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ABSTRACT. In this paper we prove large and moderate deviations principles
for the recursive kernel estimator of a probability density function and its
partial derivatives. Unlike the density estimator, the derivatives estimators
exhibit a quadratic behaviour not only for the moderate deviations scale but
also for the large deviations one. We provide results both for the pointwise
and the uniform deviations.

1. Introduction. Let Xi,...,X, be a sequence of independent and
identically distributed R%-valued random vectors with bounded probability densi-
ty f. Let (hy,) be a positive sequence such that lim,, o hy, = 0 and lim,, o nhe =
oo; the recursive kernel estimator of f is defined as
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Key words: Multivariate recursive kernel estimation of a density and its derivatives; large
and moderate deviations principles.
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) @ =12 (5)

i=1
where the kernel K is a continuous function such that lim,|—4o K(z) = 0
and [ps K(x)dz = 1. The estimate (1) is a recursive version of the well-known

Rosenblatt kernel estimate (see Rosenblatt [13] and Parzen [11]); it was first
discussed by Wolverton and Wagner [18], Yamato [20], and Davies [3]. The
estimator (1) is easily updated each time an additionnal observation becomes
available without resorting to past data, through the recursive relationship

) =" a0+ ().

n n

The weak and strong consistency of the recursive estimator of the density was
studied by many authors; let us cite, among many others, Devroye [5], Menon et
al. [9] and Wertz [17]. The law of the iterated logarithm of the recursive density
estimator was established by Wegman and Davies [16] and Roussas [14]. For
other works on recursive density estimation, the reader is referred to the papers
of Wegman [15], Ahmad and Lin [1], and Carroll [2].

Recently, large and moderate deviations results have been proved for the
Rosenblatt density estimator and its derivatives. The large deviations principle
has been studied by Louani [8] and Worms [19]. Gao [7] and Mokkadem et al.
[10] extend these results and provide moderate deviations principles. The large
and moderate deviations of the derivatives of the Rosenblatt density estimator
are given in Mokkadem et al [10]. The purpose of this paper is to establish large
and moderate deviations principles for the recursive density estimator f,, and its
derivatives.

Let us recall that a R™-valued sequence (Z,),>1 satisfies a large devia-
tions principle (LDP) with speed (v,) and good rate function I if:

(a) (vp) is a positive sequence such that lim,, o v, = 00;
(b) I :R™ — [0,00] has compact level sets;

(c) for every borel set B C R™,
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—inf I(z) < liminfu, 'logP[Z, € B]
< limsupw, 'logP[Z, € B] < — inf I(x),

n— o0 x€B

o —
where B and B denote the interior and the closure of B respectively. Moreover,
let (vy,) be a nonrandom sequence that goes to infinity; if (v, Z,,) satisfies a LDP,
then (Z,,) is said to satisfy a moderate deviations principle (MDP).

For any d-uplet [a] = (al, e ,ad> e N set |a| = a1 + - + ag, let

olel f
gl .
/(@) Ozt ... Oxy (@)
denote the [a]-th partial derivative of f (if |a| = 0, then 0l f = f) and, for any
j €N, let DU f denote the j-th differential of f. The recursive kernel estimator
of the [a]-th partial derivative of f is defined as

a I 1 (=X,
9w = 1 K ().

=1

where the kernel K is chosen such that 8/ K # 0 and the bandwidth such that

. d+2
lim,, oo nhG T lol — 5o

Our first aim is to establish pointwise LDP for the recursive kernel density
estimator f,. It turns out that expliciting the rate function in this case is more
complex than either for the Rosenblatt kernel estimator, or for the derivatives
estimators. That is the reason why, in this particular framework, we only consider
bandwidths defined as (h,) = (en™?) with ¢ > 0 and a €]0,1/d[. We then
prove that the sequence (fn(z)— f(z)) satisfies a LDP with speed (nh%) and
rate function

Lot f(@)la (ﬁ + 1)

where I,(t) is the Fenchel-Legendre transform of the function v, defined as

follows:
Ya(u) = / s~ ad (esad“K(Z) — 1) dsdz.
[0,1] xR4
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Our second aim is to provide pointwise LDP for the derivative estimators
ol f,, (with |a| > 1). In this case, we consider more general bandwidths defined
as h, = h(n) for all n, where h is a regularly varying function with exponent
(—a), a €]0,1/ (d + 2|a]) [. We prove that the sequence

(01 (@) = 0 ()

satisfies a LDP of speed (nh,(iH'al) and quadratic rate function Jg o, : R — R
defined by

" 0 7 AN t2(1+a(d+2|a)))
(2) 1 f(l') 7é ) a,la],® 2f(@) fra [G[Q]K(z)]ZdZ
it f(z) =0,

Jaja]w(0) =0 and J, (o 4(t) =00 for t#0.
Our third aim is to prove pointwise MDP for the density estimator and

for its derivatives. For any d-uplet [a] such that |a| > 0, any positive sequence
(vn,) satistying

2

Un

lim v,, =00 and lim =
n—oo n n— oo d+2|a ’
nhy

and general bandwidths (h,,), we prove that the random sequence
on (01 fu(w) = 01 f ()

satisfies a LDP of speed (nhiﬂlal/l}%) and rate function J, (o), (-) defined by
Equation (2).

Let us point out that the rate function J, o) , is larger (by a factor 14+-a(d+
2|a|)) than the rate function obtained for the Rosenblatt estimator in Mokkadem
et al [10]; this means that the recursive estimators 9% f,(x), || > 0, are more
concentrated around 9l®) f(z) than the Rosenblatt estimators.

Finally, we give a uniform version of the previous results. More precisely,
let U be a subset of R%; we establish large and moderate deviations principles for
the sequence (sup,cp ‘8[‘“] fu(z) — 8[°‘]f(:1:)‘) in the case either U is bounded or
all the moments of f are finite.

2. Assumptions and results.
2.1. Pointwise LDP for the density estimator. The assumptions
required on the kernel K and the bandwidth (h,,) are the following.
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(H1) K : R? — R is a bounded and integrable function , [s K(2)dz = 1 and

(H2) hy, = en™® with 0 < a < 1/d and ¢ > 0.

