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ABSTRACT. The purpose of this paper is to present a characterization of a
certain Peetre K-functional in L,[—1, 1] norm, for 1 < p < 2 by means of a
modulus of smoothness. This modulus is based on the classical one taken
on a certain linear transform of the function.

1. Introduction.

1.1. Notations. Let X be a normed space. For a given “differential”
operator D we set XN D 1(X)={g€ X : Dge X}. Let X be one of the spaces
L,[—1,1],1 <p < oo or C[—1,1]. In this case we denote the norm in X by || - ||,

1 < p < o0, where || - || means the uniform norm. Two examples of the operator
D are

Dig:==¢(pg'),  Dag:=¢*¢",  where p(z) =+/1—22.

2000 Mathematics Subject Classification: 41A25, 41A36.
Key words: K-Functional, Modulus of smoothness, Jackson integral.
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We define for every f € X and ¢t > 0 the K-functionals
(L) K(5XY.D1) = inf{|If = gll, +t[eleg)],: 0 € Y},
(12)  K(6X,Y,0) = inf{Ilf = gll, +t]ls*"],: g€ Y},

where Y is a given subspace of X N D] }(X) or X N D, !(X), respectively.

The K-functional (1.1) with X = C[-1,1], Y = C?[—1,1] is equivalent
to the approximation error of Jackson type operator G, in uniform norm (such
equivalence was established in [5]), while the K-functional (1.2) with X=L,[—1,1],
Y = C?[—1,1] is well-known and is equivalent to the approximation error of
Bernstain polynomials in the interval [0,1] (p = oo) and characterizes the best
polynomial approximations (1 < p < 00).

We recall that the operator Gg, : C[-1,1] — IlIs,_s is defined by
(see [4])

Gsn(f,z)=m"" / f(cos(arccos z + v)) K »(v)dv,

—T

. 92 2s m
Ks,n(v) = Cn,s <M> s 7'['71 /Ks,n(v)dv =1.

where

sin(v/2)

II, denotes the set of all algebraic polynomials of degree not exceeding r
(r is natural number).

Notation ®(f,t) ~ U(f,t) means that there is a positive constant -,
independent of f and ¢, such that v~ W(f,t) < ®(f,t) < y¥(f,1).

By ¢ we denote positive constants, independent of f and ¢, that may differ
at each occurrence.

For r — natural number we denote

C"a,b] = {f . f ..., f) e Cla,b] (continuous function in [a,b])}

1.2. Known results. The idea for the equivalence of the approximation
errors of a given sequence of operators and the values of proper K-functionals was
studied systematically in [1]. Such equivalence was established for the algebraic
version of trigonometric Jackson integrals G ,, and K-functionals (1.1) in uniform
norm in [5] (see Theorem A).

Theorem A. For s > 2 and every f € C[—1,1] we have

1
IF = Gunfllo ~ K (£, CI-LALCE Dy ).
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Using a linear transform of functions in [3] Ivanov compares the K-
functional

(L3 K(6XY. D)=t {|If = gll, + [ eg') |, : g € Y},
with the already characterized K-functional
(L4 K(EXY.D) =t {||f =gl +teg"]],:9€ Y},

where ¢(z) = x(1 — x); X is one of the spaces L,[0,1], 1 < p < oo or C[0,1];
Y is a given subspace of X N Dg_l(X) or X N D4_1(X), respectively; Dsg :=
(¥9")'s Dag := 1g".

Ivanov proved the following

Theorem B. For every t € (0,1] and f € L1]0,1] we have
K(fvt; L1[07 1]7 027D3) ~ K(vat; L1[07 1]7 027 D4) + tEO(f)lv

T l1—=z
2 (1-y)?

where (Bf)(z) = f(z) + / (

1/2

) o

and Eo(f)1 denotes the best approzimation of f in L1[0,1] by constant.

1.3. New results. The aim of this paper is to define a modulus that
is equivalent to the K-functional (1.1) for 1 < p < 2. We apply the method
presented in [3].

First, let us note that the K-functionals K(f,t;L,[—1,1],C?% D) and
K(f,t; Ly[—1,1],C?, Dy) are not equivalent. The inequality K (f,¢; L,[—1,1],C?,
Dy) < cK(f,t; Ly[—1,1],C?, Dy) is not true for a fixed c, every f, every t € (0,1]
and 1 < p < 2 because of functions like (with small positive ¢)

arcsin x, r€[-1+¢g,1—¢];
fo(x) =14 ard+br+d, zc[l—el]
ard +br —d, x€[-1,—1+¢];

where a, b, d are chosen such that f € C2.
But these K-functionals can become equivalent if in the one of them instead f
stays Af for appropriate operator A.

