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Averaging operators and set-valued maps
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We investigate maps admitting, in general, non-linear averaging operators. Charac-
terizations of maps admitting a normed, weakly additive averaging operator which preserves
max (resp., min) and weakly preserves min (resp., max) is obtained. We also describe set-
valued maps into completely metrizable spaces admitting lower semi-continuous selections. As
a corollary, we obtain a description of surjective maps with a metrizable kernel and complete
fibers which admit regular linear averaging operators.
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1 Introduction

All spaces in the paper are assumed to be Tychonoff. Continuous
bounded real-valued functions on X are denoted by C∗(X) (this space is de-
noted by C(X) when X is compact).

Regular averaging operators were introduced by Pelczyński [13] (recall
that a linear operator u : C∗(S) → C∗(K) is regular if u is of norm one and
u(1S) = 1K , where 1S , 1K are the constant functions 1 on S and K). Since then
regular averaging operators and maps admitting regular averaging operators
(usually called Milyutin maps) were extensively studied, see [1], [3], [4], [5],
[6], [7], [8], [9], [15], [17], [22]. To clarify the importance of regular averaging
operators, let us mention that the classification result of Milyutin [11] (that the
function spaces C(K1) and C(K2) of any uncountable metric compacta K1,K2

are linearly homeomorphic) is based on the existence of a map from the Cantor
set onto the unit interval admitting a regular averaging operator.

1The author was partially supported by NSERC Grant 261914-08.
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Regular extension operators and regular averaging operators were simul-
taneously introduced and investigated by Pelczyński [13]. Concerning the non-
linear case, there are already some treatments and applications of general ex-
tension operators (see [2], [16], [19], [20]). In this paper we investigate mainly
non-linear averaging operators. Let f : X → Y be a surjective map. We say that
a map (not necessarily linear) u : C∗(X)→ C∗(Y ) is called an averaging opera-
tor for f if the support S(µy) of each µy, y ∈ Y , is contained in f−1(y). Here,
µy : C∗(X) → R, y ∈ Y , are the maps (we called them functionals), generated
by u. Each µy is defined by µy(h) = u(h)(y), h ∈ C∗(X).

The paper is organized as follows: Some definitions and properties of the
support maps of general operators are given in Section 2. In Section 3 we con-
sider normed, weakly additive averaging operators u : C∗(X)→ C∗(Y ) preserv-
ing max and weakly preserving min. An operator u : C∗(X) → C∗(Y ), where
X and Y are arbitrary spaces, is said to be (i) normed, (ii) weakly additive, (iii)
preserving max, and (iv) weakly preserving min, if for every f, g ∈ C∗(X) and
every constant function cX we have: (i) u(1X) = 1Y , (ii) u(f + cX) = u(f)+ cY ,
(iii) u(max{f, g}) = max{u(f), u(g)}, (iv) u(min{f, cX}) = min{u(f), cY }. We
say that u preserves min provided u satisfies equality (iii) with max replaced
by min. Similarly, u weakly preserves max if u satisfies condition (iv) with min
replaced by max. A functional µ : C∗(X) → R is normed, weakly additive,
preserves max and weakly preserves min (resp., preserves min and weakly pre-
serves max) provided µ satisfies the corresponding equalities above, where the
constant functions cY are replaced by the constants c. This type of functionals
were introduced by Radul [14]. A given operator has any of the above prop-
erties if and only if all functionals generated by this operator have the same
property. Moreover, if u : C∗(X) → C∗(Y ) (reps., µ : C∗(X) → R) is normed,
weakly additive, preserves max and weakly preserves min, then the operator
v : C∗(X) → C∗(Y ), v(h) = −u(−h) (resp., the functional ν : C∗(X) → R,
ν(h) = −µ(−h)) is normed, weakly additive, preserves min and weakly pre-
serves max.

