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1. Introduction. Let X be a Banach space. Let T be a tvs topology
on X weaker than the norm topology. The norm on X is called 7-Kadec if the
norm topology coincides with 7 on the unit sphere. When 7 is the weak topology,
the norm is simply said to be Kadec. In our setting we consider mainly spaces of
the form X = C(K) for some compact space K. We shall be interested primarily
in the question of when there is a norm on X equivalent to the supremum norm
which is 7,-Kadec where 7, stands for the topology of pointwise convergence,
referred to henceforth as the pointwise topology.

Raja has shown in [20] that the existence of a T7-Kadec renorming for X
is equivalent to the existence of a countable collection {4, : n € N} of convex
subsets of X such that the collection of sets of the form UNA,,, where U € 7, forms
a network for the norm topology. (A collection C' of sets in a topological space
is a network for the topology if every open set is the union of a subcollection
of C. In other words, C is like a base except that its members do not have
to be open.) It is not known whether the word “convex” can be omitted in
this characterization. The notion obtained by deleting convexity goes by several
names in the literature. Following [11] (where the notion was introduced), we say
that (X, 7) has a countable cover by sets of small local norm-diameter, or more
briefly (X,7) is norm-SLD, if there is a countable collection {A, : n € N} of
subsets of X such that the sets U N A,,, where n € N and U € 7, form a network
for the norm topology. The notion of norm-SLD is equivalent to the notion of a
descriptive Banach space introduced by R. Hansell in [9], as it is shown in [19].
It is shown in [12] that when K is an infinite compact F-space, then C'(K) is not
o-fragmentable, in particular C'(K) has no Kadec renorming.

In the paper [14], it is shown that for every compact totally ordered
space K, C(K) has a 7,-Kadec renorming. We shall show that the conclusion
remains true if K is an arbitrary product of compact linearly ordered spaces.
This improves the result in [3, Theorem 5.21(b)] (due to Jayne, Namioka and
Rogers for countable products, see [13, Remark (1), p. 329]) that for such a
product K, C(K) is norm-SLD in the pointwise topology. It is unknown whether
the existence of a 7,-Kadec renorming for each of C(K;) and C(K>) implies the
existence of such a renorming for C(K; x K3). Ribarska has shown in [22] that
if C(K;) has a 7p,-Kadec renorming and C'(K3) is norm-SLD in the pointwise
topology, then C'(K; x K3) is norm-SLD in the pointwise topology. We establish
that if C'(K) has a 7,-Kadec renorming and K, belongs to the class of spaces
obtained by closing the class of compact metrizable spaces under inverse limits of
transfinite continuous sequences of retractions, then C'(K; x K3) has a 7,-Kadec
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renorming.

In [18], the authors establish, under certain conditions, the three-space
property for a sequential version of the Kadec property. (A property of Banach
spaces is a three-space property if X has the property whenever Y and X/Y
do, where Y is a subspace of X.) A Banach space is said to have the Kadec-
Klee property if every weakly convergent sequence on the unit sphere is strongly
convergent. (The terminology is not used consistently in the literature. In
particular, in [5] a norm which has the Kadec-Klee property is what we have
called a Kadec norm.) A norm is locally uniformly rotund (LUR) if whenever x,,
n € N, and =z are on the unit sphere and lim ||z, +z|| = 2 we have limz,, = . As
pointed out in [1], if the norm in a Banach space X is LUR and 7 is a tvs topology
on X such that the unit ball is 7-closed (for example the weak topology), then the
norm is necessarily 7-Kadec. In [18], it is shown that if X is a Banach space, Y is a
subspace of X, Y has the Kadec-Klee property and X/Y has an LUR renorming,
then X has the Kadec-Klee property. We show, solving a problem raised in [18],
that the Kadec-Klee property can be replaced by the Kadec property in their
result. It is not known whether the existence of a Kadec renoming is a three-
space property. Ribarska has shown in [21] that being norm-SLD in the weak
topology is a three-space property. Her proof also shows that for spaces L C K,
if C(L) and Cy(K \ L) are norm-SLD in the pointwise topology, then so is C(K).

We write Isc, usc for lower semi-continuous, upper semi-continuous, respec-
tively. Given a map f: X — Y, a level set of f is any set of the form {z €
X: f(x) = yo}, where yg € Y is fixed. Given a normed space (X, || -||) we denote
by Bx and Sy the closed unit ball and the unit sphere of X respectively. A closed
(resp. open) ball centered at x and with radius r > 0 is denoted by B(x,r) (resp.
B(x,r)). Similarly, for a set A C X, B(A4,r) denotes {z € X: dist(z,4) < r} =
A+ B(0,r).

2. Preliminaries. We begin with a standard fact.

Proposition 2.1. Let K and L be compact spaces, and let ¢: K — L be
a continuous surjection. Then the map T: C(L) — C(K) defined by T(f) = f
is a linear isometry and a T,-homeomorphism onto its range. In particular, if
C(K) has an equivalent T,-Kadec norm, then so does C(L).

Proof. T is clearly linear. We have || T(f)|loo = ||[f¢lloo = ||.f]lco because
¢ is onto, so T"is an isometry. The fact that 7" is a 7,-homeomorphism onto its
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range follows from the fact that ¢ is onto and from the equality T'(f)(z) = f(¢x)
forze K. O

The following Proposition is given as [1, Proposition 1] for the case where
T is generated by a total subspace of X*. As pointed out in [20, Proposition 4],
the proof works for any linear topology.

Proposition 2.2. Let X be a Banach space whose norm is 7-Kadec.
Then the norm is T-lsc, i.e., the unit ball is T-closed.

Proposition 2.3. (Cf. [20, Lemma 1].) Let X be a Banach space, x €
Sx, T a weaker linear topology on X with respect to which the norm is T-Kadec
at xg (i.e., the norm and T neighborhoods of xy are the same). Then for any
r > 0, there exists § > 0 and a neighborhood U € T of xo such that

UNB(0,1+9) < B(xg,r).

Proof. Find a neighborhood W € 7 of z¢ such that WNSx C B(zg,r/2).
By the 7-continuity of the addition, there are V,V’ € 7 such that zg € V,0 € V'’
and V + V' C W. Fix 6 > 0 such that 6 < r/2 and B(0,5) C V’'. Then
VN (Sx +B(0,0)) C B(zg,r). Indeed, if y € V and ||y — z|| < § for some z € Sx
then z € (V + V') NSx C B(wo,7/2) so |ly — zoll < |ly — z|| + ||z — zo]| <
r/2 4+ < r. As closed balls are 7-closed (Proposition 2.2), we may assume that
VNB(0,1—3)=0. Then VNB(0,1+6) C B(xg,r). O

We shall need the simple facts about lower semi-continuous maps given
by the next three propositions and their corollaries.

Proposition 2.4. Let X be a topological space and let f,g: X — R be
functions whose sum is identically equal to a constant value k € R. For any
x € X, if f islsc at x, then g is usc at x.

Proof. Fix e > 0 and find a neighborhood V of x such that f(z') >
f(z)—efor 2’ € V. Thus g(2') = k — f(2') < k — f(z) + & = g(x) + € whenever
?eV. O

Corollary 2.5. Let X be a topological space.

(a) If f,g: X — R are Isc, then the restrictions of f and g to any level set for
f + g are continuous.
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(b) If fu: X — R, n € N, are nonnegative Isc functions such that ), . fn
converges pointwise, then the restriction of each fy to a level set for ) . fn
18 continuous.

Proof. (a) Applying Proposition 2.4 to the restrictions of f and g to a
level set S = {z € X : f(x) + g(x) = k} shows that because these functions are
Isc at every point, they are also usc at every point.

(b) Apply part (a) to f = foand g=3_, , fm. O

It will be useful to have a slightly stronger version of Corollary 2.5(b).

Proposition 2.6. Let X be a topological space, {fn}necw a sequence of
nonnegative Isc real-valued functions on X such that 6(x) = Y- . fa(2) is finite
for every x € X. Assume {x,}sexn is a net in X converging to x € X and
limyey 0(z,) = O(x) for every o € ¥. Then limyex, fr(z,) = fr(x) for every
kew.