Let f € L1[-1,1]. For every —1 < x < 1 we define the value of the
operator A by

o L[( 14z  1-a
15 (AN = f@) + 5 0/ (s (o) fwas
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Using operator (1.5) we prove

Theorem 1. For everyt € (0,1] and f € Ly[—1,1], 1 < p < 2, we have
K(f,t; Ly[~1,1],C? Dy) ~ K(Af, t; L,[-1,1],C?, Dy).

We mention that in Theorem 1 there is no additional term tEy(f), in
the equivalence relation, while in Theorem B there is. Moreover, the equivalence
in Theorem B is valid only for p = 1, while Theorem 1 holds for 1 < p < 2.
Although the operators Dy and D3 are similar we cannot reduce one to another.
We can write the operator D;g(x) of the form:

(D1g)(x) = (1 —2%)g" (2) — zg/ ().
On the other hand, the analogue of D3 for the interval [—1,1] is
DsG(y) = (1 —y))G"(y) — 2yG (),
i.e. l~)3G differs from DG by constant multiplier 2 in the term containing G’.

From Theorem 1 and characterizations of some weighted Peetre K-func-
tionals in terms of weighted moduli established in [2, Ch. 2, Theorem 2.1.1] we
get

Corollary 1. For f € Ly[—1,1], t € (0,1] and 1 < p < 2 with ¢ =
V1 — 22 we have
K(f,t; Lp[=1,1],C?, D1) ~ wi(Af, V1),
where wi is Ditzian-Totik modulus of smoothness, introduced in [2].

The equivalence in Theorem 1 is no longer true for 2 < p < oo as the
following example shows. Let F(x) = arcsinz. We have Ey(F), ~ 1 and thus
ct < K(F,t;L,[—1,1],C?,Dy) for 2 < p < oo (see Lemma 4). On the other
hand K (AF,t; L,[—1,1],C?, Dy) = 0 for every p because AF(z) =z, i. e. AF €
C?[~1,1] and Do(AF) = ©*(z)(AF)" = 0.

The connection between the K-functionals of f and Af with Dy and D,

as differential operators respectively, is not so satisfactory when 2 < p < co. We
have

Theorem 2. For everyt € (0,1] and f € L,[—1,1], 2 < p < oo, we have
K(f,t Ly[=1,1],C% D1) < ¢ [K(Af, 67755 L,[-1,1],C%, Do) + 52 Eo(f), |

K(Afvt; Lp[_17 1]7 027 D2) + tEO(f)p < CK(fvt; LP[_L 1]7 027D1)'
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The proof of Theorem 1 follows the scheme. First we establish in Lemma
2 the equivalence

K(f7t, Lp[_]-v 1]7 Zlv Dl) ~ K(Afvta Lp[_]-v 1]7 Z27D2) for 1 S p < 00,
where Z; and Z, are suitable subspaces of C? (see Definition 2). On the other

hand these variations of Y produce K-functionals equal to the K-functionals we
compare in Theorem 1. In Lemma 1 and Lemma 3 b) respectively we prove that

K(f,t;Ly[~1,1],Z1,Dy) = K(f,t;Ly[~1,1],C? D) for 1 < p < co and

K(F,t; Ly[~1,1], Z2,D3) = K(F,t;Ly[—1,1],C% Do) for 1 < p < 2.

The last two relation we obtain using Lemma 2 from [3, p.116]. We state this
lemma, as we use it several times.

Definition 1. For given Y C X N D~Y(X) and a positive number vy we
define S, (Y) as the set of all g € X N D™YX) such that for every e > 0 there is
h €Y such that ||g — h|| < e and || Dh|| < v ||Dg| + .

Lemma B. Let Y1,Ys C X N D Y(X) and p > 0. Then for a given
positive v the following statements are equivalent:

i) K(f,t; X,Y1,D) < K(f,vt; X,Ys,D) for every f € X, 0 < t.
i) K(f,; X, Y1, D) < K(f,7t X, Yz, D) for every f € X, 0 <t < p.
ili) Y2 € S4(Y1).

In particular, i) with v =1 holds when Ya C Y7.