We show (Theorem 3.3) that a surjective map f : X → Y admits a
normed, weakly additive operator which preserves max (resp., min) and weakly
preserves min (resp., max) if and only if there exists a continuous compact-
valued map Φ: Y → X such that Φ(y) ⊂ f−1(y) for all y ∈ Y . This implies
that if each map of a given family admits such an averaging operator, so is
the product of all maps from the family (see Corollary 3.5). We also provide
an external characterization of perfect surjective maps f such that f−1 admits
a continuous compact-valued selection. This characterization is dual to Shi-
rokov’s description [18] of compact space X with the following property: for
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every embedding of X in another space Y there exists a compact-valued con-
tinuous retraction r : Y → X (i.e., a set-valued map r such that r(x) = {x} for
all x ∈ X).

In Section 4 we prove that if a map f with complete metrizable fibers ad-
mits a supportive averaging operator (this means that all functionals µy have the
following property: µy(h) = µy(g) provided f and g have the same restrictions
on the support S(µy)), then f admits a regular averaging operator (Corollary
4.2). This result is based on Proposition 4.1 stating that a map f with com-
plete metrizable fibers and paracompact codomain admits a regular averaging
operator iff f−1 has a lower semi-continuous selection. Because of that, it is
interesting to have a description of maps f such that its inverse f−1 admits a
lowed semi-continuous selection. Corollary 4.5 provides such a description and
generalizes a similar result of Argiros-Arvanitakis [3].

Finally, in the last Section 5, we consider averaging operators of type
u : C∗(X) → C∗lsc(Y ) or u : C∗(X) → C∗usc(Y ), where C∗lsc(Y ) and C∗usc(Y )
denote, respectively, bounded lower and upper semi-continuous functions on Y .

2 Preliminaries

The set of all normed, weakly additive functionals on C∗(X) which
preserve max (resp. min) and weakly preserve min (resp., max) is denoted
by R∗max(X) (resp., R∗min(X)). The topology of these two spaces is inherited
from the product RC∗(X). Identifying C∗(X) with C(βX), any functional µ on
C∗(X) can be considered as a function µ : C(βX) → R. For any functional
µ : C∗(X) → R we define its support S(µ) to be the following subset of the
Čech-Stone compactification βX of X (see also [21] for a similar definition):

Definition 2.1 [2] S(µ) is the set of all x ∈ βX such that for every its neigh-
borhood Ox in βX there exist f, g ∈ C∗(X) with βf |(βX\Ox) = βg|(βX\Ox)
and µ(f) 6= µ(g).

Here, βf : βX → R is the Čech-Stone extension of f and βf |(βX\Ox)
denotes its restriction on the set βX\Ox. Obviously, S(µ) is a closed subset of
βX (possibly empty). If ∅ 6= S(µ) ⊂ X, we say that µ has a compact support.
We consider the subspaces R∗max(X)c ⊂ R∗max(X) and R∗min(X)c ⊂ R∗min(X)
consisting of functionals with compact supports.

We say that a functional µ on C∗(X) is supportive if µ(h) = µ(g) for any
h, g ∈ C(βX) with h|S(µ) = g|S(µ). An operator u : C∗(X)→ C∗(Y ) is called
supportive provided all functionals µy, y ∈ Y , are supportive.
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The following property of the supports was established in [2, Corollary
2.3]:

Proposition 2.2 Let µ be a weakly additive normed and monotone functional
on C∗(X). Then S(µ) 6= ∅, and µ is supportive.

Concerning the supports of normed weakly additive functionals which
preserve max (resp., min) and weakly preserve min (resp., max), we have the
following description (see Theorem 2.9 from [2]):

Proposition 2.3 Let X be a Tychonoff space and µ a functional on C∗(X).
Then we have:

(i) µ ∈ R∗min(X)c (resp., µ ∈ R∗min(X)) if and only if there exists a non-
empty compact set F ⊂ X (resp., F ⊂ βX) such that F = S(µ) and
µ(f) = inf{f(x) : x ∈ F} for all f ∈ C(βX);

(ii) µ ∈ R∗max(X)c (resp., µ ∈ R∗max(X)) if and only if there exists a non-
empty compact set F ⊂ X (resp., F ⊂ βX) such that F = S(µ) and
µ(f) = sup{f(x) : x ∈ F} for all f ∈ C(βX).