Proof. Fix k € w and let g = Zn?ék fn- Observe that ¢ is Isc as
the supremum of a set of Isc functions. Fix € > 0. There exists o such that
O(xy) — 0(x) < €/2, fr(xg) > fr(z) —e and g(x,) > g(x) — /2 for 0 > 0¢. Fix
o > o and suppose fi(z,) £ fr(x) +e. Then

0(20) = fre(xo) + 9(x0) > fr(x) + €+ g(x) —e/2 = 0(x) + /2,

s0 O(xy) — O0(x) > /2, a contradiction. O

Proposition 2.7. Let X be a topological space, n € N, f;: X — R for
1<i<n. Letx € X. Suppose > f; <0, > fi(x) =0, and each f; is lsc at x.

Then each f; is continuous at x.

Proof. Fix i and € > 0. For y in some neighborhood of x we have

filz) —e < fily) < _Zj;éi fily) < — <Z]7$1(fj(x) —¢e/(n— 1))) = fi(z) +e.
(]

Corollary 2.8. Let X be a topological space, n € N, f;: X — R for
1<i<n, h: X —>R. Let x € X. Suppose Y, fi < h, > fi(z) = h(x), each f; is
Isc at x and h is usc at x. Then h and each f; is continuous at x.

Proof. fo+ -+ fu1—h <0, fo(x)+ -+ fn_1(x) —h(x) =0 and —h
islscat xz. O

An inverse sequence is a family of mappings pg: Xg — Xo, a < B <K,

where k is a limit ordinal, such that o < 8 < v = pgpg = pg. Usually, the
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maps pg are surjections. We refer the reader to [6, Section 2.5] for the basic

properties of inverse systems. We recall here some of the relevant terminology.

We write S = {Xa;pgz a < < Kk} and we call pg’s the bonding mappings
of S. The inverse limit of S, denoted by lim S is defined to be the subspace of the
product [ ], X consisting of all 2 such that pa(z(B)) = z(a) for every a < 8 <
k. If each X, is compact then lim S # (). If moreover each pg is a surjection then
the projection po: lmS — X, is also a surjection. From a category-theoretic
perspective, the inverse limit of S is a space X together with a family of continuous
maps (called projections) {po: @ < k} which has the property that for every
space Y and a family of continuous maps {f,: a < k} such that pg f3 = fa holds
for every a < 8 < K, there exists a unique continuous map h: Y — X such
that poh = f, for every @ < k. The limit is uniquely determined in the sense
that if X’ with projections pl,, @ < k, is another, then the unique continuous
map h: X' — X such that p,h = pl, for all @ < K is a homeomorphism. The
definition of lim S given above is one of the possibilities. We will use the property
that @{Xa;pgz a < (3 < Kk} is isomorphic to liLn{Xa;pg: a< B, a,f € C} for
every cofinal set C C k.

An inverse sequence S = {Xa;pgz a < B < Kk} is continuous if for every
limit ordinal § < & the space X; together with {p: o < §} is homeomorphic to
lim{X,;pa: o < B < 6},

A retraction is a continuous map f: X — Y which has a right inverse,
i.e. a continuous map j: Y — X with fj = idy. Note that j is an embedding
and f restricted to j[Y] is a homeomorphism.

Finally, we point out that many of our results about Banach spaces
equipped with a weaker linear topology 7 with respect to which the norm is
Isc have conclusions which assert the existence of an equivalent norm with a
certain property. In all such results, the assumption that the norm is 7-Isc can
be weakened to the assumption that the 7-closure of the unit ball is bounded,
since the Minkowski functional of this closure provides an equivalent 7-1sc norm.

3. Finite products of linearly ordered spaces. In this section we
show that C(Lg X --- X L,_1) has a 7,-Kadec renorming, whenever Ly, ..., L,_1
are compact linearly ordered spaces. In Theorem 4.9, this result will be extended
to arbitrary products.

Lemma 3.1. If X is a compact linearly ordered space, (Y,d) is a metric
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space, f: X — Y is continuous, and for each m € w we set

um(f) = sup{z d(f(a;), f(ait1)): ap < ap < ... < am},

<m
where 0 and 1 denote the first and last elements of X, then

lim vy (f) —om(f) = 0.

m—00

Proof. Fix € > 0. Let Z be a finite cover of X by open intervals I such
that f[I] has diameter < . Fix any m > |Z|. By compactness, we can choose

ap < a1 < ... < ap < Gy 80 that vy 1 (f) = Y0400 d(f(as), f(aig1)). For
some I € Z and ig < m + 1, we have a;,, ai,+1 € I. Suppose ig < m. Then

d(f(aiy), f(aig+1))+d(f(aig41)s f(@ig+2)) <dA(f(aio), f(aig+2))+2d(f (aiy), f(aig4+1))
<d(f(aiy), f(aiy+2))+2¢

and we get

om(f) = d(f(ao), fla1)) + -+ d(f(aiy—1), f(aiy)) + d(f(ai,), f(ais+2))
+d(f(aig+2), f(aig+3)) + -+ d(f(am), f(am+1))
> Y d(f(a), fain)) — 2

<m—+1
= Um—i-l(f) — 2,

which gives 0 < vy41(f) — v (f) < 2e. If 99 = m, replace the triple (f(ai,),
flaig+1), flaig+2)) by the triple (f(aiy—1), f(aiy), f(aiy+1)) in the argument
above. O

Let L be alinearly ordered space. We say that points x,y € L are adjacent
if x # y and no point is strictly between z, y.

Theorem 3.2. Assume L;, i < n are compact linearly ordered spaces and
D; C L; is dense in L; and contains all pairs of adjacent points for each i < n.
Then C([1;.,, L:) has an equivalent ,(D)-Kadec norm, where D =[], D;.

(See Theorem 4.9 for the case of arbitrary products.)
Proof. For f € C(]],., L:), we will need to consider expressions of the
form

(3.1) flxo, @1, X1, Q) Tpa 1y -y Tp_1)-
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For notational convenience, we sometimes permute the arguments so that a comes
first. Letting hg: L X [[,c), ek Lo — [1¢cp, Le be given by

hk‘(aa LOyL1yeee sy Th—1Lh+1y--- 71'71,—1) — (:L‘O?:El?' oy Ll—1, Gy Th41y- - axn—l)a

we can then write

f(hk‘(aa LOyL1yeeey Th—1,Lh+1y--- al‘n—l))

instead of (3.1).
For each k < n and m € w, define vf,(f) on C([],_,, L;) by letting

507 =sup{ 37 I (laf, ) = Fhuafin, )l af <. < aly ).
i<m
The function vf, is a 7,(D)-lsc seminorm and

lim vk (f) — ok (f) =0,

m—0o0

by Lemma 3.1.
Define |- | on C(]],.,, L) as follows.

1=l + 30 3 v

k<n me

It is readily seen that |- | is a norm on C([[,., L;) and is equivalent to the
sup norm. We now verify that it is a 7,(D)-Kadec norm. Since the terms in the
definition of | f| are all 7,,(D)-lIsc functions of f, Corollary 2.5(b) implies that they
are all 7,,(D)-continuous functions of f when restricted to S := {f: |f| = 1}. Fix
feSande>0.

For each k < n, the map = — f(hg(x, -)) is continuous (with the norm
topology on the range), so there is a finite collection Zj of open intervals covering
Ly, such that the diameter in C([[,,, y4 Le) of {f(hi(z, -)): « € I} is less than
e for each I € Zj,. We may assume that inf I € Dy U{0} and sup! € D, U{1} for
each I € Zy,. Let Ap ={infI: [ € Ty} U{supI: I € Z;}. Then Ay C Dy U{0,1}.

Let m € w be such that for each k < n, vf_ (f) — vk (f) <e.