Theorems 1 and 2 are proved in Section 3.

2. Properties of the operators. In the next statement we collect
some properties of operator A.

Theorem 3. a) A is a linear operator, satisfying |Afll, < 2|/ fll, for
every 1 < p < o0.

b) Af = f for every f € Ily.
) If f, ' € ACioc(—1,1), then (Af)(0) = f(0), (Af)'(0) = f'(0) and
P (2)(Af)(2) = (@) (p(2) f'(x)),  —l<z<Ll.

Proof. We write (1.5) as
1

(Af)(e) = f@) + 5 [ R i@y

-1
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where the kernel R : (—1,1) x (—=1,1) — R is given as follows: R(0,y) = 0; for
r € (—1,0) we have R(z,y) = (1 —2)(1 —y) 2 - (1 +2)(1 +y)" 2 if y € (z,0)
and R(z,y) =0if y ¢ (z,0); for z € (0,1) we have R(z,y) = (1+2)(1+y)~2 —
(1—-2)(1—y)2ify € (0,2) and R(z,y) =0if y ¢ (0,2).

Vitzr—+V1—=x
Vi+txz+V1l—2z
is negative for y € (z,x¢) and positive for y € (z¢,0); for a fixed = € (0,1) the
kernel R(z,y) is positive for y € (0, o) and negative for y € (zg,z). Thus

1
/\R(m,y)]dy:Q—Q\/l — 2 < 2.
]

Hence ||Af|lo <2||fll-

Set zp = . Then for a fixed € (—1,0) the kernel R(x,y)

(1+y)?-(1-y)?
t = . Then f fixed -1 the ki 1
Set 1 TETEE e en for a fixed y € (—1,0) the kerne
R(z,y) is positive for z € (—1,y9) and negative for =z € (yp,y); for a fixed

y € (0,1) the kernel R(x,y) is negative for z € (y, yo) and positive for z € (yo, 1).
Thus for y # 0 we have

1
4 2
['R(x’y)'dx R R I R EA e (A N U e

3
Hence [|Af]|; < 3 || f|l;- Now the Riesz-Thorin theorem proves a).

1
Part b) follows from /R(w,y)dy =0.
“1

Part c) follows from (1.5) by direct computation. O

The operator A is invertible and we give an explicit formula for its inverse
operator A~! . Let every f € Li[—1,1] and —1 < x < 1 we set

(A1) (@) = f(z) + / ( y__ aresiny - ari“”) f(w)dy.

s \1-v (1-y?)>

In the next statement we collect some properties of A~

Theorem 4. a) A~! is a linear operator,
1<p<oo.
b) A~Lf = f for every f € Il

|A—1pr < C”pr for every
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c) ATYAf = AATYf = f for every f € Ly[—1,1].
d) If f, [ € ACioe(=1,1), then (A~1f)(0) = f(0), (A~"f)'(0) = f'(0)

and
p(@)(p@) (AT ) (@) = (@) f"(z), —l<az<l
Proof. a) We have
larcsin 1 — arcsin z| < c¢y/1—22 for z € [0,1]
and

larcsin(—1) — arcsin z| < ¢y/1 —22 for z€[-1,0].

As 0 < y < z and arcsin z is increasing |arcsiny — arcsin 1| > |arcsin y — arcsin z|.
Now we estimate

T p

1
/ (72 (arcsiny — arcsinz) f(y)dy| dx
1—

3
2

T p
(/ m |(arcsiny — arcsin 1) f (y)| dy) dx

T p 1 T p
i i frw, Y
/(1y2)§f(y)dy) dx = O/(O/Idey) d

IN

IN IN
o o
o\,_. o\,_.

L p
1 —
/ f(y)dy> dz (Hardy inequality)

Fa—y)Pdy=cll -

IA
(@)
O\H
N

Qz_
—
—
—
S
=
~
bl
IS8
Ny
I



310 T. Zapryanova

Similarly, using Hardy inequality we get
1| z p

Ty da < / /'f dy | dz<c|f2, .