Before stating our results, we need to introduce the rate function for the LDP of
the density estimator. Let 1, : R — R and I, : R — R be the functions defined
as:

Yo (u) = / s—ad (esad“K(z) — 1) dsdz and I,(t) = sup{ut —¥(u)}
[0,1] xR4 u€R

(where s € [0,1], z € R?) and set
Sy ={reREK(@) >0} and S = {x eR%K(z) <0}

The following proposition gives the properties of the functions v, and I,; in
particular, the behaviour of the rate function I,, which differs depending on
whether K is non-negative or not, is explicited.

Proposition 1. Let A be the Lebesque measure on R® and let Assumption
(H1) holds.

(i) g is strictly convez, twice continuously differentiable on R, and I, is a good
rate function on R.

(ii) If A(S=) = 0, then I,(t) = +oo when t < 0, 1,(0) = A(S4), I, is strictly
convex on R and continuous on 10,400, and for any t > 0

(3) L(t) =t () (0) = v ((00) " )

(iii) If A(S=) > 0, then I, is finite and strictly convex on R and (3) holds for
any t € R.

(iv) In both cases, the strict minimum of I, is achieved by I,(1) = 0.

Remark 1. The following relations are straightforward, and will be
used in the sequel:

(4) L(t) = { supyso{ut = Ya(w)} if £>1

sup,o{ut — o (u)} if t < 1.



328 Abdelkader Mokkadem, Mariane Pelletier, Baba Thiam

We can now state the LDP for the density estimator.

Theorem 1 (Pointwise LDP for the density estimator). Let Hypotheses
(H1)—(H2) hold and assume that f is continuous at x. Then, the sequence
(fn(z) — f(2)) satisfies a LDP with speed (nhl) and rate function defined as
follows:

{ if f(x)#0, Ia7x:t.—>f(x)[a<1+ﬁ>
if f(x)=0, I,4(0)=0 and I,.(t) =400 for t#0.

2.2. Pointwise LDP for the derivatives estimators. Let [a] be a
d-uplet such that |a| > 1. To establish pointwise LDP for 9l f,,, we need the
following assumptions.

(H3) h,, = h(n) where the function h is locally bounded and varies regularly
with exponent (—a), 0 < a < 1/(d+ 2|al).

(H4) i) K is |a|-times differentiable on R% and lim )~ oo |IDDK ()| = 0 for
any j € {0,...,|a| —1}.
ii) l*/K : R — R is a bounded and integrable function and
Jga [a[o‘]K(q:)]2 dx # 0.

(H5) f is |a|-times differentiable on R? and its j-th differentials DU)f are
bounded on R? for any j € {0,...,|a| — 1}.

Remark 2. A positive (not necessarily monotone) function L defined
on |0, oo[ is slowly varying if lim; . L(tx)/L(t) = 1; a function G is said to vary
regularly with exponent p, p € R, if and only if there exists a slowly varying
function L such that G(x) = zPL(x) (see, for example, Feller [6] page 275).
Typical examples of regularly varying functions with exponent p are z*, x* log x,
xPloglog x, z”logz/loglogx, and so on. An important consequence of (H3)
which will be used in the sequel is:

1< 1
5 if fBa<1, then lim —; he = .
( ) /8 100 nhﬂ Z ) 1 _ aﬁ

n =1

Theorem 2 (Pointwise LDP for the derivatives estimators). Let |a| > 1
and assume that (H1), (H3)—(H5) hold and that d°1f is continuous at x. Then,
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the sequence (8[0‘] fu(z) — a[o‘]f(x)) satisfies a LDP with speed (nhi+2|a|) and rate
function Jg |q) . defined by (2).

2.3. Pointwise MDP for the density estimator and its derivatives.
Let (vy,) be a positive sequence; we assume that
2

(H6) limy, 00 v, = 00 and nh—>Holo W =

(H7) ) There exists an integer ¢ > 2 such that Vs € {1,. — 1}, Vj €
Syd}, / (y)dy; =0, and/ ’yj (y ’dy<oo.
R4

ii) lim — h! = 0.

1m%n2

i) 9l f is g-times differentiable on R? and M, = sup,cga || D101 f(z)| <
+-00.

Remark 3. When h,=0(n"%), with 0 < a < 1/(d+2|al), (H6) and (HT7)
ii) hold for instance for (v,) = (n®) for any b €]0, min{ag; (1 — a(d + 2|a|)) /2}].

The following theorem gives the MDP for the density estimator and its
derivatives.

Theorem 3 (Pointwise MDP). When |a| = 0, let Assumptions (H1),
(H3), (H6) and (HT7) hold; when |a| > 1, let (H1), (H3)~(H7) hold. If 9\ f is
q-times differentiable at z, then the sequence (vn (a[o‘]fn(l‘) — a[o‘]f(x))) satisfies
a LDP with speed (nh#—ma'/v%) and good rate function J, [q) . defined in (2).

2.4. Uniform LDP and MDP for the density estimator and its
derivatives. To establish uniform large deviations principles for the density
estimator and its derivatives, we need the following additionnal assumptions:

(H8) i) There exists £ > 0 such that [p, [|z[|* f(2)dz < co.
ii) f is uniformly continuous.

(H9) i) 9l K is Holder continuous.
ii) There exists v > 0 such that z — ||z[|70[*/ K (2) is a bounded function.
v2 log vy,

2log(1/hy)
(H10) lim U”O%Z# =0and lim *——=— =
n—00 +2[af n—o00 d+2la]
nhn nhn
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(H11) i) There exists ¢ > 0 such that [g, ||z |K(2)| dz < oo.
ii) There exists 17 > 0 such that z ~ ||z||701% f(2) is a bounded function.

Remark 4. When h, = O (n™%) with a €]0,1/(d + 2|a|)[, (H10) holds
for instance with (v,) = (n®) for any b €]0, (1 — a(d + 2|a|)) /2].