For each k < n, fix a’é < a’f <...< afn in D;, such that

< NIf(h(ak, ) = F(h(aFyy, ))loo + 6,

<m
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where § = &/(m +4). Let Hy = {a¥: i <m} U (A, N Dy).
Fix a 7,(D)-open neighborhood U of f such that for g € SN U we have,
for all k < n, that v¥,_;(g) is strictly within e of v%_,(f) for i < 3. This gives

[Umyi(9) = v (Nl < and o, (f) —vp(Hl <e

and hence
ok, 1i(9) — v ()] < 2.

For each k < n and for each pair of elements a < b of Dy, choose x = x’;’b
and y = ysjb in D such that z(k) = a, y(k) = b, x(¢) = y(¢) for all £ # k and

1f (hi(a, -)) = f (P (b, ))lloo < [f(x) = Fy)] + 6.

Write
Hyp=HyU{z(k): 2 = wf;’b or z = ygb for some ¢ < n and some a < b in Hy}.

Then Hj, C Dy. Let g € U agree sufficiently closely with f on H = [licn Hy, so
that |g(h) — f(h)| < e for each h € H and the following condition is satisfied.

Y Y

(x) For each k < n, for each i9 < m, and any choice of elements of Hy of the
form

af, =by <by <by<bg=aj

we have, for each jy < 3,

k
Z!g(xaw+ 9wk o I+ D 1908, 4,,0) = 908, 1,0,

i#ig J#Jjo
> Z |f(xk ok ak, yak ak )|+ Z FACSNY) (yb b))l — &
1#£i0 J#Jo

Assume also that for each & < n we have

k
) Do e ) = 90, )l > D g ) = Fgi ar ) — =

i+1
<m <m

From (x) it follows that for any x € [bj,, bj,+1], writing

s = [[f(hw(bjo, -)) = f(hwe(2, - )lloo + 1f (e, -)) = f(ha(bjor1; - )loo
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and

t = 1lg(hr(bjs, ) — g(ha(x, -))lloo + lg(he(z, -)) — g(hr(bjo+1, ) lloo

we have

() F2e—t > uhglg) —t

> > llg(hw(af, ) = glhilafy, ))loo
ii0
+ > gh(b, ) = g(ha(bisn, )lloo
J#jo
2 Z lg( ffak ak 1 (yak ab )|+ Z lg(x bj,le) g(ygj,ijﬂ
i#i0 J#Jo
o S ) T )+ S G ) Fh ) e
%10 J#jo
> Z(Hf(hk(af, ) = f(h(agirs -))lloo — 0)
110
+ ( > £ by, ) = F(ha(bjar, )l — 6) + 8) —s—¢
J#jo

Z Z Hf(hk(afv ’ f(hk( Aiy1, ))HOO —8§—&— (m+3)6

> oF(f) —s5—2
and hence t < s+ 4e, i.e., for any = € [bj,, bjo+1],

(%) [|g(h (bjgs +)) = g(hi(, ) oo + Nlg(he(z, -)) = 9Pk (bjo+1, +))llo
< |[f(h&(bjo, +)) = f(h(@,  )lloo + [1f (hr(z, ) = f(hr(bjor1, ) lloo + 4e.

Consider a point p € [],,, Lx. Define
T=1{k<n:p, & Hy}.

We will show by induction on r = |T'| that |g(p) — f(p)| < (7r + 1)e. This is true
if = 0 since then p € H. For the inductive step, suppose |T'| = r+ 1. Choose an
open neighborhood of p of the form [], ., I, where I}, € Z;, for each k < n. For
each k < n, let —1 <ig(k) < m be such that ak( k) S Dk S ak o (k)41 where a* | =
0, aF, . = 1. Define ry = max{afo( J» inf I} and si, = mln{a o (k)+1> SUP It.}. Pick
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any k € T. Assume first that —1 < ig(k) < m, so in particular 7y, sy € Dy and
hence 71, s € Hy. If q1, g2 denote the modifications of p obtained by replacing
the k-th coordinate of p by r; and sj respectively, then |g(q;) — f(q:)| < (Tr+1)e,
i = 1,2, by the induction hypothesis. Using (**) with jo =1 and “a* o (k) <rg <

pr < s < afo(k)H” in the place of “a k =bp <y <z <by<b3= afoﬂ” we get

19(q1) — g + l9(p) — g(a2)] < [lg(hr(rr, -)) — g(hi(Pr; +))lloo
Hlg(hi (ks +)) — g(hi (s, ) oo
< |[f(Pwe(res ) = f(hi(Prs )0
HIf (hi (P> ) — f(hr(sks -))lloo + 4e
< 6e

and hence
lgp) — f(P)] < l9p) —g(a)l + lg(q1) — f(g)| + |f(q1) — f(p)]
< be+(Tr+e+e=(7(r+1)+1e.

Assume now that ig(k) = m (the case ig(k) = —1 is similar). We have af <
- < aF < pp. Let g denote the modification of p obtained by replacing the k-th
coordinate with a¥,. Then

1f(q) — f(p)| < Hf(hk( Uy ) — f(hk(l?m ‘))||oo
<vb () = D If(helaf, ) = F(halafir, )l

<m

< g (f) — vk (f) + 6 < 2.

Similarly, using (*1), we get

l9(q) — g(p)| < Hg(hk( Uy ) = 9P (Pres )00
<vb(9) =D llgthe(al, ) — g(he(afis, )llo

<m
<vfn+1 +€—Z|g$k k)T (y§57a5+1)|
’L<m
<Ufn+1 +5—Z|f$k kﬂ (yakak )"1‘5
'L<m
k k
<yt (F) = Y I (hilaf, ) = fhr(afiy, -))lloo +mé + &
<m

<vF 1 (f) — ol () + (m + 1) + 2 < 4e.



238 Maxim R. Burke, Wiestaw Kubis, Stevo Todorcevic¢

Thus |f(p) — g(p)| < 6e + |f(q) — g(q)| and by the induction hypothesis, |f(q) —
9(q)| < (7r + 1)e. Hence also in this case we get |f(p) — g(p)| < (7(r +1) + 1)e.
Finally, ||f — g]lcc < (7n + 1)e which completes the proof. O

Remark 3.3. The above result is no longer valid if we drop the
requirement that the sets D; contain all pairs of adjacent points. For example,
if L is the double arrow line and D is a countable dense set then 7,(D) is
second countable, while C'(L) is not second countable, and the same is true when
restricted to any sphere of C'(L).

We also cannot replace the assumption on the sets D; by “dense countably
compact”. It is shown in [3, Example 5.17] that the space of continuous functions
on D = (w1 + wi)“! endowed with the topology induced by the lexicographic
order (wi means wy with the reversed order) is not norm-SLD for the pointwise
topology. In particular, it has no 7,-Kadec renorming. On the other hand, D
is a countably compact linearly ordered space. If we take L to be the Cech-
Stone compactification of D, then L is linearly ordered—it is obtained from the
Dedekind completion of D by doubling the points which are not endpoints and
are not in D—and C(L) is isomorphic to C(D) via the restriction map. Since this
map is also a (7,(D), 7p)-homeomorphism, C(L) has no 7,(D)-Kadec renorming.

4. Inverse limits and projectional resolutions of the identity.
In this section we show the existence of a 7,-Kadec renorming on a space C'(K)
when K is a suitable inverse limit of spaces K’ for which C(K’) has a 7,-Kadec
renorming. As an application, we obtain in particular that C'(K x L) has a
7p-Kadec renorming, whenever C(K) has a 7,-Kadec norm and L is a Valdivia
compact space.

We begin with a technical lemma inspired by a very useful result of
Troyanski. (See [5, VII Lemma 1.1].)