0
0| = p
1
/ /ﬁ(arcsiny—arcsinx)f( Ydy| dx < c||f|P p[=1,0] and
(1-y%)2
110
0| = p
L Fw)dy| do <c| £
1—y? p[=1,0]
~1 1o
From these inequalities we get
Ll s . . Y
Yy arcsiny — arcsin x
+ dy| dx <ec IRIE
11/ (1_y2 T >f<y> y £l

-1 10

This proves a).
Part b) follows from

x

1
/ Y 5 T = (arcsiny — arcsinz) | dy = 0.
Sy (1)

Finally, ¢) and d) can be obtained by direct computation. O

The action of the operators A and A~! on the function f(x) = z is given
bellow:

(AO)@) = 50420 +2)~ (1 —2) (1~ ),
(A7) (z) = arcsinz.

Definition 2. Set Z; = {f € C*[-1,1]: f'(-1) =0, f'(1) = 0},

1
Zy = € C*-1,1] / 0,/ z)dr =0
2 d \/1—$2 ) \/1—1‘2
Theorem 5. a) (Af)"(z) is continuous at x = —1 and at x = 1 for every

fez.
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0 1
/1m O/m ) (z)dx = 0 for every f € Z.
c) (A~Lf)"(x ) is continuous at x = —1 and at x =1 for every f € Zs.
d) (A1) (=1) = (AL f)' (1) = 0 for every function f € Zs.

A(Zl) Z2 and A~ ( ) = Zl.

Proof. For every function f € Z; we have that f'(z) = (z — 1)f"(1) +
o(l —z) and f'(z) = (x+1)f"(—1) + o(1 + ). From Theorem 3 c) we have

(Af)'(x) = f"(x) - (),

1—2a2
3

which together with the above representations gives (Af)"(z) = §f”(1) + o(1)

3

—f"(=1) + o(1) for x close to —1. This proves

for x close to 1 and (Af)"(z) = 5

a).

We write the derivative of Af as

(AN@) = £ -l + [ g

I
-
~—
&

Then we have
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We consider the last term.

1—¢ -
/ —l—xQ/ y)dydx = 0/1 7 (/ dac)dy
Y
1—¢
= /1 y2 (V1I—y2 =2 —&2)f
0
Then
1—¢ 1—¢
x / - _ Yy /
O/ S (4f) ) = V2= O/ L

For every f € Zy,

< ¢ and hence eventually

/ - _yy2 f'(y)dy
0

. €T
EE%IJr V1 — 22 (Af

J V1— a2
Similar arguments prove the other claim of b).
We have
(A7 ) (x) = f/(l')—\/ll_ng(lf(Q3dy—‘r1xx2f($)
(2.1) x
= T g [ A W)y

(AT V@) = @)+ 2w+ | e )y
= @)+ 2 (A7) (2).
For every f € Zy and z € [0, 1] we rewrite (2.1) as

@) = 1) - = | N

Using Taylor’s expansion of f’ around 1 we get from the above

(2.2)

(A7) (@) = f'(2) — (S +@=1f"1)+o(1-y))dy.

1 / Y
\/1—:5236 V1—192
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Now we compute the last integral.

1
1- 1
/ y(_y) dy = 5(— arcsin 1 + arcsinx — ac\/l — 22+ 2\/1 —z?).

V1 — 2
As
I —arcsinl +arcsinz — V1 — 22+ 21— 22 1
im I
2—1-0 (1—22)3 3

we can write

1
—arcsin 1 + arcsinz — zv/1 — 22 + 2y/1 — 22 = g(l — xQ)% +o((1 - xQ)%)

Above computations and Taylor’s expantion of f’ around 1 imply
2
(2.3) (A7) () = —3(1=2)f"(1) +o(l - z).

2
= f"(1) 4+ o(1) for x close to 1. In a

Equations (2.2) and (2.3) give (A=1f)"(x) = 3

similar way we get
(24) (A7) (@) = S (1+ )" (1) + o{1 + ).

2
Hence (A71f)"(z) = §f”(_1) + o(1) for z close to —1, which proves c).

Part d) follows from (2.3) and (2.4).

