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CHARACTERIZATIONS OF EXPONENTIAL
DISTRIBUTION BASED ON SAMPLE OF SIZE THREE

George P. Yanev, Santanu Chakraborty

Abstract. Two characterizations of the exponential distribution based on
equalities among order statistics in a random sample of size three are proved.
This proves two conjectures stated recently in Arnold and Villaseñor [4].

1. Introduction. The publications on characterizations of the exponential

distribution are abundant. Comprehensive surveys can be found in Ahsanullah

and Hamedani [1], Arnold and Huang [3], and Johnson, Kotz and Balakrish-

nan [5]. The Bulgarian probability school has its contribution with the works of

Obretenov [6]-[8]. Recently, Arnold and Villaseñor [4] obtained a series of char-

acterizations based on random sample of size two from a continuous distribution.

They also identified a list of conjectures for possible extensions of their results

to samples of size three and bigger. In this note we confirm that two of these

conjectures are true.

Let X1,X2,X3 be a random sample of size three from a parent random vari-

able X. Denote X2:2 := max{X1,X2} and X3:3 := max{X1,X2,X3}. We write

X ∼ exp{λ} if the probability density function (pdf) of X equals fX(x) =

λe−λxI(x > 0), λ > 0. It is known (e.g., Arnold et al. (2008), p.77) that if

X ∼ exp{λ}, then

X1 +
1

2
X2 +

1

3
X3

d
= X3:3 and X2:2 +

1

3
X3

d
= X3:3,(1)

2010 Mathematics Subject Classification: 62G30, 62E10.
Key words: characterization, exponential distribution, order statistics.



238 G. P. Yanev, S. Chakraborty

where
d
= denotes equality in distribution. Arnold and Villaseñor [4] conjectured

that each one of the equalities in (1), under some regularity assumptions on

the cumulative distribution function (cdf) F of X, is a sufficient condition for

X ∼ exp(λ) for some λ > 0. The theorem below proves these conjectures.

Theorem 1. Let X1,X2,X3 be a random sample from X, which has an ab-

solutely continuous cdf F with F (0) = 0. Suppose the pdf f of X is analytic in a

neighborhood of 0.

(i) If

X2:2 +
1

3
X3

d
= X3:3,(2)

then X ∼ exp{λ} for some λ > 0.

(ii) If

X1 +
1

2
X2 +

1

3
X3

d
= X3:3,(3)

then X ∼ exp{λ} for some λ > 0.

2. Proofs. We begin with a useful lemma (see also Arnold and Villaseñor

[4]).

Lemma 1. If F (0) = 0, the pdf f is analytic in a neighborhood of 0, and

f (k)(0) =

[
f ′(0)

f(0)

]k−1

f ′(0), k = 1, 2, . . . ,(4)

then X ∼ exp{λ} for some λ > 0.

P r o o f. For the Maclaurin series of f(x), we have for x > 0

f(x) =
∞∑

k=0

f (k)(0)

k!
xk(5)

= f(0) +
∞∑

k=1

[
f ′(0)

f(0)

]k−1

f ′(0)
xk

k!

= f(0) exp

{
f ′(0)

f(0)
x

}
.
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Since f(x) is a pdf, we have f ′(0)/f(0) < 0. Denoting λ = −f ′(0)/f(0) > 0 and

setting the integral of (5) from 0 to ∞ to be 1, we obtain λ = f(0). Therefore,

f(x) = λe−λxI(x > 0), i.e., X ∼ exp{λ}. �

We continue with the proof of the theorem.

P r o o f o f P a r t (i). The pdf of the left-hand side of (2) is

fX2:2+X3/3(x) =

∫ x

0
fX3/3(y)fX2:2

(x − y) dy(6)

=

∫ x

0
3f(3y)

d

dx
[F 2(x − y)] dy

= 6

∫ x

0
f(3y)F (x − y)f(x − y) dy.