Lemma 4.1. Let (X, ||-||) be a Banach space and let T be a linear topology
on X such that the unit ball of X is T-closed. Fix a function h: N — N. Suppose
there are

(a) families Fo, F1,... of bounded (1, T)-continuous linear operators on X such
that for each n, F, is uniformly bounded,

(b) for each T € U, cny Fn, an equivalent 7-Kadec norm |- |7 on the range of
T, and
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(c) for eachn € N and T € F,, a set Sp(T) C FoU---UF, of cardinality at
most h(n),
so that

(d) for each © € X and each € > 0, we can find n € N and T € F,, such
that ||x — Toz|| < e for some Ty € S, (T) and |Txz|p > sup{|T"z|p: T" €

Fo, T' #T}.
Then there exists an equivalent T-Kadec norm on X.
Proof. We may assume that |- |7 < | - || for each T' € | J,,, Frn- Define

1
[@lkn = sup{|Talr + - > T2l +|le = T'2||: T € F}
T'€Sn(T)

and

2| = llz] + Y Brnlzlin,

kn<w

where (1., > 0 are such that Bgn|2|r, < 27*+™)||z||. (These constants exist
because for each fixed n, the operators in F,, are uniformly bounded and the sets
Sp(T), T € F,, are bounded in cardinality.)

It is clear that |- | is equivalent to || - ||. We will show that |- | is 7-Kadec.
It is 7-Isc since || - || and all the |- |5, are (use (b) and Proposition 2.2). Thus,
by Corollary 2.5(b), on S := {z € X: |z| = 1}, each of these functions is 7-
continuous. Fix z € S and € > 0. By (d), there are n € N and T € F,, such that
|z — Tox|| < e for some Ty € S,,(T) and

§ = |Tx|r —sup{|T'z|7: T' € Fp, T' # T} > 0.

Choose k so that

@snp{Q\T’H +1: T € FoU---UF,}-|lz|| <é.

Then )
2|k = |Tx|7 + % Z T x| + ||l — T'z||.
T'€Sn(T)
(To see this, consider the effect on the expression on the right-hand side of the

equation of replacing T' by some other T € F,. The first term drops by at least §
(by definition of 0). By the choice of k, the second term cannot make up for the
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decrease.) By Proposition 2.3. and the (7, 7)-continuity of Tj, there is an 7 > 0
and there is a U € 7 containing « such that if |Toy|z, is within n of |Thz|zn, and
y € U then ||T0y — T()SL'” <e.

From the 7-Isc of each of the terms in the expression for |z ,, as functions
of  and the 7-continuity of | - |5, on S, it follows from Corollary 2.8 that y —
|Toylr, and y — ||y — Toy|| are continuous at = on S. Thus, by shrinking U to a
smaller 7-neighborhood of x, we may arrange that y — |[Toy|r, and y — ||y —Toy||
vary by less than min{n, e} on UNS. Since ||z—Tyzx| < &, this means in particular
that ||y — Toy|| < 2 for y e U N S.

For y e UN S, we have

ly — x|l < lly — Toy|| + | Toy — Tox|| + || Tox — z|| < 26 + &+ & = 4e.

This completes the proof. 0O

Remark 4.2. The above lemma, as well as its corollaries, could be
stated in a more general form saying that on each T'X there is a weaker linear
topology 77 for which T is (7, 77)-continuous and T'X has a 7p-Kadec renorming.
The proofs require only minor changes.

Theorem 4.3. Let X be a Banach space and let {P,: X — X }nen be
a uniformly bounded sequence of projections such that |, .y PoX is dense in X.
Let 7 be a weaker linear topology on X such that the unit ball is T-closed. If
for each n € N, P, is (1, 7)-continuous and there exists a T-Kadec renorming of
P, X, then there exists a T-Kadec renorming of X.

Proof. We apply Lemma 4.1 with 7, = {P,} and S,(P,) = {P,}.
Condition (d) of Lemma 4.1 reduces in this case to the fact that for every x € X
and ¢ > 0 there exists n € w such that ||x — P,z|| < e. To see that this is true,
fixx € X and e > 0 and set § = ¢/(1+ M), where M is a constant which bounds
the norms of all P,’s. Then, by assumption, there are n € N and y € P, X such
that ||z —y|| < 0. We have y = P,y and hence ||Poxz —y|| < | Pl - ||z —y|| < M.
Thus

|z — Poz|| < ||z —yl| + |ly — Poz|| <0+ M =e. O

Theorem 4.4. Let (X,||-||) be a Banach space and assume that {T,: X —
X}a<k is a sequence of uniformly bounded linear operators on X such that for
each x € X,

(i) the sequence {||Tox||}a<x belongs to co(k),
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(ii) for every e > 0 there exists a finite set A C k such that

H:z: — Z Tyx
acA

<

(ili) ToX NTpX = {0} whenever o # 5.

Assume further that T is a linear topology on X such that the the unit ball of
X is 7-closed and for each o < k, T, X has a T7-Kadec renorming and T, is
(1,7)-continuous. Then X has an equivalent T-Kadec norm.

Proof. Let Qa =) c4Ta and define F,, = {Qa: A € [k]"}, S(Qa) =
{Qu: A C A} (so S(Q) has cardinality at most 241). If ||-||, is a 7-Kadec norm
on T, X then || - |g, = > qea |l - la is a 7-Kadec norm on Q4 X. We may assume
that || - ||o < || - || for each o < k. We need to check condition (d) of Lemma 4.1.
Fix z € X, e > 0. By (ii) there exists Ay € [k]<“ such that ||z — Qa,z|| < e. By
(i), there exists a finite set A D Ay such that

max || Tox||o < min [|[Th2||q-
ag¢A acA

It follows that ||Qax|q, > sup{||@pz|q,: |B] = |A] & B # A}. Thus, by
Lemma 4.1, we get a 7-Kadec renorming of X. O

Theorem 4.5. Assume X is a Banach space and {Pq: X — X}agy i
a sequence of projections such that

(a) Py =0, P; =idg and PgP, = P, = P,Pg whenever a < f < k.
b) There is M < 400 such that ||P,|| < M for every a < k.

(b) Y

(c) If A<k is a limit ordinal then J;_, PeE is dense in P\E.

Assume that T is a linear topology on X such that the unit ball of X is T-closed
and for each o < K, (Py+1 — Pa)X has a 7-Kadec renorming and Pyi+1 — Py is
(1,7)-continuous. Then X has a T-Kadec renorming.

Proof. Let T, = Py+1 — P,. A standard and well known argument (see
e.g. [5, pp. 236, 284]) shows that {7}, }o<x satisfies the assumptions of Theorem
4.4. We write out the proof of condition (ii) for the sake of completeness because
it is not given explicitly in [5].

Proceed by induction on limit ordinals A < k. If A = w then P,z =
lim, oo Por = ), c,(Poprz — Pux) = > o Thx (recall that Py = 0), so
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>on <k Tnr can be taken arbitrarily close to P,x. Now let A > w and assume
the statement is true for limit ordinals below A (and for every € > 0). There
exists §o < A such that |Pxz — Pgz|| < €/2 for £ > &. If there is a limit ordinal
0 such that £y < 8 < A then, by induction hypothesis

(o * %) HPgaf— ZTaw

acA

’ <e/2.

for some finite set A C 3 and we have ||[Pyxz — > 4 Tox|| < e. Otherwise, & =
B4n, where > w is a limit ordinal and again (*#x) holds for some finite set A C
B. Now we have Pgi,x — Pgx = Z’B+n ' T,z and hence ||Pyz — Y wen Taz| <
| Prnz—Ppynz||+||Pgz—>"nca Tar| <€, where B = AU{B,B+1,...,6+n—1}. O

A sequence {P, : a < k} satisfying conditions (a), (b) and (c) of the above
theorem with M = 1 and such that the density of P, X is < |a| + Ry, is called a
projectional resolution of the identity (PRI) on X, see [5] or [7].

The following proposition is a purely category-theoretic property of inverse
limits. It is standard but we do not know a reference for it, so we write out the
proof.

Proposition 4.6. Let {Xa;pg' a < 3 < Kk} be a continuous inverse
sequence of topological spaces such that each p&+!
projections {pa: a < K}, be the inverse limit of the sequence. Then there exists
a collection of continuous embeddings {zg Xo — Xgla<p<n, such that

1$ a retraction and let X, with

(1) pgzg—ldxa forall o < B < Kk and zyzg—za foralla <~y < f < k.
Moreover, there exist continuous embeddings io: X, — X such that
(2) paia =idx, and igig =iy, whenever a < B < K.