For every f € Z; from a) we get (Af)', Af € AC[—1,1] and hence Af €
C?. Now using b) we get Af € Zs, i.e., A(Z1) C Zs. Sumlarly, from c) and d)
we get A71(Z,) C Z;. Using Theorem 4 c) we get Z; = A~ (A(Z1)) € A=Y(Z,)
and Z9 = A(Ail(ZQ)) C A(Zl) Hence Ail(ZQ) = 71 and A(Zl) = 7. |:|

3. Proofs of the Theorems.
Lemma 1. a) For everyt >0 and f € Ly[—1,1], 1 < p < oo, we have
K(f,t; Ly[-1,1],C% D1) = K(f,t; L,[~1,1], Z1, Dy).
b) For everyt >0 and f € C[—1, 1] we have
K(f.t;C[-1,1],C* D1) ~ K(f,t; C[-1,1], Z1, Dy)

Proof. Let p € C*°(R) be such that pu(z) = 1 for z < 0, p(x) =0
1
forx > 1 and 0 < p(z) < 1 for 0 < z < 1. For given § € (0,5) we set

p—1(z) = M<1§$> and up(z) = M<1_Tx> for every z € [—1,1]. Thus,
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supp p—1(x) = [-1,—1 4 4], suppui(z) = [1 — 4,1] and Hugk)H = O(67F) for
j=—1,1and k=12 >

Let g € C%[—1,1]. For z € [-1,1] set
31 G@)=[-pal) - m@)]g(r) + pa(r)g(=1) + pa(x)g(1)
Then G € Z;. From G(z) — ( p-1(z)[g(— ) 9(@)] + pa(2)[g(1) — g()] we
get |G —gll, <27 |G —gl|l,, < 21 w1(g,6)s0 = O(0).

From (3.1) we obtain

(D1G)(x) = [1 = p1(2) — ()] (D1g)(x)
(3-2) — 2% (@) [y () — i (2)]g' (@)
+ (Dipa)(2)[9(1) = g(@)] + (Drp—1)(@)[g(=1) — g(x)].

From (3.2) for 1 < p < oo we get [|[D1G|, < [|Digll, + O(6'/7), which
proves part a) in view of Lemma 2 in [3, p. 116].

For p = oo (3.2) implies
ID1G o < [1D1g]lo + cllg' (=D)[ + g’ (D[] + O(9) < e[| Drg]lc + O(9),
| =

because of |¢'(—1)| = [(D1g)(—1)| and |¢’(1)| = |(D1g)(1)|. Applying Lemma 2
again in [3, p. 116] we prove part b). O

Lemma 2. For everyt >0 and f € Ly[—1,1], 1 <p < oo, we have
K(f7t7 Lp[_17 1]7217D1) ~ K(Af7t7Lp[_17 1]7227D2)'

Proof. For agiven g € Z; we set G = Ag E Z (see Theorem 5 e)). Then
Theorem 4 c), a) and d) implies [|f —g||, = |A~H(Af — Ag) H < c||Af =G|,

and [|D1gl|, = | D; A 1GHp = || D2G]|,. Hence,
1f = gll, + t[[Dwgll, < c([[Af = Gl + LID2G]]),

which gives K(f,t; Ly, Z1,D1) < cK(Af,t; Ly, Z2, D).
For a given G € Z, we set ¢ = A™'G € Z; (see Theorem 5 ¢)). Using
Theorem 3 a), ¢) and Theorem 4 ¢), we get

1Af =Gl = [|[A(f = AT G|, < 201f = gll, I1D2Gll, = [ D2Agll, = [ D1gll, -
Hence,
IAf = Gll, + ¢ 1D2Gl, < 211 f = gll, + ¢t [1Drgll,),
which gives K(Af,t; Lp[—l, 1],ZQ,D2) < 2K(f,t;Lp[—1, 1],Zl,D1). O

From Lemmas 1, 2 we obtain
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Corollary 2. For everyt >0 and f € Ly[—1,1], 1 <p < oo, we have

K(f7t7 Lp[_17 1]7 027D1) ~ K(Afvta Lp[_la 1]7 Z27D2)'

Lemma 3. a) For every t € (0,1] and F' € L,[—1,1], 2 < p < oo, we
have

K(F,t; Ly[~1,1), Zo, Dy) < ¢ | K(F,t+72; L,[~1,1],C%, Do) + t+ 2 EBy(F),| .

b) For every t € (0,1] and F € L,[—-1,1], 1 < p < 2, we have

K(F,t; Ly[~1,1], Z3, D3) = K(F,t; Ly[—1,1],C0?, Dy).

Proof. For § € (0,1/2) we set p(z) = (1 — 26~ 1)3, where (y); =y if
y>0and (y)y =0ify <0. For g € C?[—1,1] we set

(3.3) G(x) = g(x) + ap(x + 1) + fu(l — )

where

0
—f1 ﬁg’(y)dy
0 2 ’ 1 2 :
y _ytl y I ]
_fl 1—y2 <1 0 >+dy g\/lny 0 >+dy

Parameters a, 3 and § are chosen in such way that G € Zs. From (3.3) we get
IG = gll,, < 6"/P(la] + |8]) and

G"(z) = g"(x) + 652 [a (1 - x;1>++6 (1 - 15£>J .