Let µ : C∗(X) → R be a functional and f : X → Y a map. Then f
generates the functional µf : C∗(Y )→ R defined by µf (h) = µ(h◦f), h ∈ C∗(Y ).
We say that µ is support-preserving if βf(S(µ)) = S(µf ) for any space Y and
any map f : X → Y . When u : C∗(X)→ C∗(Y ) is an operator such that all µy
are support-preserving functionals, then u is said to be support-preserving.

Corollary 2.4 Every normed weakly additive functional which preserve max
(resp., min) and weakly preserve min (resp., max) is support-preserving.

P r o o f. Let µ be a normed weakly additive functional on C∗(X) which
preserves max and weakly preserves min, and f : X → Y is a map. Then
µf is normed weakly additive functional on C∗(Y ) preserving max and weakly
preserving min. Suppose there exists y ∈ βf(S(µ))\S(µf ), and choose h ∈
C(βY ) with h(y) = 1 and h(S(µf )) = 0. Then by Proposition 2.3, µf (h) = 0 and
µ(h ◦ βf) ≥ 1. But µf (h) = µ(h ◦ βf), a contradiction. So, βf(S(µ)) ⊂ S(µf ).
Similarly, S(µf ) ⊂ f(S(µ)).

Let µ be a normed weakly additive functional on C∗(X) which preserves
min and weakly preserves max. Then the equality νX(µ)(g) = −µ(−g) defines
a functional νX(µ) on C∗(X), which is normed weakly additive, preserves max
and weakly preserves min. Moreover, S(µ) = S(νX(µ)). So, by the previous
case, S(µf ) = f(S(µ)).
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Recall that a set-valued map Φ: Y → X is lower (resp., upper) semi-
continuous if for every open set U ⊂ X (resp., for every closed set F ⊂ X) the
set Φ−1(U) = {y ∈ Y : Φ(y) ∩ U 6= ∅} is open (resp., the set Φ−1(F ) is closed)
in Y .

Let u : C∗(X) → C∗(Y ) be an operator. Then the support of every
functional µy is a closed (possibly empty) subset of βX. We define the support
map Su of u to be the set-valued map Su : Y → βX, Su(y) = S(µy). Proposition
2.2 and Proposition 2.3 easily imply continuity-type properties of the support
map (see [2, Theorem 3.1] for the special case when u is an extender).

Proposition 2.5 Let u : C∗(X) → C∗(Y ) be a supportive operator. Then the
support map Su : Y → βX is lower semi-continuous. If u is normed, weakly
additive operator which preserves max (resp., min) and weakly preserves min
(resp., max), then Su is both lower and upper semi-continuous.

P r o o f. Suppose Su(y0) ∩ U 6= ∅ for some y0 ∈ Y and open U ⊂ X.
Then, according the definition of support, there exist h1, h2 ∈ C(βX) such
that h1|(βX\U) = h2|(βX\U) and u(h1)(y0) 6= u(h2)(y0). Let V = {y ∈ Y :
u(h1)(y) 6= u(h2)(y)}. Obviously, V is a neighborhood of y0 in Y . Since u
is supportive, the existence of y ∈ V with Su(y) ⊂ βX\U yields u(h1)(y) =
u(h2)(y), a contradiction. So, Su is lower semi-continuous.

Suppose u is a normed, weakly additive operator which preserves max and
weakly preserves min. Since u is supportive (Proposition 2.2), Su is lower semi-
continuous. So, we need to show that Su is upper semi-continuous. To this end,
let Su(y∗) ⊂W with W ⊂ X open. Choose h ∈ C(βX) such that h(βX\W ) = 0
and h(Su(y∗)) = 1. The last equality implies u(h)(y∗) = 1. Hence, O =
u(h)−1(0,∞) is a neighborhood of y∗ and Su(y) ⊂ W for all y ∈ O. Indeed,
if Su(y)\W 6= ∅, then by Proposition 2.3(i), u(h)(y) ≤ 0, a contradiction.
Therefore, Su is lower semi-continuous. The case u is normed, weakly additive,
preserves max and weakly preserves min is similar.