Set U C R%; in order to state in a compact form the uniform large and
moderate deviations principles for the density estimator and its derivatives on U,
we consider the large deviations case as the special case (v,) = 1 and we set:

[ flltr00la (1+W> if |o/=0 and (vy) =1
gu(0) = 5 (1+ a(d + 2|al))

21 fllt00 faa [O19EK]? (2)d2
gu(6) = min{gy(6),gu(-9)},

otherwise,

where || fllv,00 = supgey | f ()]

Remark 5. The functions gy(-) and gy (-) are non-negative, continuous,
increasing on |0, 400[ and decreasing on | — 0o, 0[, with a unique global minimum
in 0 (g (0) = gu(0) = 0). They are thus good rate functions (and gy (-) is strictly
convex).

Theorem 4 below states uniform LDP and MDP for (8[0‘] frn — 0l f) on
U in the case U is bounded, and Theorem 5 in the case U is unbounded.

Theorem 4 (Uniform deviations on a bounded set). In the case |a| =0,
let (H1), (H2), (H7), (H9) i), and (H10) hold. In the case |a| > 1, let (H3)—-(H5),
(H7), (H9) i) and (H10) hold. Moreover, assume either that (v,) = 1 or that (vy,)
satisfies (H6). Then for any bounded subset U of R% and for all § > 0,

2
O tim — s tog fsupo, 01 £,(0) 01 ()] 8] = ~au(0)

"= nhny zeU

Theorem 5 (Uniform deviations on an unbounded set). Let Assumptions
(H1), (H7)-(H11) hold. Moreover,

e in the case |a| =0 and (v,) =1, let (H2) holds;

e in the case |af > 1 and (v,) = 1, or |a| > 0 and (v,) satisfies (H6), let
(H3)-(H5) hold.
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Then for any subset U of R and for all § > 0,

2
—gu(0) < liminf —"-—logP [sup Un ‘8[°‘]fn(x) — 8[°‘]f(ac)} >0

n

2
n—oo nhi"‘ ] xclU
2

Ju (9).

log P [sup Up, 8[°‘]fn(x) — 8[°‘]f(ac)} > (5] < -

7dl+2|06| U

n—oo nh

£+d

The following corollary is a straightforward consequence of Theorem 5.

Corollary 1. Under the assumptions of Theorem 5, if [oq ||| f(z)dz <
oo V€ € R, then for any subset U of R?,

2
1) tim g fsup o, 01 £,(2) 01 ()] 28] = ~qu(0)

"= nhny zeU

Comment. Theorem 4 and Corollary 1 are LDP for the sequence
(supgey | fn(z) — f(2))]). As a matter of fact, since the sequence
(sup,ep | fn(x) — f(x)]) is positive and since gy is continuous on [0, 4+o00], increa-
sing and goes to infinity as § — oo, the application of Lemma 5 in Worms [19]
allows to deduce from (6) or (7) that (sup,c; | fn(z) — f(2)|) satisfies a LDP with
speed (nhfb) and good rate function gy on R..

3. Proofs. Let (\Il,[la ]) and (B,[La]) be the sequences defined as

o 1 " 1 o .%‘—X,L' o .%‘—X,L'
W = 5 (0 (557 = [ (5],

i=1
Bil@) = E[oR ()] - 0l f(a).
We have:
(8) 0 fo(w) = 0 f () = Wl (@) + B ().
Theorems 1, 2 and 3 are consequences of (8) and the following propositions.
Proposition 2 (Pointwise LDP and MDP for (\1/7[{)‘]))

1. Under the assumptions (H1) and (H2), the sequence (fn(x) —E (fn(x)))
satisfies a LDP with speed (nhfll) and rate function I, .
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2. Let |a| > 1 and assume that (H3), (H4) hold, then the sequence <\IILO‘] (ac))
satisfies a LDP with speed (nhg”'al) and rate function Jg (o) 4

3. When |a| = 0, let Assumptions (H1), (H2) and (H6) hold and when |a| > 1,
let (H3), (H4) and (H6) hold, then the sequence (Un\lh[la] (:U)) satisfies a LDP

with speed (nhi+2|a|/v%> and rate function Jq (o] o

Proposition 3 (Uniform LDP and MDP for (\IJL?]))

1. In the case |a| = 0, let (H1), (H2), (H9) i) and (H10) hold. In the case
la| > 1, let (H3)-(H5), (H9) i) and (H10) hold. Moreover, assume either
that (v,) =1 or that (vy,) satisfies (H6); then for any bounded subset U of
R? and for all § > 0,

2

v
lim —~—logP [sup Up,
n—00 nhg+2|0‘| xelU

5, ()| 5} — ).

2. Let Assumptions (H1), (H8)—(H11) hold. Moreover,

e in the case |a| =0 and (vy,) =1, let (H2) holds,

e in the case either |a| > 1 and (v,) = 1, or |a| > 0 and (vy,) satisfies

(H6), let (H3)~(H5) hold.

Then for any subset U of R and for all § > 0,

2

—qu(6) < lirlrrigrolfW10gP[squn a[alxyn(x)} > 5
Ny e
< limsup57’21210@&1> [supvn 8[‘4‘11”(1:)} > 6} < — 3 gu (6).
n—o0 nhn+ | zelU €+d

Proposition 4 (Pointwise and uniform convergence rate of B,[La]). Let
Assumptions (H1), (H3)-(H5) and (HT7) i) hold.

1) If ol f is g-times differentiable at x, then

E (01 fu(2)) — 01 f(2) = 0<L?1mq>.

n
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2) If (H7) iii) holds, then:

li ”

M —5; ¢ Sup
n 1q

n—oo Zi:l hi z€RE

B (0 f@) — 0 @] < St [ el K 2

Set x € R? since the assumptions of Theorems 1 and 2 guarantee that
lim,, o0 B,[f‘] () = 0, Theorem 1 (respectively Theorem 2) is a straightforward
consequence of the application of Part 1 (respectively of Part 2) of Proposition
2. Moreover, under the assumptions of Theorem 3, we have, by application of
Part 1 of Proposition 4, lim, . vnB,[la] () = 0; Theorem 3 thus straightfully
follows from the application of Part 3 of Proposition 2. Finally, Theorems 4
and 5 are obtained by applying Proposition 3 together with the second part of
Proposition 4.