Hence HchG”Hp < HC,OQQHHP + 6P (|al +18]), and

o =

Wl >
|
wl >

K(Ft:Ly,%,D2) < |[F=Gl,+t|D:Gl,
< |IF = gll, + t1|Dagl, + e8P (1 + 16~ ) (o] +16)).

In order to estimate |a| 4 |3] we calculate
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%
o
&~

=
—_
|
—
>
|
—~
—_
|
<
S—
N—
[}
IS
<

In a similar way we get

1 1=y ’
Then
1
<ol o] e [ o
Using Holder inequality we estimate
Y /
ol < Vs /7*9 (y)dy
1 L=y
0 q 1/q 0 1/p
< c\/g{/ - dy} {/ }g’(y)}pdy}
Ly
-1 -1
0 1/p
< cx/g{/g'(y)pdy}
—1
= cf‘}g H 1.0] for p > 2, ! + E = 1. Similarly
p[— p q
8] < V5| Hp[O ) for p>2. Hence |af + 3] < C\/gHg/Hp for p > 2.

In order to estimate the norm of ¢’ we apply the inequality

l9'll, < e (I1D2gl, + Eolg)y)
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which, for instance, follows from [2, p. 135, assertion (a)]. Then we get

ol + 18] < V3 (IDagll, + Eolg)y ) < ev/3 (I Dagll, + IF = gll, + Bo(F), )
Now we take § = ¢/2. Thus

K(F,t; Ly, 72, D) < ¢ ([ = gll, + /712 | Dagl|, + /7412 Ey(F), )

for every g € C%[—1, 1], which proves part a).

In order to prove part b) it is sufficient to show (see Lemma 2 in [3, p.
116]) that for every g € C?[—1,1] and every € > 0 there exists G € Z, such that
IG —gll, <eand HgoQG”Hp < ||¢%g ”H +e. For 1 < p < 2 we can define G by
(3.3). We have

IG = gll, < e5"P(Jal + 15])
1

< M2 / — Gy + | [ =g w)dy| | = 0.
. V1 —y? / 1 — g2
H&WM_H&”H+J+WWM+WD
2 1 1/p—1/2 Y '
o g"|| +cd / g (y)dy| + /
< |l [ A L

1 1

When — — > > 0 the last term tends to zero as § — 0, which proves part b) in
p

case 1 < p < 2.
The case p = 2 needs special consideration and different definition of G.

Let § € (0, %) We set

0 for z € [-1,0];
T
wg(x) _ m for x € (0, 1-— 6],
=0 1-6,1
2 — 52 orz € (1—-94,1].
By integration we have
0 for x € [-1,0];
1
1t 16
1+ —————=[z—(1-9)] forxze(l-41].

V25— (20— 02)3/2
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(0 for x € [-1,0];
arcsinz — x for x € (0,1 — 6];
arcsin(l —0) — (1 —9)
bs(x) = .
+<W—l>[l‘—(l—5)] fOI“l‘G(l—(;,l];

+m[x — (1 —

5 (z), ¥s(z) and 1s(z) are continuous and increasing functions.

\

We set now u(z) = s(x). For g € C?[—1,1] we set
(3-4) G(x) = g(z) + ap(x) + Bp(-x).

Parameters a and 3 are chosen in such way that G € Zs:

E (z) ’ zg'(x) 0 zg'(x)
J ?—xQ dx i = da i L= dx
a = —01 . Similarly g = — 7; = —711
x5 () o5 (—=) zipg(x)
of 2 dw —7f1 S dx g L= dx

From (3.4) we get
IG=glly < (ol +[8)[[¢s]l, and

le*Glly < [le*9"lly + (ol + 181 [le*v5], -

In order to estimate the last expressions we use some properties of s given in
the following

A

IN

1
Assertion 1. Let § € <O, 5) Then we have

:w () 1
a) \/5__$2d ~In s
1
Hw o~ /5
c) [¥slly ~ 1.

