renormings holds under the assumption that the quotient space has

an LUR renorming. This solves a problem raised in [18] where it is shown that

a Banach space E has a Kadec-Klee renorming provided some subspace F has a

Kadec-Klee renorming and E/F has an LUR renorming.

We begin with an auxiliary lemma on extending Kadec norms.

Lemma 5.1. Let E be a Banach space and let F be a closed subspace

of E. Assume τ is a weaker linear topology on E such that F and the unit ball

of E are τ -closed and F has an equivalent τ -Kadec norm. Then there exists an

equivalent τ -lsc norm ‖ · ‖ on E which is τ -Kadec on F , i.e. for every y ∈ F

with ‖y‖ = 1 and for every ε > 0 there exists V ∈ τ such that y ∈ V and

SE ∩V ⊆ B(y, ε), where SE denotes the unit sphere of E with respect to ‖ · ‖.

P r o o f. We use ideas from [20]. Let ‖ · ‖0 be the original norm of E

which, as we may assume, is τ -lsc and let B ⊆ F denote the unit closed ball with

respect to a given τ -Kadec norm. Let Gn = clτ B‖·‖0
(B, 1/n). Then each Gn is a

convex, bounded, symmetric neighborhood of the origin in E. Denote by pn the

Minkowski functional of Gn and define

‖x‖ =
∑

n>0

αnpn(x),

where {αn}n∈ω is a sequence of positive reals making the above series convergent.

Then ‖ · ‖ is an equivalent norm on E which is τ -lsc, because each pn is τ -lsc. We

show that ‖ · ‖ is τ -Kadec on F .

Fix y ∈ F with ‖y‖ = 1 and fix ε > 0. By Proposition 2.3, find a

τ -neighborhood W of y and r > 1 such that

y ∈W ∩ rB ⊆ B(y, ε/4).
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We claim that there exist a smaller τ -neighborhood U of y, n ∈ N and γ > 0

such that

(5.1) U ∩ (r + γ)Gn ⊆ B(y, ε).

First, find W0 ∈ τ such that y ∈ W0 and W0 + B(0, δ) ⊆ W for some δ > 0.

Then W0 ∩ B(rB, δ) ⊆ B(y, ε/4 + δ). Indeed, if w ∈ W0 and ‖w − z‖ < δ for

some z ∈ rB then z ∈ rB ∩ (W0 + B(0, δ)) ⊆ rB ∩W ⊆ B(y, ε/4). Find n ∈ ω so

small that r/n 6 δ and assume that δ < ε/4. Then W0∩B(rB, r/n) ⊆ B(y, ε/2).

Next, find W1, V ∈ τ such that y ∈W1, 0 ∈ V = −V and W1 + V ⊆W0. Then

W1 ∩ clτ (B(rB, r/n)) ⊆ B(y, ε/2) + V.

Indeed, if w ∈ W1 ∩ clτ (B(rB, r/n)) then there is z ∈ B(rB, r/n) such that

z − w ∈ V , so z ∈ W1 + V ⊆ W0 and hence z ∈ B(y, ε/2). As V can be an

arbitrarily small τ -neighborhood of 0, it follows that

W1 ∩ clτ (B(rB, r/n)) ⊆ clτ B(y, ε/2) = B(y, ε/2).

The last equality follows from the fact that closed balls are τ -closed. Note that

clτ (B(rB, r/n)) = r clτ (B(B, 1/n)) = rGn.

Thus we have W1 ∩ rGn ⊆ B(y, ε/2). Finally, find a τ -neighborhood U of y

and η > 0 such that U + B(0, η) ⊆ W1 and η < ε/2. Let γ > 0 be such that

γGn ⊆ B(0, η). Fix u ∈ U ∩ (r + γ)Gn. Then there is z ∈ rGn such that

u− z ∈ γGn ⊆ B(0, η), so z ∈ U + B(0, η) ⊆ W1 and hence z ∈ B(y, ε/2). Thus

u ∈ B(y, ε/2 + η) ⊆ B(y, ε). This finishes the proof of (5.1).

Now, using the fact that each pn is τ -continuous on the ‖ · ‖-unit sphere,

we may assume, shrinking U if necessary, that pn(x) < pn(y)+γ whenever x ∈ U

and ‖x‖ = 1. Note that pn(y) 6 r, since r−1y ∈ Gn. Thus, if x ∈ U and ‖x‖ = 1

then pn(x) < r+ γ which means that x ∈ (r+ γ)Gn and hence ‖x− y‖ < ε. This

the completes proof. �

Remark 5.2. If, in the above lemma, τ is the weak topology then the

norm defined by

‖x‖ = ‖x‖0 + dist(x, F )

is Kadec on F , where ‖ ·‖0 is any equivalent norm such that (F, ‖ ·‖0 � F ) has the

Kadec property. This idea was used in [18]. In general, we do not know whether

dist( · , F ) is τ -lsc.
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The following lemma, stated for sequences instead of nets, is due to

Haydon [10, Proposition 1.2] and it is a variation of a lemma of Troyanski (see

[5, p. 271]) which is an important tool for obtaining LUR renormings.