We now state a preliminary lemma, which will be used in the proof of
Propositions 2 and 3. For any u € R, set

2

vy, nhﬁ”la' o
Apg(u) = ngﬂ_‘i exp (UT‘I’L](@>] ;
Ay(w) = f(@) Walu) —u),

u2

u) = T ol K (2 ? z.
MW = s )/Rd ()]

Lemma 1 (Convergence of A, ;).
e In the case || =0 and (v,) = 1, let (H1) and (H2) hold;

e In the case either |a| > 1 and (v,) =1, or |a| > 0 and (vy,) satisfies (H6),
let (H1), (H3) and (H4) hold.

1. (Pointwise convergence)
If f is continuous at z, then for all u € R,

(9) lim A,z (u) = Ag(u)

n—oo

AL(u) when v, =1 and |a| =0
Ay(u) =< AM(u) when either v, — oo and |a| >0
or v,=1 and |a| > 1.
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2. (Uniform convergence)
If f is uniformly continuous, then the convergence (9) holds uniformly in
rxeU.

Our proofs are now organized as follows: Lemma 1 is proved in Section
3.1, Proposition 2 in Section 3.2, Proposition 3 in Section 3.3 and Proposition 4
in Section 3.4. Section 3.5 is devoted to the proof of Proposition 1 on the rate

function I,.
3.1. Proof of Lemma 1. Set u € R, u, = u/v,, ¥; = 0K (%)

d+2
and a, = nhn+ la'. We have:

2

Apz(u) = Z—”logE [exp (unan\I/,[f‘](m)ﬂ

n
2 - 1

= “logk exp( Y e (Vi - E(Y)
n =1 hz

_ ﬁil B Uy, G, v, uvnzn: 1

= 08 & | exp Ao ¢ n e E(Y0)
" i=1 nh; =1 Ny

By Taylor expansion, there exists ¢; , between 1 and E [exp ( Zgi”alYiﬂ such
n,
that

Un A,
log | E |exp Y;
( (nhf*'“' )D

Up Gy 1
= Elexp| —F—Y;| -1 —— | E
(nhf*'“' ) ] 2(

and A, ; can be rewritten as

Ay 2 (w)

2
UpQn

exp ;| -1
(m;“'“' ) D

UVp, " 1
(10) 2 T BT
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For proving Lemma 1, we consider two cases:

3.1.1. First case: either v,, — 0o or |a| > 1. A Taylor’s expansion

implies the existence of ¢, between 0 and MYi such that
.M nh‘-jﬂal
(2
UpAn,
7
1 ? 1 ’
 UpQy : L[ upan 2 1 unan < 3 c;m>
= et T3 (m‘?*"") B+ 5 (m‘”'“') E{¥ienr).
(2 (2 (2
Therefore,
TEr— 1
n 2 1
Bnsl®) = 3D (V2] + RO, (u)
i=1 1Y
e Z : (@[Q]K<z>)2dz+R<l> (u) + RZ)(u)
= 2n2 — hd+2|a| Rd n,xr n,xr
1= )
with
luta? O~ 34— /
Rn,:r(u) - 6n3vn ;h’z E<Yz ’ )
2
2 n
v; 1 Up Ay,
- — [Elexp| ——Y; | —1
2an i=1 Cin ( ’ (”h?HaI l) ])
2) u2an i 1 [Oc] 2
REW = 573y [, (K@) 16— hiz) - f(@)] =
= i
Since |Y;| < [0l K |50, we have
UnQ
V< [0 o,
nh,
so that
(11) G < Junl 0K oo,
and
1
(12) —— < exp (2lunl [0 K| ) -
i,n
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Noting that E|V;[ < 52 f]lsc fe |01 K (2)]” dz. Hence, using (5) and (11), there
exists a positive constant ¢ such that, for n large enough,

UPaZ N | —3d—3)al
Ly jh E (vehn)
n3v,, “

HfHoo\u!ge'“””‘a Klleo )
= VTt a2d + 3[a])) vn /R

3
(13) 8[°‘]K(z)‘ dz

which goes to 0 as n — oo since either v, — oo or |a] > 1.
In the same way, in view of (5) and (12), there exists a positive constant ¢z such

that, for n large enough,
2
UpGn
exp| ——=Yi| —1
(nh?*'“' > D

(14) < gl f]2 et 10 K e (/
Rd

v2 zn: 1 B
2a., c?

i=1 hn

2
K (2) dz> hd

which goes to 0 as n — co. The combination of (13) and (14) ensures that

lim sup ]Rg;,(u)] =0.

n—oo QJERd

Now, since f is continuous, we have lim; .o |f(z — h;iz) — f(x)| = 0, and thus,
by the dominated convergence theorem, (H4)ii) implies that

im [ (9K () [f@— hiz) — f@)]dz = 0,

1—00 Jpd

n
ua,

m2 d+2|al
i=1 hl

Since, in view of (5), the sequence ( ) is bounded, it follows

that lim |R?) (u)| = 0. The pointwise convergence (9) then follows.
n—o0 ’

In the case f is uniformly continuous, we have lim sup |f(x — h;z) — f(z)| =0
1—00 xERd

and thus, using the same arguments as previously, we obtain lim sup |R§;(u) |=0.
n—00  cRd ’

We then deduce that lim sup |Apz(u) — Agy(u)| = 0 which concludes the proof

n~>oo

of Lemma 1 in this case.