Proof. We can treat (2) as a special case of (1) by allowing 8 = & in
(1) and setting X,, = X and pf = p, for a < k. We construct the maps i by

induction on # < k. Assume zg have been constructed for every & < n < 3; for

convenience we set zg = idx,. Suppose first that 3 is a successor, i.e. =20+ 1.

Fix any continuous map @ 6+ Xs — X541 which is a right inverse of p‘s"'1

For o < 6, define i1 = z§+1 i® . To see that (1) holds, observe that

5+1 5+1 o 6+1 5+1 5 5. 0+1 6+1 5 .
Do o = Pa = DaPs = pdid =idx,,

and

5+1 0150y 01,6 o4
by =l YaTl o=l -
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Suppose now that § is a limit ordinal. Fix o < . Observe that for
a < €< n < we have
plit, = plidis, =i,
Since X3 together with {p?: € € [, B)} is the limit of {Xg;pg: a<§<n<pl

there exists a unique continuous map zg Xo — X such that

plin =4
holds for every £ € [, 3). In particular pgzg = idx,. Thus we have defined

mappings ig, for a < (. It remains to check that zgzl =i for a < v < B. To

see this, observe that for £ € [y, 3) we have
Pe(ii) = 5% = i,
and for £ € [a,y) we have

pe(i8i7) = plpf(iil) = plil, = 5.

Since 72 is the unique map satisfying pg i =i, for € € [a, ), we get zgzg =i 0O

Lemma 4.7. Let {K;p, : a < k} be the inverse limit of the continuous
inverse sequence of compact spaces

{Ka;pgz a< <k}

a+1

o are retractions.

in which the bonding maps p

(a) If for each o < K, C(Kq) has a 1p-Kadec renorming, then C(K) has a
Tp-Kadec renorming.

(b) Let {i’: a < B < K} and {iq: o < K} be collections of right inverses
satisfying (1) and (2) of Proposition 4.6. Assume that D C K is dense, and
for each o < K, iapa[D] C D and C(K,) has a 7,(pa|D])-Kadec renorming.
Then C(K) has a 1,(D)-Kadec renorming.

Proof. (a) (Cf. the proof of [5, VI Theorem 7.6].) Let {i53: a < 8 < K}
and {i,: o < k} be collections of right inverses given by Lemma 4.6. Let R, =
iaPa- Ra is a retraction of K onto i, [K,]. If a < [ then

RoRp = ia PaipgPp = ia PO P3isps = ia Popg = iaPa = Ra
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and

RgRo = igpgiaPa = iapaisit pa =il po = ia Pa = Ra-

We also have R,R, = R,,.

Let P,: C(K) — C(K) be given by P,(f) = fRa.

C(K,) can be identified with the range of P, via the linear map 7" defined
by Tg = gp.. T is norm-preserving, and in particular one-to-one, because p,
maps onto Ko. From Tg = gpa = gpaiaPa = gPaRa = Puo(gpa) and Py (f) =
fRo = fiapa = T(fia), we see that the range of T"is indeed the same as the range
of P,. Note that T~1(h) = hi,. T is a 7,-homeomorhism because for x € K and
y € Ko, the maps g — (Tg)(z) = g(paz) and h — (T~ h)(y) = h(iay) are 7,
continuous. It follows from our assumption that the range of P, has an equivalent
Tp-Kadec norm.

Then {P,: a < K} is a sequence of projections of norm one satisfying the
condition

a< ff = Papﬁ = PBPQ =P,.

For any z € K, the map f — P,(f)(x) is 7p-continuous since it coincides with
f+— f(Razx). Hence, P, is (7, 7p)-continuous.

We now check that (J,.5 PoC(K) is dense in P3C(K) for every limit
ordinal f < k. It will then follow that {P,}.<, satisfies the assumptions of
Theorem 4.5 and the proof of (a) will be complete. We show that for each
f e d(K),

lim, Pa(f) = P(1).

Fix ¢ > 0. K3 has a base consisting of open sets of the form (pﬂ)_l[U] where
a < 3 and U is open in K,. Hence, Kz is covered by finitely many such sets
on which the oscillation of fig is at most €. By replacing the finitely many o’s
involved here by the largest of them, we may assume that they are all equal to
some o < . (If @« < o/ < 8 and U is open in K,, then since pg = pg/pg,, we
have (ph)~1[U] = (pg,)_l[V] where V' = (p%)~}[U].) Thus we have open sets

Ui,...,U, in K,, such that the sets

®5,) A, - (0,) " U]

cover Kg and on each of them the oscillation of fig is at most €. For any «
such that ap < o <  and for any = € K, letting j € {1,...,n} be such that
Pay () € Uj, we have

P (18pa(2)) = P2, pa(T) = pay(2) € Uj
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so that
igpa(l') € (pgo)_l[Uj]'
Clearly we also have

ps(x) € (P2,) U],

and hence

|Pa(f)(z) — Ps(f) ()| = |fRa(z) — fRs(x)| = |f ia palz) — figps(a)]
= |fig(iapa(x)) — fis(ps(x))| < e

This completes the proof of (a).

The proof of (b) is obtained by making suitable adjustments to the proof
of (a). We check that T is a (7p(pa[D)]), Tp(ia Pa[D]))-homeomorphism. When
de D, g— (T9)(iapald) = g(Paiapa(d)) = g(pa(d)) is 7 (pa[D])-continuous
and h — (T71h)(pa(d)) = h(iapa(d)) is 7p(ia pa|D])-continuous. Hence, our
assumption gives that the range of P, has an equivalent 7,(iq po[D])-Kadec norm.
It follows that the range of P, has an equivalent 7,(D)-Kadec norm. For any
d € D, the map f — Po(f)(d) = f(Ra(d)) = f(iapa(d)) is 7p(D)-continuous.
Hence, P, is (1,(D), 7,(D))-continuous. Finally, the fact that D is dense ensures
that the unit ball of C(K) is 7,(D)-closed. The rest of the proof is as for (a). O

Given a family of spaces {Xq}a<k, their product [], ., Xq is the limit
of a continuous inverse sequence of smaller products H§ <o X¢, with the usual
projections as bonding maps. This leads to the following.

Corollary 4.8. Let {K,: a < Kk} be a family of compacta and assume
that for every finite S C &k, C(][,eq Ka) has a T,-Kadec renorming. Then
C([la<s Ka) has a Tp-Kadec renorming.

Proof. Proceed by induction on the cardinality of the index set, which
we can assume is infinite. The induction hypothesis ensures that for each 3 < &,
C([l,<p Ka) has a 7p-Kadec renorming. Now apply Lemma 4.7(a). O

In [13] an analogous result on the o-fragmentability (with a version on
LUR renormability) of products is proved. In [2] it is shown that the property of
having a 7,-Isc LUR renorming is productive in the sense that C([],., K«) has
a Tp-Isc LUR renorming if (and trivially only if) each C(K,) has a 7,-Isc LUR
renorming. It is unknown whether the property of having a 7,-Kadec renorming
is productive in this sense.

Lemma 4.7 allows us to generalize Theorem 3.2 to infinite products.
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Theorem 4.9. Let {L,: a < k} be a collection of compact linearly
ordered spaces and for each a < K let Dy, be a dense subset of L., which contains
all pairs of adjacent points. Then C([][,., La) has an equivalent 7,([ [ <, Da)-
Kadec norm.