3 Averaging operators with continuous values

In this section we consider operators between spaces of continuous func-
tions.

Let f : X → Y be a surjective map. We say that f admits an averaging
operator u : C∗(X)→ C∗(Y ) if the support of any functional µy, y ∈ Y , is con-
tained in f−1(y). Since all S(µy), y ∈ Y , are compact, any averaging operator
has compact supports.
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The notion ”averaging” is borrowed from the classical linear averaging
operators, see [13]. It means that inf{h(x) : x ∈ f−1(y)} ≤ u(h)(y) ≤ sup{h(x) :
x ∈ f−1(y)} for all h ∈ C∗(X) and y ∈ Y . Next proposition shows that every
averaging supportive operator has this property.

Proposition 3.1 Let f : X → Y be a surjective map and u : C∗(X)→ C∗(Y ) be
a monotone, normed and supportive operator. Consider the following conditions:

(i) u is an averaging operator for f ;

(ii) inf{h(x) : x ∈ f−1(y)} ≤ u(h)(y) ≤ sup{h(x) : x ∈ f−1(y)} for all
h ∈ C∗(X) and y ∈ Y ;

(iii) u(g ◦ f) = g for all g ∈ C∗(Y ).

Then (i)⇒ (ii)⇒ (iii).

P r o o f. Suppose u is a supportive averaging operator for f . Since u is
monotone and normed, so are the functionals µy, y ∈ Y . Moreover, each S(µy)
is contained in f−1(y) and has the following property: µy(h1) = µy(h2) provided
h1|S(µy) = h2|S(µy), h1, h2 ∈ C∗(X). Consequently, inf{h(x) : x ∈ f−1(y)} ≤
u(h)(y) ≤ sup{h(x) : x ∈ f−1(y)} for all h ∈ C∗(X) and all y ∈ Y . Indeed,
consider the set-valued map Φy : βX → R defined by Φy(x) = βh(x) if x ∈
f−1(y)

βX
and Φy(x) = [a, b] if x 6∈ f−1(y)

βX
, where a = inf{h(x) : x ∈ f−1(y)}

and b = sup{h(x) : x ∈ f−1(y)}. This map is lower semi-continuous and convex-
valued. So, according to Michael’s selection theorem [10], there exists a selection
h′ for Φy. Obviously, a ≤ h′(x) ≤ b for all x ∈ X. Since h′|f−1(y) = h|f−1(y)
and S(µy) ⊂ f−1(y), µy(h) = µy(h

′). On the other hand, by monotonicity of
µy, a = µy(a) ≤ µy(h′) ≤ µy(b) = b. This provides the implication (i)⇒ (ii).

The implication (ii) ⇒ (iii) is trivial. If g ∈ C∗(Y ) and y ∈ Y , then
(g ◦ f)|f−1(y) is the constant g(y). Hence, u(g ◦ f) = g.

Obviously, if f : X → Y is a surjective map and u satisfies condition
(iii) from Proposition 3.1, then µfy = δy for all y ∈ Y . This implies that
S(µy) ⊂ f−1(y), y ∈ Y , provided u is support-preserving. Hence, by Proposition
3.1, we have the following corollary.

Corollary 3.2 Let f : X → Y be a surjective map and u : C∗(X) → C∗(Y ) be
a monotone, normed supportive and support-preserving operator with compact
supports. Then conditions (i), (ii) and (iii) from Proposition 3.1 are equivalent.

Next, we characterize maps admitting normed weakly additive averaging
operators which preserve min (resp. max) and weakly preserve max (resp., min).
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Theorem 3.3 For any surjective map f : X → Y the following conditions are
equivalent:

(i) f admits a normed weakly additive averaging operator which preserves min
(resp., max) and weakly preserves max (resp., min);

(ii) There exists an embedding g : Y → R∗min(X)c (resp., g : Y → R∗max(X)c)
with S(g(y)) ⊂ f−1(y) for all y ∈ Y ;

(iii) There exists a continuous compact-valued map Φ: Y → X such that Φ(y) ⊂
f−1(y) for all y ∈ Y .