Large and moderate deviations principles. . . 337

3.1.2. Second case: |a| = 0 and (v,) = 1. Using assumption (H2)
and in view of (10), we have

Y, 1 &1 uan y,; 2
A N P A N o 1 e S
() anz [ } PO ( [ D

i=1

— Z hy“E(Y;)

— hdz /Rd[ (3)° 1] f(z)dz —u » K(2)f(z)dz

—RS&(U) R, (u)

)

with

Rn?:;:(u) = 2nhdz (

i=1 'Ln

Using the bound (14), we have lim,,_, sup,cga |Rn x( )| =0.
Since |et — 1| < |t|e!!, we have
uh
(e wd K _

] = g [,
M ” z z—hiz) — f(x
+ ;l/d!K( (@ = hiz) = f(2)|

ule Il Zhd/ K| |f (@ — hiz) — f(2)] d2

ul §- (e — hon) — F(x
+n;/Rd!K()Hf( hiz) — 1),

dz

1> [f(z = hiz) — f()]

IN

1 n
In the case f is continuous, since in view of (5) the sequence (W Z hf) is
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bounded, the dominated convergence theorem ensures that lim,, . %%(u) =0.
In the case f is uniformly continuous, set ¢ > 0 and let M > 0 such that
2] f1loo sz||>M |K(z)|dz < /2. We need to prove that for n sufficiently large

sup / K@= hiz) — f@)|dz < /2
zeRe J||z]|[<M

which is a straightforward consequence of the uniform continuity of f. It follows
from analysis considerations that

lim A, (u) = f(ac)/ [/1 g—ad (esaduK(z) 11— usadK(z)) ds} dz,
Rd 0

n—oo
and thus Lemma 1 is proved. “0J

3.2. Proof of Proposition 2. To prove Proposition 2, we apply Propo-
sition 1, Lemma 1 and the following result (see Puhalskii [12]).

Lemma 2. Let (Z,) be a sequence of real random wvariables, (v,) a
positive sequence satisfying lim,, . vy, = +00, and suppose that there exists some
conver non-negative function I' defined (i.e. finite) on R such that

Vu e R, lim 1 log E [exp(uvy, Z,,)] = T'(u).
n—oo Uy,
If the Legendre transform T of T is a strictly convex function, then the sequence
(Zy) satisfies a LDP of speed (vy,) and good rate function T.
In our framework, when |a] = 0 and v, = 1, we take Z,, = f,(z) —
E(fn(z)), vp = nhd with h, = cn™® where 0 < a < 1/d and T' = AL, In

x
this case, the Legendre transform of I' = AL is the rate function Izt —

flx)I, <% + 1) which is strictly convex by Proposition 1. Otherwise, we take
Zy = v, (0 fr () — E (01 £ (), v = nhfl”la'/v% and I' = AM; T is then the
quadratic rate function J, (4], defined in (2) and thus Proposition 2 follows. [

3.3. Proof of Proposition 3. In order to prove Proposition 3, we first
establish some lemmas.

Lemma 3. Let ¢, : R+ — R be the function defined for § > 0 as

W) (b +1) # () =1 and |a] =0,

Pa(d) = §(1+a(d+2]a]))
110,00 fra [019 K] (2)d2

otherwise.
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1. sup,cr{ud —sup,cpy Az (u)} equals gy (8) and is achieved for u = ¢4(5) > 0.

2. sup,ep{—ud —sup,cy Az(u)} equals gy (—6) and is achieved for
u = ¢q(—9) < 0.

Proof of Lemma 3. We just prove the first part, the proof of the
second one being similar. First, let us consider the case (v,) = 1 and |a| = 0.
Since ! > 1+t (Vt), we have 1)(u) > u and therefore,

ud —supAg(u) = ud — || fllv,0o (Va(u) —u)

xeU
)
£lorec [“ (HfHU,oo * 1) - 1"“(“)]

The function u — ud — sup,eyy Ay (u) has second derivative —|| f||v,00?) (u) < 0
and thus it has a unique maximum achieved for

Uy = /I\—1 6 >
0= (¥a) (Hfuy,oo“'

Now, since 9/, is increasing and since v, (0) = 1, we deduce that ug > 0.
In the case lim,_, vy, = 00, Lemma 3 is established in the same way by noting
that

ud —sup Ag(u) = ué—supAi\/[(u)
zeU zeU
= W gyl [ [5G a0
2(1+a(d+2al)) " Jra

Lemma 4.
e In the case |a| =0 and (v,) = 1, let (H1) and (H2) hold;

e In the case either |a| > 1 and (v,) =1, or |a| > 0 and (v,) satisfies (H6),
let (H1), (H3) and (H4) hold.

Then for any § > 0,
2

zeU

Jim ﬁlog 216151? [Un (8[“]fn($) —E (8[“]fn(w))) > 6: = —gu(9)
li U?j 1 P [a] [a] 1
nggom 0g Sup ['Un (8 fa(z) —E (8 fn(:r))) <=0 = —gu(=9)

lim %m sup P [Un‘a[al Fula) —IE((‘?[O‘] fn(x))‘ > 5: - v

n—oo nh
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Proof of Lemma 4. Set b, = nhdt2l /2§ (z) = vn\I/La](:c), and
d > 0. In the sequel, A (u) is defined as in (9).
We first note that, for any u > 0,
P[Sn(l‘) > 5] . |:ebnuSn(:c) > ebnué]
o~ bnud g [ebnuSn(x):|

e—an5€bnAn,x(u)

o (U8 =D () b (A (1) A (u))

ININ A

Therefore, for every u > 0,

(15) supP [Sp(z) > 6] < e O (#9=5uPacr Aa(w) phnsupseu|Ana (u)—Aa ()]
zelU

Similarly, we prove that, for every u < 0,

(16) sup P [Sp(z) < —0] < e~ (-u0=s0Pacr Aa(w) ghn supseu|Ana (u) = Aa(w)]
zelU

The application of Lemma 3 to (15) and (16) yields

supIP’ [Sn(.T) > 6] S efbngU(a)ebn SUPer|An,I(¢a(6))*AI(¢a(6))|
zeU
supIP [Sn(l') < _6] S efbngU(*‘s)ebn SuP;ceU|An,z(¢ﬂ(*6))*Az(¢a(*5))|
zelU

and the second part of Lemma 1 provides

nlggo Slelg ’An,x(¢a(6)) - Ax(¢a(6))‘ =0
lim sup |An,m(¢a(_5)) - Am((;sa(_é))’ = 0.