Proof. Proceed by induction on the cardinality of the index set. Theo-
rem 3.2 takes care of the case kK < w. Assume that  is an infinite cardinal and
write K = [],., Lo and K, = H§<a L¢ for o < k. Note that K, equipped with
the usual projections p,: K — K., is the inverse limit of the continuous inverse
sequence {Ka;pgz a < 3 < Kk}, where the pg’s are the usual projections. Fix a

base point d,, € D, for each a@ < k. For a < 8 < k, define embeddings
0.
da: [lecabe = Tlecp Le

by ia(z)(€) = z(€) for £ < a and i (z)(€) = d¢ for o < € < . By the induction
hypothesis, C'(K,) has an equivalent Tp(Hg <o D¢)-Kadec norm for each a, . The
assumptions of part (b) of Lemma 4.7 are satisfied with D =[], Do. O

Denote by R the minimal class of compact spaces which contains all
metric compacta and is closed under limits of continuous inverse sequences of
retractions. More formally, R is the smallest class of spaces which satisfies the
following conditions:

1. Every metrizable compact space is in R.

2. If S = {X,; Plia<fB< K} is a continuous inverse sequence such that each
X, is in R and each po+t!

T is a retraction, then every space homeomorphic
to lim S belongs to R.

Note that every Valdivia compact space belongs to R (see e.g. [15]). Also, for
every ordinal £, the compact linearly ordered space £ + 1 belongs to R. If £ > N,
then & + 1 is not Valdivia compact (see [15]). It is easy to see that class R is
closed under products and direct sums.

Theorem 4.10. (a) Assume K is a compact space such that C(K) has
a Tp-Kadec renorming and assume L € R. Then C(K x L) has a Tp-Kadec
TENOTMING.

(b) For every L € R, C(L) has a Tp-lsc LUR renorming.

Proof. (a) Denote by Ry the class of all spaces L € R such that C(K x
L) has a 7,-Kadec renorming. It suffices to show that R, contains all metric
compacta and is closed under limits of continuous inverse sequences of retractions.
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The latter fact follows from Lemma 4.7, because if L = h(_m{La; pg: a< <k}
then K x L = @{K X La;qg: a < < Kk}, where qg =idg xpg. It remains to
show that R¢ contains all metric compacta. As every compact metric space is a
continuous image of the Cantor set, it is enough to show that C'(K x 2“) has a
Tp-Kadec renorming.

We have 2¢ = lIm{2";pj*: n <m < w} so

K x2¢ =lim{K x 2";¢;": n <m < w},

where ¢ = idg xp)'. Clearly, C(K x2") has a 7,-Kadec renorming being a finite
power of C'(K), so again Lemma 4.7 gives a 7,-Kadec renorming of C(K x 2¢).

(b) It is enough to check that the class of all compact spaces K for which
C(K) has a 7,-Isc LUR renorming is closed under inverse limits of retractions.
Assume K = liLnS, where S = {Ka;rg: a < < Kk} is a continuous inverse
sequence of retractions and for each o < k, C(K,) has a 7,-Isc LUR renorming.
As in the proof of Lemma 4.7(a), there is a sequence of projections {P,: o < K}
on C(K) such that P, is adjoint to the retraction r,: K — K,. Now apply
Proposition VII.1.6 and Remark VII.1.7 from [5] to obtain a 7)-lsc LUR renorming
of C(K). In fact, [5, Proposition VIIL.1.6] deals with projectional resolutions of
the identity, but no assumption about the density of im P, is used in the proof. O

Remark 4.11. Note that by Proposition 2.1, Theorem 4.10(a) applies
also when L is a continuous image of a space from R. (If L’ is a continuous image
of L, then K x L’ is a continuous image of K x L.)

Example 4.12. In [23] an example of a compact, non-separable ccc
space of countable m-character which has a continuous map onto the Cantor set
in such a way that the fibers are relatively small linearly ordered spaces (their
order type is an ordinal less than the additivity of Lebesgue measure). This space
belongs to R.

As in [23], we use Boolean algebraic language and work with the Boolean
algebra whose Stone space is the required example.

Let N denote the set of positive natural numbers and denote by N[i] the
set of all numbers of the form 2(2j — 1), where j € N. Define K = {z C
N: (Vi) |z]i]| < i}, where z[i] = = N N[i], and

Z ={x € K: lim |z[i]|/i = 0}.
Denote by C* the almost inclusion relation, i.e. a C* b if a \ b is finite.

Define
T={(t,n):neN, te K and t C n}.
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We are going to define a subalgebra of P(T")/ fin, where fin is the ideal of finite
subsets of T'. Let

Tiny={(s,m) €T:m>nand sNn =t}

and
T, ={(s,m) €T:anmC s}.

Define By to be the subalgebra of P(T')/fin generated by the classes of the sets
Ti4,n), (t,;n) € T. Then By is a countable free Boolean algebra. In what follows
we shall identify subsets of 7" with their equivalence classes in P(7")/fin. The
context should make it clear when classes are intended.

By [8, p. 151], there exists a sequence A = {a,: o < K} of elements of Z
such that « < 8 == a, C* ag and for every a € K there is a < k such that
aeo, €* a. Moreover k equals the additivity of the Lebesgue measure, so k > Rg.
Let B, be the subalgebra of P(T)/ fin generated by

BoU{T,:aec K& (I <a)a="ag}

Finally, let B = (J,,.,. Bo and let X be the Stone space of B. It has been shown in
[23] that X is a non-separable ccc space with countable m-character. Moreover,
the inclusion By C B induces, by duality, a map from X onto the Cantor set such
that all fibers are well-ordered of size < k.

Theorem 4.13. X € R and consequently C(X) has a Tp-lsc LUR
TENOTMING.

Proof. We will show by induction on o < & that Ult(B,) € R for every
a < k and that each quotient mapping r: Ult(B,41) — Ult(B,) induced by
B, C B,41 is a retraction. The latter property is equivalent to the existence of a
retraction h: By4+1 — By, i.e. a homomorphism such that h [ B, = idp,,.

Fix a < k and assume Ult(B,) € R. Given Boolean algebras A C B and
x € B\ A we will denote by A[z] the algebra generated by AU {z} (A[z] is called
a simple extension of A). Note the following

Claim 4.14.  Assume a C o' are in K and o' \ a is finite. Then
Ty € Bo[Th].

Proof. Let n € w be such that '’ \a Cn. Let S ={s Cn: s € K and
a'Nn C s} Then Ty = To MU es Tsmy)- O

Define Ba+1 =B, and ]E%Zﬂ =B 1 [To,\n]- By the above claim, B,y 1 =
Unew B 1. We need to check that B, is a retract of BT ] and that Ult(B"*1) €
R for every n > —1.
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Note that, by Sikorski’s extension criterion (see e.g. [17, p. 67]), if A is a
Boolean algebra and A[z] is a simple extension of A then A is a retract of Alx]
iff there exists ¢ € A such that for every ag,a; € A with ag < = < a; we have
ap < ¢ < aj. This holds for example, if {a € A: a < 2} has a least upper bound
in A.

We will need the following easy fact about our Boolean algebra. We leave
the verification to the reader. Part (a) is like Claim 1 from the proof of [23,
Theorem 8.4].

Claim 4.15. (a) The sets T, N T{ ), where a =" ag¢ for some § <
are dense in B,,.

(b) For every nonnegative integer n, every element of By | is a finite sum
of elements of the form T, NT(y )y N =Ty, N --- N =Ty, _,, where b; =" ay, for some
ni < o and a =* a¢ for some { < a or a =aq \ i where i < n.

(¢) Ifr =Ty NTyp) and Op <z < T}, then b CaUt.

We consider separately the cases n = —1 and n > —1.

Case 1. n = —1. By Claim 4.15 (a) and (c), no non-zero element of B,
is below T, . Thus B, = IB%;}H is a retract of BY ;. To see that Ult(B2,,) € R
it is enough to show that B, /7 is countable (and hence its Stone space is second
countable), where Z = {z € B,: 2 N T,, = Og}, because Ult(BY, ;) is the direct
sum of Ult(B,) and Ult(B,/Z). Let ¢: B, — B, /Z be the quotient map. Observe
that for £ < «, Q(Tagﬁaa\n) = lp, /1, because T, < To.na,\n- Now, by Claim
4.14, B, is generated by Bo U {T,: a = agNas \n & n € w & { < a}. It follows
that B, /Z is countable.