Lemma 5.3. Let X be topological space, let S be a set and let ϕs, ψs : X →

[0,+∞) be lower semi-continuous functions such that sups∈S(ϕs(x) + ψs(x)) <

+∞ for every x ∈ X. Define

ϕ(x) = sup
s∈S

ϕs(x), θm(x) = sup
s∈S

(ϕs(x) + 2−mψs(x)), θ(x) =
∑

m∈ω

2−mθm(x).

Assume further that {xσ}σ∈Σ is a net converging to x ∈ X and θ(xσ) → θ(x).

Then there exists a finer net {xγ}γ∈Γ and a net {iγ}γ∈Γ ⊆ S such that

lim
γ∈Γ

ϕiγ (xγ) = lim
γ∈Γ

ϕiγ (x) = lim
γ∈Γ

ϕ(xγ) = ϕ(x)

and

lim
γ∈Γ

(ψiγ (xγ)− ψiγ (x)) = 0.

P r o o f. By Proposition 2.6, we have limσ∈Σ θm(xσ) = θm(x) for every

m ∈ ω. Thus, given m ∈ ω, we can choose j(m) ∈ S and σ(m) ∈ Σ such that

ϕj(m)(x) + 2−mψj(m)(x) > sup
σ>σ(m)

θm(xσ)− 2−2m

and

ϕj(m)(xσ) > ϕj(m)(x)− 2−2m and ψj(m)(xσ) > ψj(m)(x)− 2−2m

hold for σ > σ(m). We may also assume that σ(m1) 6 σ(m2) wheneverm1 < m2.

Define

Γ = {(σ,m) ∈ Σ× ω : σ > σ(m)}.

Consider Γ with the coordinate-wise order and define h : Γ → Σ by setting

h(σ,m) = σ. Finally, define i(γ) = j(m), where γ = (σ,m) ∈ Γ. Fix γ =

(σ,m) ∈ Γ. We have, knowing that i(γ) = j(m) and σ > σ(m),

ϕi(γ)(x)+2−mψi(γ)(x) > sup
ξ>σ(m)

θm(xξ)−2−2m > ϕi(γ)(xh(γ))+2−mψi(γ)(xh(γ))−2−2m.

The last inequality holds because h(γ) = σ > σ(m). It follows that

|ϕi(γ)(x)− ϕi(γ)(xh(γ))| < 2−2m+1 and |ψi(γ)(x)− ψi(γ)(xh(γ))| < 2−m+1,
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because ϕi(γ)(xh(γ)) > ϕi(γ)(x) − 2−2m and ψi(γ)(xh(γ)) > ψi(γ)(x) − 2−2m. This

shows that

(5.2) lim
γ∈Γ
|ϕi(γ)(x)− ϕi(γ)(xh(γ))| = 0 and lim

γ∈Γ
|ψi(γ)(x)− ψi(γ)(xh(γ))| = 0.

We also have

ϕi(γ)(x) + 2−m sup
s∈S

ψs(x) > ϕi(γ)(x) + 2−mψi(γ)(x) > sup
ξ>σ(m)

θm(xξ)− 2−2m

> lim sup
η∈Γ

ϕ(xh(η))− 2−2m > lim inf
η∈Γ

ϕ(xh(η))− 2−2m

> ϕ(x)− 2−2m > ϕi(γ)(x)− 2−2m.

Thus, passing to the limit, we get

(5.3)
lim infγ∈Γ ϕi(γ)(x) > lim supγ∈Γ ϕ(xh(γ)) > lim infγ∈Γ ϕ(xh(γ))

> ϕ(x) > lim supγ∈Γ ϕi(γ)(x).

By (5.2) and (5.3), the proof is complete. �

Theorem 5.4. Assume E is a Banach space and τ is a weaker linear

topology on X such that the unit ball of E is τ -closed. Assume further that F

is a closed subspace of E which has a τ -Kadec renorming and the quotient E/F

has a τ ′-lsc LUR renorming for some Hausdorff locally convex linear topology τ ′

on E/F such that the quotient map is (τ, τ ′) continuous. Then E has a τ -Kadec

renorming.