= gelU

Consequently, it follows that
) 1

lim sup o logsupP[S,(z) > ] < —gu(0)

n—oo Un zeU

1
limsup — logsup P [S,,(z) < =48] < —gu(—9)

n—oo n zeU
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and thus, setting gy (9) = min{gy (), gu(—9)},

1
limsup —logsup P [|S,(z)] > 4] < —gu(9).
n—oo Un zelU
In order to conclude the proof of Lemma 4, let us note that there exists g € U
such that f(zo) = ||f|lv,co- The application of Proposition 2 at the point xy thus
yields

lim - log B[S, (w0) >8] = —gu(9)
1
lim 0 logP[Sp(x0) < —6] = —gu(—0)
.1 ~
nlglgob—logPHSn(xoﬂ >0 = —gu(d).

The latter relation being due to the straightforward bounds

max{P S, (x0) > 8] , B[S, (w0) < ~8]} < B[Sy (0)] > 9]
< 2max{P[Sn(z0) > 6], P [Sy(z0) < —0]}.

O

Lemma 5. Let Assumptions (H1), (H3), (H4) i), (H9) i) and (H10) hold
and assume that either (vy,) =1 or (H6) holds.

1. If U is a bounded set, then, for any § > 0, we have

2

v
lim —*—logP [sup Up,
n—o00 nhfll+2|a| el

128 (x)} > 5} < —gu(d).

2. If U is an unbounded set, then, for any b > 0 and § > 0,

2

) v
lim sup THQMI logP sup  Up
n—00 nhy, z€U,[|z||<wn

wil@)| 26| < dab-gu(o)

where wy, = exp (bnhﬁ+2|a|/v%>.

Proof of Lemma 5. Set p €]0,9], let 5 denote the Holder order of
MK | and ||01*) K || g its corresponding Holder norm. Set w,= exp <bnhg+2lal/v721)

and

1

B

Ry = |
DT rm 0

J=1"



342 Abdelkader Mokkadem, Mariane Pelletier, Baba Thiam

We begin with the proof of the second part of Lemma 5. There exist N’(n) points
of R?, ygn), yén), . ,y](\?,)(n) such that the ball {z € R? ||z| < w,} can be covered

by the N'(n) balls B™ = {z € R% ||z — y\"|| < R,} and such that N'(n) <
2w, \ *
2 (Ri) . Considering only the N(n) balls that intersect {z € U;||z| < w,},

we can write

N(n n
{z € U;|a| <w,} cuXWBM,

(2

For each i € {1,...,N(n)}, set :cgn) € BZ»(n) NU. We then have:

(n)
P |sup,c, o) <w, Vn wlol (ac)} 25} < NZ P [SupmeBE"W” ‘\I@[f‘] (m)‘ 2(5]
i=1
<N (n)lggr%fg(n)? [supme B Vn ‘\I/E? ] (1‘)‘ 26] .

Now, for any i € {1,...,N(n)} and any = € B™

'3 9

, (n) _ v
gl (T=Xi\ _plalp (T —Xi
hj hj
z— X, ¢
ol (20 ) _plad g [ Zi
h h;
n (n) s
[l (,(M)y| . 2V} 5lal 1l =2
Jj=1"

2v L
2¥n 1 9lal (d+B+|al) pp
+ - 10" K || Elhj Ry
]:

oo [W@)] < v W)

n

Up, 1
T > h;z+|a|

Jj=1

n
U, 1

E

d+|al
n 4 :
=1l

IN

~—

< Up \I/La] (xgn)

~—

< Uy \I’La](xsn)) +p.
Hence, we deduce that

P |sup, ey, |ja)|<wn Vn “I’Lf“] (fﬂ)‘ > 5} < N(n)lgﬁ%\rx(n)lp [Un “I’La](%(n))‘ >0 — p}

< N(n)supP [Un ‘\IILO‘](.@)} > 5—p] .
zelU
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Let us at first assume that

2

, v
(17) hzn sup T’EM log N(n) < db.
- nhy,

The application of Lemma 4 then yields

2
. v
lim sup Tn2ml log P |sup,ey, ||| <w, Un ’\IJLO‘] (:c)’ > 6}

n—00 nhn
02
< limsup —5—log N(n) — gu(é — p)

n—00 nhfjﬁ_ma'

< db—gu(6—p).

Since this inequality holds for any p €]0, [, Part 2 of Lemma 5 thus follows from
the continuity of gy .
Let us now establish Relation (17). By definition of N(n) and w,, we have

log N(n) < log N'(n) < dbnh&®! 12 + (d + 1) log 2 — dlog Ry, with

U2

2 n
—(d
= % log p + logn — log <2H8[°‘]KHH) —log v, — log Z h; (d+5+al) ,
Bnhy j=1

which goes to zero in view of (H10) and (5). Thus, (17) is proved, and the proof
of part 2 of Lemma 5 is completed.

Let us now consider part 1 of Lemma 5. This part is proved by following
the same steps as for part 2, except that the number N (n) of balls covering U is at
most the integer part of (A/Ry)?, where A denotes the diameter of U. Relation
(17) then becomes

2

lim sup Tn%cl log R, <0

n—00 nhn

and Lemma 5 is proved. O

Lemma 6. Let Assumptions (H1), (H3), (H4) i) and (H11) ii) hold.
Assume that either (v,) =1 or (H6), (H10) and (H11) i) hold. Moreover assume
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that 8% f is continuous. For any b > 0 if we set w,, = exp <bnhg+2lal/v,21) then,

for any p > 0, we have, for n large enough,

[ (58] =+

Proof of Lemma 6. We have

Un . 1 « r — X o
(1%2%{“&'1@[8[ (50| - Z (2000 f(z — hyz)d.

i=1 v

n

Up, 1
ap Uy
i

z€U, ||z]|>wn i=1

Set p > 0. In the case (v,) = 1, set M such that ||5[O‘]f”oof“z||>M |K (2)|dz < p/2;

we have
ol e (2= Xi
o (=52

P a
< Bwollf@) [ k()

lzl|l<M
1 n
o ;/ z

lzll<M

n

Un, 1
; Z hd+|0c|
%

=1

K ()] 0 f (2 = hiz) = 01 £ ()| 2

Lemma 6 then follows from the fact that 9l f fulfills (H11) ii). As a matter of
fact, this condition implies that limy,, .78 f(z) = 0 and that the third
term in the right-hand-side of the previous inequality goes to 0 as n — oo (by
the dominated convergence).