Using Assertion 1 we obtain
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Y ag'(@) F g (@)
_flhdz +g iidel‘
1G—gll, < (ol +18])[1vsll, = T 195l
{mﬁ‘i(zgda:
¢ (|7 2 [ g (@)
S I 71Td * /Td
[eG"|l, < |l¥*d"[l, + (lal +18]) [[?*¥5 ),
0 1
2 1 xg/(m) xg’(ac) HSO%’/};S/HQ
- T 29 x| + d
%", Ve o ) iz v flwé(“)da;
)
0
! /

S

2 dx
V1—2z2 V1—22
1 0

In

Let g € C?[—1,1], € > 0 is a small number. For a given function g and
€ > 0 we may choose § > 0 such that

0 1
/ /
c zg'(v) zg'(v)
S A GO g iy A CO R I R
ln% : Vv1—22 ) V1—22

which proves b) in case p = 2 in view of [3, Lemma 2, p.116]). O

Lemma 4. For everyt € (0,1] and f € L,[—1,1], 2 < p < 0o, we have

tEO(f)p S CK(fvt; LP[_L 1]7 027D1)'

Proof. For every g € C?[—1,1] we have
l9(x) — g(0)] < |arcsinz| [[g'| . -
Hence [|g = g(0)]l, < cll¢g'||lo- Using that ¢(1)g'(1) = ¢(-1)g'(=1) = 0 and
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Holder inequality we get for every = € [—1,1]

x

} 1 —1‘29/(1‘)’ = /(\/1 —t29’(t)>/dt

-1

_/1\/1%_t2\/1 2 (\/1 — th’(t))/dt

[ ) o} et

1/p

dt

1 1
< ¢||D1gl|, for p > 2 and ’ + p = 1. Thus,

tBo(£)p <t = 9O, < tIf = gll, +thg— 9O, < e [Ilf = gll, + ¢ Dagll, ]
which proves the lemma. O

Proof of Theorems 1 and 2. From parts a) and b) of Theorems
3 and 4 we get Eo(f)p ~ Eo(Af)p. Using Corollary 2 and Lemma 3 part a) with
F=Af we get

K(f7t;Lp[_171]7C27D1)

< c|K(Af T2 L [-1,1),C2, Do) + T2 Ey(f),], for 2 < p < .
From Corollary 2 and Lemma 3 part b) we obtain
K(f,t; Ly[~1,1],C% Dy) ~ K(Af, t; L,[-1,1],C? Dy), for 1<p<2.
From Corollary 2 and Lemma 4 we obtain for 2 < p < oo
K(Af,t; Ly[~1,1],C? Do) + tEo(f), < K(Af,t;Ly[~1,1], Z2, Da) +tEo(f),

< cK(f,t; Ly[-1,1],C? Dy),

which proves the theorems. O

4. GGeneralization. The results can be dealt with in a generalized case
as in the K-functional (1.1) Dig := @*"?X(¢*'¢’)’ for A € (0,1), while in the
K-functional (1.2) Dy remains the same. The corresponding linear operators A
and A~! for the general case are:
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<Aﬂm>::fu»y/ﬂwky—mggﬂdy
10

A = 1@+ [ ) |0 t/—%}—»/s o,
0 L Y

where 0(y) = ¢*(y) = (1 - y*)*.
Then the analogue of Theorem 1 is

Theorem 1’. Let A € (0,1). Then for every t € (0,1] and f(x) €
1
Ly-1,1],1<p< Y we have

K(fvta Lp[_]-v 1]7 027D1) ~ K(Afvt, Lp[_17 ]-]7 027 D2)

The proof of Theorem 1’ follows the same pattern. The analogues of
Therems 3 and 4 are the same to the value of absolute constant in the inequality
of the norm. In the analogue of Theorem 5 the space Z is the same, while the
space

0 1

2o={ 1€ 11 [P @) @i =0, [P @) @ =0
-1 0
Lemmas 1 and 2 and Corollary 2 remain the same. The conclusion of Lemma 3

b) is the same under assumption 1 < p < Y

Theorem 1’ is not true for A = 1 — see Theorem B. To make it true on
the right hand side of the relation we have to add the term tEy(f);, what is
exactly the result in [3] for p = 1. That is not strange, because for A = 1 after we
integrate by parts the integral conditions (describing the space Zs in the general
case) we obtain the conditions considered by Ivanov in [3, p. 120] and for A = 1
the differential operator (Dig)(z) = (1 — 22)g” — 2zg'(x) what is exactly the
analogue of D3 in the inteval [—1,1].
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