Note that since the unit ball of E/F under the LUR renorming is closed

with respect to the weak topology on E/F generated by the τ ′-continuous linear

functionals, we could have equivalently assumed that τ ′ is the weak topology on

E/F generated by a total subspace of E/F .

P r o o f. The assumptions imply that F is τ -closed, being the pre-image

of a singleton under the quotient map. Let ‖ · ‖ be an equivalent τ -lsc norm on

E which is τ -Kadec on F (Lemma 5.1). Denote by | · |q the quotient norm on

E/F . Let | · | be an LUR norm on E/F which is τ ′-lsc. Write x̂ for x + F , i.e.

the image of x under the quotient map.

Let b : E/F → E be a continuous selection for the quotient map obtained

by Bartle-Graves Theorem so that for each y ∈ E/F , b(y) ∈ y, the range of

b on the unit sphere of E/F is bounded in norm by a positive constant M ,

and b(ty) = tb(y) whenever t > 0 (see [5, VII Lemma 3.2 and its proof]). Let

S = {a ∈ E/F : |a| = 1}.
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Since the unit ball for | · | is τ ′-closed, the τ ′-continuous functionals of unit

norm for the dual norm | · |∗ to | · | form a norming set for (E/F, | · |). For each

a ∈ S choose a τ ′-continuous functional fa ∈ (E/F )∗ such that fa(a) = 1 and

|fa|
∗ ≤ 2. Note that if ‖fa‖ denotes the norm of fa with respect to | · |q, then the

values ‖fa‖ are bounded. (We have |fa(y)| ≤ |fa|
∗ |y| ≤ 2|y| ≤ 2K|y|q for some

constant K and hence ‖fa‖ ≤ 2K.) By enlarging the constant M introduced

above, we may assume that ‖fa‖ ≤ M for each a ∈ S. Define Pax = fa(x̂)b(a)

and let ψa be the seminorm given by

ψa(x) = ‖x− Pax‖.

Note that ψa is τ -lsc, because Pa is a τ -continuous functional. Next, define

ϕa(x) = inf{r > 0: |r−1x̂+ a| 6 2}.

Observe that ϕa is the Minkowski functional of the set Ha = {x ∈ E : |x̂ + a| 6

2}. Ha is a convex set containing 0 as an internal point, so ϕa satisfies the

triangle inequality and is positively homogeneous. Because x 7→ x̂ is (τ, τ ′)-

continuous and | · | is τ ′-lsc, Ha is a τ -closed set and thus ϕa is τ -lsc. Both families

{ϕa : a ∈ S} and {ψa : a ∈ S} are pointwise bounded, specifically ϕa(x) 6 |x̂| and

ψa(x) 6 (M 2 + 1)‖x‖. Applying Lemma 5.3 we get a τ -lsc function θ satisfying

the assertion of that lemma and such that ‖x‖θ = θ(x) + θ(−x) defines a τ -lsc

semi-norm on E. Define ‖ · ‖K on E by

‖x‖K = ‖x‖+ |x̂|+ ‖x‖θ.

This is a norm equivalent to ‖ · ‖. It is τ -lsc since each of the three terms defines

a τ -lsc function of x. By Corollary 2.5, the restriction to the unit sphere for ‖·‖K

of each of these three functions is τ -continuous.

We will show that ‖ · ‖K is a τ -Kadec norm on E.

Fix x ∈ E with ‖x‖K = 1 and fix a net {xσ}σ∈Σ which τ -converges to x

and ‖xσ‖K = 1 for every σ ∈ Σ. We will be done if we find a finer net converging

in norm. We may assume that x /∈ F , so that x̂ 6= 0. Since ‖·‖θ is τ -continuous on

the sphere, limσ∈Σ ‖xσ‖θ = ‖x‖θ. From the definition of ‖·‖θ and Proposition 2.6,

we have limσ∈Σ θ(xσ) = θ(x), so by Lemma 5.3 we get a finer net, which we still

denote by {xσ}σ∈Σ and a net {aσ}σ∈Σ such that

(5.4) lim
σ∈Σ

(‖xσ − Paσxσ‖ − ‖x− Paσx‖) = 0
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and

(5.5) lim
σ∈Σ

ϕaσ (xσ) = lim
σ∈Σ

ϕaσ (x) = lim
σ∈Σ

sup
a∈S

ϕa(xσ) = sup
a∈S

ϕa(x).