Let us now assume that lim,_, v, = oo; relation (18) can be rewritten as

n n

v 1 - X, ;
n - [a] i _ W ] o
n > hj+|a|E [c’) K< h ﬂ - Z/Z||<wn/2K(z)a Fla = hiz)dz

i=1 v i=1

+in Z/ K ()0 f(z — hiz)dz.

||| >wn /2

Set p > 0; on the one hand, we have

|z|| > w, and |z]| <w,/2 = || —hiz|| > w,(1—h/2)

= ||x — hiz|| > w,/2 for n large enough.
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Set M; = sup,cga ||z]|701 f(z). Assumption (H11) ii) implies that, for n suffici-
ently large,

n

Up, o
sup — / ’K(z)a[ ]f(:r—hiz)’dz
lzl|>w, 7 Z; 2l <wn /2
< sup / K (2)| M|z — hiz||~"dz
l|lz]|>wn n i=1 Izl <wn /2
U
< o ZA K(2)|d
< 2 [ k)
< P
- 2

On the other hand, we note that, in view of assumptions (H10) and (H11) i),

sup In / ’K(z)a[a]f(q: — hiz)| dz
”tzwn n i=1 ||2H>wn/2

< X [ el R )]
Wn, llz[>wn /2

< P

- 2

(for n large enough). As a matter of fact, we have by assumptions (H6) and
(H10), V€ > 0

n 1 n n—oo
v—:exp{—flogwn (1— 08 Y >} — 0.
’LU% § logwy,

This concludes the proof of Lemma 6. O

Since K is a bounded function that vanishes at infinity, we have
lim g~ oo ]\Il,[la] (z)| = 0 for every given n > 1. Moreover, since 0l K is assumed

]

. o . . . .
to be continuous, \117[1 is continuous, and this ensures the existence of a random

variable s,, such that

[l sn)

= sl

Lemma 7. Let Assumptions (H1), (H3), (H4) i), (H8) i), (H9) ii) and
(H10) hold. Suppose either (vy,) =1 or (H6) and (H11) hold. For any b > 0, set
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Wy, = exp (bnhiﬁlal/v%); then, for any § > 0, we have

2
Up, \I/[a](sn) >

n

(19) lim sup log P [Han > w, and vy,

n—oo nhfjﬁ_ma'
Proof of Lemma 7. We first note that s,, € U and therefore

l|snll > wy, and vy, ‘\Ilif‘](sn) >4

) " 1 Sy — X;
n _ - gld n v
Z h2l+|a| IVK < hi ) |

=1

"1 Sn— X;
I 1 A el i
Z h§l+|oz|a < h; )

i=1 v

= |Isnll > w, and

+2R
n

>4

n
= |Isnll > w, and In E
n

i=1 1%

Uy 1 r — X;
_ n [@] T M
sup ZhdJrlalE‘a K( 3 )‘

|| >wn,2eU T 5

Set p €]0,0[; the application of Lemma 6 ensures that, for n large enough,

l|snll > wy, and vy, ‘\Ilif‘](sn)‘ >0

1
|arf

e (oo

)
= > and —= E
[$n]l > wy, an n h,

i=1

Set k= sup ||z||7|81 K ()| (see Assumption (H9) ii)). We obtain, for n suffici-
z€eR4
ently large,
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H%sznamlwlwW@m}za
= |lsnll > w, and Fie{1,...
= |lsnll > w, and Fie{1,...
= |lsnll > w, and Fie {1,...
= ||snll > w, and Fie{1,...
= Jie{l,...,n} such that

1
I
Up; = W, Un hy;

Assume for the moment that

(20)

n—oo

y—d—|af

347
such that
U gllge (Sn—Xi)| S 5
patlel o K< hi )’_6 g
7
such that
d+|a|
Wb 2 S5 — X6 p)
n
such that
1
s h"Y*d*|a| ~
llsnll = 10| < [Tp
such that
1
Ko b))
[ Xill > [lsnll — [n(;lT

[ X5]| > wn (1 — up;) with

()

lim u,; = 0.

It then follows that 1 — w, ; > 0 for n sufficiently large; therefore we can deduce

that (see Assumption (HS8) i)):

wwgm}zﬂ

P (|Isn]| > w, and wv, Uk

IN

IN

IN

n

SR (I > w (1= )]
=1

n
> E (1)) wit (1= )¢
=1

nE (1) wy€

1— A€
11%11,21531( Up ;)
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Consequently,
02
— [a]
nhd&'a' log P [Han > wy, and v, [P (sn)’ > 5]
n
2 nhd+2|a|
— iy [logn + 108 E (I1Xalf) — b= — — €log max (1= )|
n =t=

and, thanks to assumption (H10), it follows that

2

lim sup
n—oo

n

1ogp[||sn|yzwn and  on xp[al(sn)lza} < e

N
d+2
nhn"" |ex]

Let us now prove relation (20). We expand

d+2|c| 2 g 2 . 5
%Fw%wﬂL_b 1 vilogvy v —d ww%wb<m>v

v2 by ppdt2lal by nhd2el b—p

and assumptions (H6) and (H10) ensure that lim,_,o u,; = 0 and thus Lemma
7 is proved. O

Proof of Proposition 3. Let us at first note that the lower bound

2
. v
(21) hnnl}orolf ] log P [21615 U

@y@wzﬂz—@w>

follows from the application of Proposition 2 at a point zg € U such that f(zg) =
11000

In the case U is bounded, Proposition 3 is thus a straightforward consequence
of (21) and of the first part of Lemma 5. Let us now consider the case U is
unbounded.