For the pdf of the right-hand side of (2), we have

fX3:3
(x) =

d

dx
F 3(x)(7)

= 3F 2(x)f(x)

= 6f(x)

∫ x

0
F (y)f(y) dy.

Define G(x) := F (x)f(x). Referring to (6) and (7) we rewrite (2) as

∫ x

0
f(3y)G(x − y) dy = f(x)

∫ x

0
G(y) dy.(8)

For the nth derivative of the left-hand side of (8), we have

dn

dxn

∫ x

0
f(3y)G(x − y) dy =

n−1∑

i=0

[f(3x)](n−1−i)G(i)(0) +

∫ x

0
f(3y)G(n)(x − y) dy.

Applying the Leibnitz rule for the nth derivative of a product of two functions

to the right-hand side of (8), we obtain

dn

dxn

[
f(x)

∫ x

0
G(y) dy

]
=

n∑

i=1

(
n

i

)
[f(x)](n−i)G(i−1)(x) + [f(x)](n)

∫ x

0
G(y) dy.
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Now, differentiating both sides of (8) n times and evaluating the derivatives at

x = 0, we obtain

n∑

i=1

3n−if (n−i)(0)G(i−1)(0) =
n∑

i=1

(
n

i

)
f (n−i)(0)G(i−1)(0).(9)

Since G(0) = 0 and G′(0) = f2(0), the above equation is equivalent to
[
3n−2

−

(
n

2

)]
f (n−2)(0)f2(0) =

n∑

i=3

[(
n

i

)
− 3n−i

]
f (n−i)(0)G(i−1)(0),(10)

where n ≥ 4. We shall prove that (10) implies (4). Equation (4) is trivially true

for k = 1. To proceed by induction, assume (4) for all 1 ≤ k ≤ n − 3, where

n ≥ 4. We need to prove it for k = n − 2. Using the induction assumption, we

have for j = 1, 2, . . . , n − 2

G(j)(0) =
j∑

i=0

(
j

i

)
F (i)(0)f (j−i)(0)

=
j∑

i=1

(
j

i

)
f (i−1)(0)f (j−i)(0)

= (j + 1)f (j−1)(0)f(0) +
j−1∑

i=2

(
j

i

)[
f ′(0)

f(0)

]i−2

f ′(0)

[
f ′(0)

f(0)

]j−i−1

f ′(0)

=

[
f ′(0)

f(0)

]j−1

f2(0)(2j
− 1).

Therefore, using the induction assumption again, we have for i = 3, 4, . . . , n − 1

f (n−i)(0)G(i−1)(0) =

[
f ′(0)

f(0)

]n−i−1

f ′(0)

[
f ′(0)

f(0)

]i−2

f2(0)(2i−1
− 1)(11)

=

[
f ′(0)

f(0)

]n−3

f ′(0)f2(0)(2i−1
− 1).

Substituting (11) in the right-hand side of (10) yields (i = n corresponds to a 0

term)
[
3n−2

−

(
n

2

)]
f (n−2)(0) =

[
f ′(0)

f(0)

]n−3

f ′(0)
n∑

i=3

[(
n

i

)
− 3n−i

]
(2i−1

− 1).



Characterizations of exponential distribution 241

Thus, to prove (4) for k = n − 2 it is sufficient to show that

3n−2
−

(
n

2

)
=

n∑

i=3

[(
n

i

)
− 3n−i

]
(2i−1

− 1)

or, equivalently,

n∑

i=2

3n−i(2i−1
− 1) =

n∑

i=2

(
n

i

)
(2i−1

− 1),

which is easily verified. This completes the proof of (4) by induction. The claim

in Part (i) follows from (4) and the Lemma.

P r o o f o f P a r t (ii). The pdf of the left-hand side of (3) is

fX1+X2/2+X3/3(x) =

∫ x

0
fX1

(y)fX2/2+X3/3(x − y) dy(12)

=

∫ x

0
fX1

(y)

∫ x−y

0
fX2/2(z)fX3/3(x − y − z) dz dy

= 6

∫ x

0
f(y)

∫ x−y

0
f(2z)f(3(x − y − z)) dz dy.