Now observe that supa∈S ϕa(x) = |x̂|. Indeed, we have ||x̂|−1x̂ + a| 6 2, so

ϕa(x) 6 |x̂| for every a ∈ S. On the other hand, if a = |x̂|−1x̂, then

|r−1x̂+ a| = (r−1 + |x̂|−1) · |x̂| = r−1|x̂|+ 1,

so |r−1x̂+ a| 6 2 iff r > |x̂| which shows that ϕa(x) = |x̂|.

Let t = |x̂|−1.

Claim 5.5. limσ∈Σ aσ = tx̂.

P r o o f. By (5.5) we have limσ∈Σ ϕaσ (x) = |x̂| = t−1. This means that

for every ε such that 0 < ε < t−1 there exists σ(ε) ∈ Σ such that |r−1x̂+ aσ| > 2

whenever r 6 t−1 − ε and σ > σ(ε). Observe that r−1x̂ has norm close to 1,

when r is close to |x̂|−1. By LUR, this implies that aσ must be close to tx̂. More

formally, fix σ > σ(ε) and let r = t−1 − ε and observe that

2 6 |tx̂+ aσ + (r−1 − t)x̂|

6 |tx̂+ aσ|+ (r−1 − t)t−1 = |tx̂+ aσ|+
( 1

1− εt
− 1

)
.

It follows that lim infσ∈Σ |tx̂ + aσ| > 2. As |tx̂| = 1, the LUR property of | · |

implies limσ∈Σ aσ = tx̂. �

By the (τ, τ ′)-continuity of the quotient map and the τ -continuity of x 7→

|x̂| on the unit sphere, we have τ ′-limσ∈Σ x̂σ = x̂ and limσ∈Σ |x̂σ| = |x̂|. As | · | is a

τ ′-lsc LUR norm, it is τ ′-Kadec and hence by Proposition 2.3 limσ∈Σ |x̂σ− x̂| = 0.

Claim 5.6. limσ∈Σ Paσx = b(x̂).

P r o o f.

t‖Paσx− b(x̂)‖ = ‖faσ(tx̂)b(aσ)− faσ(aσ)b(tx̂)‖

6 ‖faσ(tx̂− aσ) · b(tx̂)‖+ ‖faσ(tx̂)(b(aσ)− b(tx̂))‖

6 M
(
|tx̂− aσ|q · ‖b(tx̂)‖+ ‖tx‖ · ‖b(aσ)− b(tx̂)‖

)
.

By Claim 5.5, we have limσ∈Σ |tx̂− aσ|q = 0 and limσ∈Σ ‖b(aσ)− b(tx̂)‖ = 0 and

hence the claim holds. �

Claim 5.7. limσ∈Σ ‖Paσxσ − Paσx‖ = 0.
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P r o o f. We have

‖Paσxσ−Paσx‖ = ‖faσ(x̂σ− x̂)b(aσ)‖ 6 ‖faσ‖ · |x̂σ − x̂|q · ‖b(aσ)‖ 6 M2|x̂σ− x̂|q,

from which the claim follows since limσ∈Σ |x̂σ − x̂| = 0 as explained above. �

In order to finish the proof of the theorem, note that (5.4) and Claim 5.6

give

lim
σ∈Σ

(‖xσ − Paσxσ‖ − ‖x− b(x̂)‖) = 0.

Because τ is weaker than the norm topology, Claim 5.6 and Claim 5.7 give

τ -limσ∈Σ Paσxσ = b(x̂) and hence τ -limσ∈Σ(xσ − Paσxσ) = x − b(x̂). Thus

limσ∈Σ ‖(xσ − Paσxσ) − (x − b(x̂))‖ = 0, because ‖ · ‖ is τ -Kadec on F and

x − b(x̂) ∈ F . (If x− b(x̂) = 0, use the last displayed equation above instead of

this argument.) Therefore we have

‖xσ − x‖ 6 ‖(xσ − Paσxσ)− (x− b(x̂))‖ + ‖Paσxσ − Paσx‖+ ‖Paσx− b(x̂)‖.

Since all three of terms on the right tend to 0, we are done. �

Corollary 5.8. Assume X is a locally compact space such that C0(X)

has a τp-Kadec renorming and K is a compactification of X such that C(K \X)

has a τp-lsc LUR renorming. Then C(K) has a τp-Kadec renorming.

P r o o f. Define T : C(K) → C(K \ X) by setting Tf = f � (K \ X).

Then T is a bounded, pointwise continuous linear operator onto C(K \ X) and

ker T = C0(X). Thus C(K \X) is isomorphic to C(K)/C0(X). Apply Theorem

5.4 for E = C(K), F = C0(X) and τ , τ ′ the respective pointwise convergence

topologies. �
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