Set & > 0 and, for any b > 0 set w, = exp (bnhiﬂml/v%). Since, by definition of

Sn,

n

P [sup Un
xzeU

plol (x)} > 5}

\Il7[la](8n)

qfiﬁl(x)} > 5 +P[|ysn|| > w, and v,

=

< P sup  vn
zeU,||z||<wn

it follows from Lemmas 5 and 7 that

2

v
lim sup ———%— log P [sup v
n—00 nhg+2la| el "

\I/LO‘](JC)} > (5] < max{—b§;db— gu(9)}
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and consequently

2

0
lim sup ——%— log P [sup v
n— oo nhg+2la| xeU "

\P%‘](x)} > 6] < inf max{~b¢; db — g (9)}.

Since the infimum in the right-hand-side of the previous bound is achieved for
b= gu(0)/ (£ +d) and equals —£g7(9)/ (€ + d), we obtain the upper bound

2

log P [sup Un \117[10‘](:5)’ > 5] < -

lim sup ——%—
7Ci—|-2|o¢| el

n—oo nh
which concludes the proof of Proposition 3. O

Proof of Proposition 4. Let us set g = dl®lf, Dig (j e{l,... ,q}) the
j-th differential of g, y = (y1,...,%q4) € R? and yU) = (y,...,y) € (R?)?. With
these notations,

4 4 &g N o
ng(x)(y(j)) = Z ayal ayad (l‘)yl b ydd'
A 1 - d

By successive integrations by parts (and using the fact that the partial derivatives
of K vanish at infinity, see Assumption (H4)i)), we have

n

E[01 fo(z)] = % 2 ﬁﬁ’ la[a]K (w ;LX) ]

i=1 ¢

n

1 1 T —
= = - [o] g Yy
n Z h?_'_lal Rd g ( hi ) f(y)dy

=1

| T —y

- Y= | K d
n;hf/w ( n )g(y)y
1 n

= =Y | Kyl - hiy)dy.
TL,: Rd

Hence, using assumption (H7)i) and the fact that olel £ is g-times differentiable,
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it comes

E[0f,(@)] - 01 @)

_ % > K )lgle = hiy) = g(@)]dy

n x —h; hJDJ ()
_ %Zhg/RdK(y)[g( y) —g(x) = 3752 9(x)(y )]dy.

i
Let us set
z — hy q 1( I)thD] (4)
W)Afwﬁ ) o)~ S5 <m1@m
Unte) = S8 [ D19 )ay
We clearly have
(22) lim Uij(z) = Usx(z)

1— 00

and therefore, Ve > 0, Jiy € R such that Vi > i, |U;(x) — Ux(2)| < e.
e If >, h! = oo, then

E (0 f,(@)) = 01 f (@)] = Usc(@)

el

N

zlz

X R )~ Use()] + X, Y U () — Unc()
N >y hf

< 2e.

o If >, h! < 0o, we can write

[E (0 fu(2)) = 0 f(a)]

n

——— iz hili(z)
>z hi '

Z’L 1h;1
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In view of (22), for = fixed and for all ¢ € N, the sequence (U;(x)); is bounded
and thus Part 1 of Proposition 4 is completed. Let us now prove Part 2.

Since (Uj(x)); is bounded by sup,cga ||Dig(x)|| = M, (see Assumption (H7) iii)),
Part 2 follows. O

3.5. Proof of Proposition 1.

e Since ‘et — 1‘ < |t| el Vt € R, and thanks to the boundedness and integra-
bility of K, we have

/ Sfad
[0,1] x R4

which ensures the existence of 1,. It is straightforward to check that 1, is
twice differentiable, with

s*tuk (2 lldsdz < ]u\e'“'”K”“/ |K ()| dsdz < o0
[0,1] xR

Ph(u) = / K(z)esad“K(Z)dsdz,
[0,1] x R4
"u) = / 59 (K (2))? es" UK (2) sz
[0,1] x R4

Since ¢!/ (u) > 0 Yu € R, 1), is increasing on R, and v, is strictly convex
on R. It follows that its Cramer transform I, is a good rate function on R
(see Dembo and Zeitouni [4]) and (i) of Proposition 1 is proved.

e Let us now assume that A(S_) = 0. We then have

lim ) (u) =0 and lirf Yy (u) = 400,

U——00

so that the range of ¢/, is |0, +00[. Moreover lim,,_, o ¥4 (u) = =A(S4)/(1—
ad) (which can be —oo). This implies in particular that I,(0) = A\(S4+)/(1—
ad). Now, when t < 0, limy,—,_o (ut —¥s(u)) = 400, and I,(t) = +oo

~—

Since ), is increasing with range ]0,+o0o[, when ¢ > 0, sup, (ut — 1, (u)
is reached for ug(t) such that v/, (ug(t)) = t, i.e. for ug(t) = ()~ (t);
this prove (3). (Note that, since ¢/ (t) > 0, the function ¢ — wug(t) is
differentiable on |0, +o00[). Now, differentiating (3), we have

L) = uo(t) + tug(t) — 9 (uo(t))u(t)

= (L)1) + tug(t) — tug(t)

= (W)
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Since (¢!,)~! is an increasing function on ]0, +o0], it follows that I, is strictly
convex on |0, 400 (and differentiable). Thus (i7) is proved.
Now, since A\(S_) = 0, ¥/,(0) = f[o 1)xre K (2)dsdz = 1; we have

LH)=0 & (W) '()=0 & 0=t & t=1

Then I} (1) = 0, and I, (1) = 0 is the unique global minimum of I, on
10, 4+00]. This proves (iv) when A\(S_) = 0.

Assume that A(S_) > 0. In this case, ¢/, can be rewritten as

Ph(u) = K(z)esad“K(Z)dsdz

/[0,1] x(R4NS )

+ / K(z)esad“K(z)dsdz
[0,1]x (RINS_)

and we have

lim ¢ (u) =—cc and lim ¢, (u) = +oo

U——00 U——+00

so that the range of ¢/, is R in this case. The proof of (iii) and the case
A(S-) > 0 of (iv) follows the same lines as previously, except that, in the
present case, (¢)~! is defined on R, and not only on ]0, +oc[. O
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