Case 2. n > —1. By Claim 4.15, we have sup{z € B}, ,;: v < Ty, \n} =
Ty\(n-1) € By Hence By, is a retract of Bgﬁ In order to see that
Ult(IB%Zﬂ) € R it is enough to show that, as in Case 1, the quotient algebra
Bf 1 1/Z is countable, where Z = {z € By, ;: N T, \, = Op}. This can be done
by an argument similar to the one used as in Case 1. We now have new generators
of the form T, \;, i < n, but only finitely many of them, so the quotient By, ;/Z
is still countable. O

Remark 4.16. If the additivity of the Lebesgue measure is > N5 then
the space X from the above example is not a continuous image of a Valdivia
compact space. Indeed, let k denote the additivity of the Lebesgue measure
and suppose that X is a continuous image of a Valdivia compact space. Let
h: X — 2“ be a continuous map such that all fibers of A are well ordered of order
type < k (see [23]). One can show that in fact there are fibers of arbitrary large
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order type below x (see the proof of Claim 4 in [23, p. 74]). Hence, assuming
K > Vg, there is p € 2¢ such that F' = h~!(p) has order type > Ry. Observe that
F is a G5 subset of X and therefore it is also a continuous image of a Valdivia
compact space (see [15]). On the other hand, a well ordered continuous image of
a Valdivia compact space has order type < g (see [16]).

It can be shown that X is Valdivia compact if kK = R;. We do not know
whether X is Valdivia compact if k = No.

5. A three-space property. We show that the three-space property
for Kadec renormings holds under the assumption that the quotient space has
an LUR renorming. This solves a problem raised in [18] where it is shown that
a Banach space E has a Kadec-Klee renorming provided some subspace F has a
Kadec-Klee renorming and E/F has an LUR renorming.

We begin with an auxiliary lemma on extending Kadec norms.

Lemma 5.1. Let E be a Banach space and let F' be a closed subspace
of E. Assume T is a weaker linear topology on E such that F and the unit ball
of E are T-closed and F has an equivalent T-Kadec norm. Then there exists an
equivalent T-lsc norm || - || on E which is 7-Kadec on F, i.e. for everyy € F
with |ly|| = 1 and for every € > 0 there exists V € 7 such that y € V and
SNV C B(y,e), where Sg denotes the unit sphere of E with respect to || - ||.

Proof. We use ideas from [20]. Let || - |0 be the original norm of E
which, as we may assume, is 7-Isc and let B C F' denote the unit closed ball with
respect to a given 7-Kadec norm. Let Gy, = cl- By, (B,1/n). Then each G, is a
convex, bounded, symmetric neighborhood of the origin in £. Denote by p,, the
Minkowski functional of GG,, and define

”:Z:H = Z O‘npn(l‘)a

n>0

where {a, }new is a sequence of positive reals making the above series convergent.
Then || -|| is an equivalent norm on E which is 7-lsc, because each p,, is 7-1sc. We
show that || - || is 7-Kadec on F.

Fix y € F with |y|| = 1 and fix ¢ > 0. By Proposition 2.3, find a
T-neighborhood W of y and r > 1 such that

yeWnrB C B(y,e/4).
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We claim that there exist a smaller 7-neighborhood U of y, n € N and v > 0
such that

(5.1) Un(r++)G, C B(y,e).

First, find Wy € 7 such that y € Wy and Wy + B(0,5) € W for some 6 > 0.
Then Wy N B(rB,d) C B(y,e/4 4+ §). Indeed, if w € Wy and ||lw — z|| < ¢ for
some z € rB then z € rBN (Wy+B(0,9)) CrBNW C B(y,e/4). Find n € w so
small that 7/n < ¢ and assume that § < /4. Then WyNB(rB,r/n) C B(y,e/2).
Next, find W1,V € 7 such that y € W1, 0€ V = -V and Wy + V C Wy. Then

Wi nel.(B(rB,r/n)) C B(y,e/2) + V.

Indeed, if w € Wi Necl.(B(rB,r/n)) then there is z € B(rB,r/n) such that
z—w e V,s0z€ Wi+ V C Wy and hence z € B(y,e/2). As V can be an
arbitrarily small 7-neighborhood of 0, it follows that

WiNel (B(rB,r/n)) C cl, B(y,e/2) = B(y,&/2).
The last equality follows from the fact that closed balls are 7-closed. Note that
cl.(B(rB,r/n)) =rcl(B(B,1/n)) = rG,.

Thus we have W1 N rG, C B(y,e/2). Finally, find a 7-neighborhood U of y
and 7 > 0 such that U 4+ B(0,n) C W7 and n < /2. Let v > 0 be such that
vGn, € B(0,n). Fix u € UN (r+ v)G,. Then there is z € rG,, such that
u—2z € yGy, C B(0,7), so 2 € U + B(0,n7) € W; and hence z € B(y,&/2). Thus
u € B(y,e/2 + 1) C B(y,¢). This finishes the proof of (5.1).

Now, using the fact that each p,, is T-continuous on the || - ||-unit sphere,
we may assume, shrinking U if necessary, that p,(z) < p,(y) +~ whenever x € U
and ||z|| = 1. Note that p,(y) < r, since r 'y € G,,. Thus, if z € U and |jz]| = 1
then p,(x) < r+~ which means that = € (r +7)G,, and hence ||z —y|| < e. This
the completes proof. O

Remark 5.2. If, in the above lemma, 7 is the weak topology then the
norm defined by

2]l = llzllo + dist(x, F)

is Kadec on F, where || -||o is any equivalent norm such that (F, || ||o | ') has the
Kadec property. This idea was used in [18]. In general, we do not know whether
dist( -, F) is 7-lsc.
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The following lemma, stated for sequences instead of nets, is due to
Haydon [10, Proposition 1.2] and it is a variation of a lemma of Troyanski (see
[5, p. 271]) which is an important tool for obtaining LUR renormings.

Lemma 5.3. Let X be topological space, let S be a set and let pq,1s: X —
[0, 4+00) be lower semi-continuous functions such that sup,cg(ps(x) + ¥s(z)) <
400 for every x € X. Define

o(x) =sup ps(x), Om(z) =sup(ps(x) + 27" Ys(z) => 27",

seS sES mew

Assume further that {z,}scx is a net converging to x € X and 0(x,) — 6(x).
Then there exists a finer net {x}yer and a net {i,}yer € S such that

Lierrrl 0 (z4) = Ligrl v (T) = Ligrl o(ry) = o(z)

and

lim (¢, () = ¢y, () = 0

Proof. By Proposition 2.6, we have limyex 0, (25) = 6,,(2) for every
m € w. Thus, given m € w, we can choose j(m) € S and o(m) € ¥ such that

@im) (@) + 27"y () > iu(p )Qm(:cg) _9—2m

and

Citm)(Ta) > 0jemy (@) =272 and Y (T0) > Vjm () — 2727

hold for o > o(m). We may also assume that o(m1) < o(ms) whenever my < mao.
Define
I'={(o,m) e X xw:0o>0c(m)}.

Consider I' with the coordinate-wise order and define h: I' — X by setting
h(o,m) = o. Finally, define i(y) = j(m), where v = (o,m) € I'. Fix v =
(o,m) € I'. We have, knowing that i(y) = j(m) and o > o(m),

soi(y)(iU)Jr?_m%(y)(@>§>SU(P)9m($§)—2_Zm > Qi) (@) )27 Vi) (@) =272

The last inequality holds because h(y) = o = o(m). It follows that

i) (@) = ity (@n))] <272 and |1y (2) — Wigy) (TRey)| < 277,
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because ©;(y)(Zn(y)) > i) (T) — 272 and Vi) (Thiy)) > iy (T) — 272m  This
shows that

(5.2) lim, |Pi() (€) = Piy) (X)) =0 and lim i) (2) = Yigy) (Tn(y))] = 0.
We also have

Pi(y) (x)+27™ sug Ys(z) = Di(y) (T) + 27"y (x) > §>su(p )Gm(atg) —972m
sE Zo(m

> i — 272 > lim inf —72m
im sup @(Th(y)) i in @(Th(n))

> p(x) = 272" > () () — 277",
Thus, passing to the limit, we get

liminf,er @iy (z) = imsup,cp @(T4(y)) = liminf,er p(zp(y))

5.3 :
(5:3) > () = lim sup,er Pi(y) ().