Denoting

H(x − y) :=

∫ x−y

0
f(2z)f(3(x − y − z)) dz(13)

and taking into account (7) and (12), we write (3) as
∫ x

0
f(y)H(x − y) dy = f(x)

∫ x

0
G(y) dy.(14)

Similarly to the proof of Part (i), differentiating n times with respect to x both

sides of (14) and evaluating the derivatives at x = 0, we have

n∑

i=1

f (n−i)(0)H(i−1)(0) =
n∑

i=1

(
n

i

)
f (n−i)(0)G(i−1)(0).

Since H(0) = G(0) = 0 and H ′(0) = G′(0) = f2(0), the last equation becomes
[
1 −

(
n

2

)]
f (n−2)(0)f2(0) =

n∑

i=3

[(
n

i

)
G(i−1)(0) − H(i−1)(0)

]
f (n−i)(0).(15)
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Now we are in a position to prove (4) by induction. Equation (4) is trivially true

for k = 1. Assuming (4) for all 1 ≤ k ≤ n − 3, where n ≥ 4, we will prove it

for k = n − 2. Differentiating (13) n times with respect to x and evaluating the

derivative at x = y, we have

H(n)(0) =
n∑

i=1

2n−if (n−i)(0)3i−1f (i−1)(0).(16)

Under the induction assumption, (16) implies for j = 1, 2, . . . , n − 2

H(j)(0) =
j∑

i=1

2j−i

[
f ′(0)

f(0)

]j−i−1

f ′(0)3i−1
[
f ′(0)

f(0)

]i−2

f ′(0)

=

[
f ′(0)

f(0)

]j−3

(f ′(0))2
j∑

i=1

2j−i3i−1

=

[
f ′(0)

f(0)

]j−1

f2(0)
(
3j

− 2j
)

.

Therefore, using the induction assumption again, we have for i = 3, 4, . . . , n−1

f (n−i)(0)H(i−1)(0) =

[
f ′(0)

f(0)

]n−i−1

f ′(0)

[
f ′(0)

f(0)

]i−2

f2(0)
(
3i−1

− 2i−1
)

=

[
f ′(0)

f(0)

]n−3

f ′(0)f2(0)
(
3i−1

− 2i−1
)

.

Recalling (11) from the proof of Part (i) we rewrite (15) as (note that i = n

corresponds to a 0 term)
[
1 −

(
n

2

)]
f (n−2)(0) =

[
f ′(0)

f(0)

]n−3

f ′(0)
n∑

i=3

[(
n

i

)
(2i−1

− 1) − (3i−1
− 2i−1)

]

Thus, to prove (4) for k = n − 2 it is sufficient to show that

1 −

(
n

2

)
=

n∑

i=3

[(
n

i

)
(2i−1

− 1) − (3i−1
− 2i−1)

]
,

or equivalently

n∑

i=2

[(
n

i

)
(2i−1

− 1) − 3i−1 + 2i−1

]
= 0
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which is easily verified. This proves (4). Now, referring to the Lemma we com-

plete the proof of the Theorem. �

3. Concluding remarks. The more general cases of samples of size n ≥ 4

and relations

Xn−1:n−1 +
1

n
Xn

d
= Xn:n and Xn−2:n−2 +

1

n − 1
Xn−1 +

1

n
Xn

d
= Xn:n,

where Xj:j := max{X1,X2, ...,Xj} for j = n − 1 and j = n are still under

investigation. Finally, it is worth noticing that if we assume for i.i.d. random

variables X1,X2, . . . with E|X1| < ∞, that for every n = 1, 2, . . .

X1 +
1

2
X2 +

1

3
X3 + . . . +

1

n
Xn

d
= Xn:n,

then the Xi’s have a common exponential distribution (see e.g. Arnold and

Villaseñor [4]).
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