P r o o f. We are going to prove the implications (i)⇒ (ii)⇒ (iii)⇒ (i)
in the case of normed weakly additive operators (or functionals) which preserve
min and weakly preserve max.

If u : C∗(X) → C∗(Y ) is a normed weakly additive averaging operator
for f which preserves min and weakly preserves max, then we define g : Y →
R∗min(X)c by g(y)(h) = u(h)(y), h ∈ C∗(X). Obviously, g is continuous and
S(g(y)) ⊂ f−1(y) for all y ∈ Y . The last inclusions imply that g is one-to-one.
Let us show that g is an embedding. Suppose {g(yα)} is a net in g(Y ) converging
to some g(y). Then, ϕ(yα) = g(yα)(ϕ ◦ f) converges to ϕ(y) = g(y)(ϕ ◦ f) for
every ϕ ∈ C∗(Y ). Hence, the net {yα} converges to y. This completes the proof
of (i)⇒ (ii).

The implication (ii)⇒ (iii) follows from the observation that the compact-
valued map Φ(y) = S(g(y) is both upper and lower semi-continuous (see the
proof of [2, Theorem 3.1]), and Φ(y) ⊂ f−1(y) for all y ∈ Y .

For the final implication (iii) ⇒ (i), let h ∈ C∗(X) and consider the
function u(h) : Y → R, u(h)(y) = inf{h(x) : x ∈ Φ(y)}. Since Φ is compact-
valued and continuous, u(h) ∈ C∗(Y ). Obviously, the support S(µy) of any
functional µy generated by u is the set Φ(y), y ∈ Y . So, u is an averaging
operator for f . According to Proposition 2.3(i), all µy belong to R∗min(X)c.
Therefore, u is a normed weakly additive operator preserving min and weakly
preserving max.

Next corollary follows from Theorem 3.3 and the following result of
Pasynkov [12]: For every paracompact space Y of positive dimension there ex-
ists a one-dimensional space X with dimX = 1 and a perfect open surjection
from X onto Y .

Corollary 3.4 For every paracompact space Y of positive dimension there ex-
ists a space X with dimX = 1 and a map f : X → Y admitting a normed weakly
additive averaging operator preserving min (resp., max) and weakly preserving
max (resp., min).
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Corollary 3.5 Let fα : Xα → Yα, α ∈ Λ, be a family of maps each of them
admitting a normed weakly additive averaging operator preserving min (resp.,
max) and weakly preserving max (resp., min). Then the product map f =∏
α∈Λ fα :

∏
α∈ΛXα →

∏
α∈Λ Yα also admits such an averaging operator.

P r o o f. By Theorem 3.3 there exist continuous compact-valued maps
Φα : Yα → Xα, α ∈ Λ, such that Φα(yα) ⊂ f−1(yα), yα ∈ Yα. Then the map
Φ:

∏
α∈Λ Yα →

∏
α∈ΛXα, Φ(y) =

∏
α∈Λ Φα(yα), is compact-valued and contin-

uous. Moreover, Φ(y) ⊂ f−1(y) for all y ∈
∏
α∈Λ Yα. Then, we can apply again

Theorem 3.3 to conclude that f admits a normed weakly additive averaging
operator preserving min (resp., max) and weakly preserving max (resp., min).

We say that a map f : X → Y is said to be co-exponential if there exists a
function e : TX → TY between the topologies of X and Y satisfying the following
conditions:

(1) e(X) = Y and e(∅) = ∅;

(2) e(U ∩ V ) = e(U) ∩ e(V ) for any U, V ∈ TX ;

(3) e(U)
Y ⊂ e(V ) provided U, V ∈ TX with U

X ⊂ V ;

(4) ∅ 6= e(U) ⊂ f(U) for all U ∈ TX containing a fiber of f .

If f is an embedding and condition (4) is replaced by e(U) ∩ X = U ,
U ∈ TX , we obtain the Shirokov’s notion [18] exponential embedding. Shirokov
[18, Theorem 1] proved that a compactum X is exponentially embedded in
another compactum Y iff there exists a continuous compact-valued retraction
from Y into X. Concerning maps admitting averaging operators, we have the
following proposition.