By (5.2) and (5.3), the proof is complete. O

Theorem 5.4. Assume E is a Banach space and 7 is a weaker linear
topology on X such that the unit ball of E is T-closed. Assume further that F
is a closed subspace of E which has a T-Kadec renorming and the quotient E/F
has a 7'-lsc LUR renorming for some Hausdorff locally convex linear topology '
on E/F such that the quotient map is (7,7") continuous. Then E has a 7-Kadec
TENOTMING.

Note that since the unit ball of E/F under the LUR renorming is closed
with respect to the weak topology on E/F generated by the 7’-continuous linear
functionals, we could have equivalently assumed that 7’ is the weak topology on
E/F generated by a total subspace of E/F.

Proof. The assumptions imply that F' is 7-closed, being the pre-image
of a singleton under the quotient map. Let || - || be an equivalent 7-lsc norm on
E which is 7-Kadec on F' (Lemma 5.1). Denote by |- |, the quotient norm on
E/F. Let | -| be an LUR norm on E/F which is 7/-Isc. Write Z for z + F, i.e.
the image of & under the quotient map.

Let b: E/F — E be a continuous selection for the quotient map obtained
by Bartle-Graves Theorem so that for each y € E/F, b(y) € y, the range of
b on the unit sphere of E/F is bounded in norm by a positive constant M,
and b(ty) = tb(y) whenever t > 0 (see [5, VII Lemma 3.2 and its proof]). Let
S={a€E/F:|a| =1}
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Since the unit ball for |-| is 7/-closed, the 7/-continuous functionals of unit
norm for the dual norm |- |* to | - | form a norming set for (E/F,|-|). For each
a € S choose a 7'-continuous functional f, € (E/F)* such that f,(a) = 1 and
|fa|* < 2. Note that if || f,|| denotes the norm of f, with respect to |- |4, then the
values || fq|| are bounded. (We have |f,(y)| < |fal* |y| < 2Jy| < 2Ky, for some
constant K and hence |f,]| < 2K.) By enlarging the constant M introduced
above, we may assume that ||f,|| < M for each a € S. Define P,x = f,(Z)b(a)
and let ¥, be the seminorm given by

Ya(z) = ||v — Pazl|.
Note that 1, is 7-lsc, because P, is a T-continuous functional. Next, define
@o(x) = inf{r > 0: |r 'z +a| < 2}.

Observe that ¢, is the Minkowski functional of the set H, = {z € E: | + a|] <
2}. H, is a convex set containing 0 as an internal point, so ¢, satisfies the
triangle inequality and is positively homogeneous. Because © — T is (7,7')-
continuous and |-| is 7/-1sc, H, is a 7-closed set and thus ¢, is 7-lsc. Both families
{¢a: a € S} and {¢,: a € S} are pointwise bounded, specifically ¢, (z) < |Z| and
Ya(z) < (M? +1)||z||. Applying Lemma 5.3 we get a 7-lsc function 6 satisfying
the assertion of that lemma and such that ||z||y = 6(z) + 0(—x) defines a 7-1sc
semi-norm on E. Define || - ||k on E by

[l e = [l + [Z] + l[z]lo-

This is a norm equivalent to || - ||. It is 7-Isc since each of the three terms defines
a 7-1sc function of z. By Corollary 2.5, the restriction to the unit sphere for |- || i
of each of these three functions is 7-continuous.

We will show that || - || x is a 7-Kadec norm on FE.

Fix z € E with ||z|]|[x = 1 and fix a net {z, },ex which 7-converges to x
and ||z, ||x = 1 for every o € ¥.. We will be done if we find a finer net converging
in norm. We may assume that « ¢ F, so that & # 0. Since ||-||¢ is 7-continuous on
the sphere, limyex |24 ]|g = ||z|lg- From the definition of ||-||s and Proposition 2.6,
we have lim, ¢y 0(z,) = 0(z), so by Lemma 5.3 we get a finer net, which we still
denote by {2, }sex and a net {ay },ex such that

(5.4) lim([lzo — Po, Zol| — [l — Po, 2][) = 0
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and

5.5 li = li =i = .

(5.5) 1 a, (7o) = i a, (v) = lizg SUP pa (o) = SUP pa(w)

Now observe that sup,cg @a(z) = |Z|. Indeed, we have ||Z|~!Z + a| < 2, so

@a(x) < |7| for every a € S. On the other hand, if a = || ~'Z, then

~

T tal = (7 27 7] =T E
so [r712 + a| < 2 iff r > |Z| which shows that o, (z) = |z|.
Let t = |z|71.
Claim 5.5. limgey a, = 7.

Proof. By (5.5) we have limyey 4, (z) = |Z| = t~1. This means that
for every e such that 0 < ¢ < t~! there exists o(¢) € ¥ such that |r 17 +a,| > 2
whenever r < t7! — ¢ and o > o(g). Observe that r~!Z has norm close to 1,
when r is close to |Z|~!. By LUR, this implies that a, must be close to tZ. More
formally, fix o > o(e) and let 7 = t~1 — & and observe that

2 < [tZ+ay + (r! — )7

. - 1
< T+ ap| + (r7 =)t = [tZ + a,| + <ﬁ — 1).
— &

It follows that liminf,cy [tZ + as| = 2. As [tZ] = 1, the LUR property of | - |
implies limyey ap = tZ. O

By the (7, 7')-continuity of the quotient map and the T-continuity of x +—
|Z| on the unit sphere, we have 7/-limyex T, = 7 and limyeyx |25 = |Z]. As || isa
7'-Isc LUR norm, it is 7/-Kadec and hence by Proposition 2.3 limyey, |2, —Z| = 0.

Claim 5.6. lim,cy P,z = b(Z).

Proof.

t|Pay = b(Z)[| = || fa, (t2)b(a0) = fa, (as)b(tZ)]
< oo (17 = ag) - b(ET)[| + [| fa, (£7) (b(ao) — b(t7))]|
< M(It:? = aolq - 02| + [[t2]| - [[b(ac) — b(tf)ll)-

By Claim 5.5, we have lim,eyx, [tZ — ag|q = 0 and limgey, ||b(as) — b(tZ)|| = 0 and
hence the claim holds. O

Claim 5.7. limyey ||Py, 2o — Po, x| = 0.
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Proof. We have
| Py o — Pagzll = | fay (Fo —T)b(as)|| < || fa, |l - 170 _f‘q lblaq) | < M2|§U _§|qv

from which the claim follows since lim, ¢y |Z, — Z| = 0 as explained above. O
In order to finish the proof of the theorem, note that (5.4) and Claim 5.6
give
tim (s — Py 2|~ 2~ b@)) = 0.

Because 7 is weaker than the norm topology, Claim 5.6 and Claim 5.7 give
T-limgyex, P, 2, = b(Z) and hence 7-limyexn (2, — Py,2s) = x — b(Z). Thus
limyey (2o — Pu,zs) — (x — b(Z))|| = 0, because || - || is 7-Kadec on F and
x—b(x) € F. (If x — b(Z) = 0, use the last displayed equation above instead of
this argument.) Therefore we have

2o = zl| < [[(2o = Pago) — (2 = b@)|| + || Pay 2o — Pa, || + || Pagz — b(Z)]-

Since all three of terms on the right tend to 0, we are done. O

Corollary 5.8. Assume X is a locally compact space such that Co(X)
has a 1p-Kadec renorming and K is a compactification of X such that C(K \ X)
has a Tp-lsc LUR renorming. Then C(K) has a 7,-Kadec renorming.

Proof. Define T: C(K) — C(K \ X) by setting T'f = f | (K \ X).
Then T is a bounded, pointwise continuous linear operator onto C'(K \ X) and
ker T'= Cp(X). Thus C(K \ X) is isomorphic to C(K)/Cy(X). Apply Theorem
54 for E = C(K), F = Cy(X) and 7, 7' the respective pointwise convergence
topologies. O
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