Proposition 3.6 Let f : X → Y be a perfect surjective map. Then f admits
a normed weakly additive averaging operator which preserves min and weakly
preserves max if and only if f is co-exponential.

P r o o f. Suppose f is co-exponential. We define the compact-valued

map Φ: Y → βX by Φ(y) =
⋂
{UβX : U ∈ γy}, where γy = {U ∈ TβX :

y ∈ e(U ∩ X)}. According to condition (2) all families γy, y ∈ Y , are closed
with respect to finite-intersections. This implies that each Φ(y) is a non-empty
compact subset of βX and the map Φ is upper semi-continuous.

To show that Φ is lower semi-continuous, suppose Φ(y0) ∩ U1 6= ∅ for
some y0 ∈ Y and U1 ∈ TβX . Let U2 ⊂ βX be an open set containing Φ(y0)∪U1,
and consider the set

G = e(U2 ∩X)\
⋂
{e(V ∩X) : V ∈ A},
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where A consists of all open V ⊂ βX with βX\U1 ⊂ V .

Claim 1. G is a neighborhood of y0

Indeed, since Φ(y0) ⊂ U2, there are finitely many open sets Vi ⊂ βX, i =
1, .., k, such that Φ(y0) ⊂

⋂i=k
i=1 Vi ⊂ U2 and y0 ∈

⋂i=k
i=1 e(Vi∩X) = e(

⋂i=k
i=1 Vi∩X).

So, we have Φ(y0) ⊂W ⊂ U2 and y0 ∈ e(W ∩X), where W =
⋂i=k
i=1 Vi. Because

the function e is monotone (by condition (2)), we have y0 ∈ e(U2∩X). To show
that y0 6∈ H =

⋂
{e(V ∩X) : V ∈ A}, let x0 ∈ Φ(y0) ∩ U1 and V0 = βX\O(x0),

where O(x0) is a neighborhood of x0 in βX with O(x0) ⊂ U1. Obviously, V0 ∈ A
and V 0 does not contain Φ(y0). So, y0 6∈ e(V0). Finally, let us prove that H
is closed in Y . To this end take a net {yα} ⊂ H converging to some y∗ ∈ Y .
For any V ∈ A fix an open set WV ⊂ βX such that βX\U1 ⊂ WV ⊂ WV ⊂ V .
Then, by (3), e(WV ∩X) ⊂ e(V ∩X). But H ⊂ e(WV ∩X) because WV ∈ A.
Hence, H ⊂ e(WV ∩X), which implies that y∗ ∈ e(V ∩ X) for all V ∈ A.
Therefore, H ⊂ Y is closed. Consequently, G is a neighborhood of y0 in Y .

Suppose Φ(y) ∩ U1 = ∅ for some y ∈ G. Then there exist V ∈ A
with Φ(y) ⊂ βX\U1 ⊂ V and y 6∈ e(V ∩ X). As above, we can find an open
set V1 ⊂ βX such that Φ(y) ⊂ V1 ⊂ V1 ⊂ V and y ∈ e(V1 ∩ X). Then,
y ∈ e(V1 ∩ X) ⊂ e(V ∩ X), a contradiction. Therefore, Φ(y) ∩ U1 6= ∅ for all
y ∈ G. So, Φ is lower semi-continuous.

Finally, we are going to prove that Φ(y) ⊂ f−1(y) for any y ∈ Y . Indeed,
otherwise for some y0 ∈ Y there exists x0 ∈ Φ(y0)\f−1(y0). Choose W ∈ TβX
containing x0 with W ∩ f−1(y0) = ∅ and a neighborhood O(y0) ⊂ Y of y0

such that f−1(O(y0)) ∩W = ∅ (this is possible because f is perfect). Since
Φ(y0) meets W , we can assume that Φ(y) ∩W 6= ∅ for all y ∈ O(y0) (recall
that Φ is lower semi-continuous). By condition (4), ∅ 6= e(U) ⊂ f(U) ⊂ O(y0),
where U = f−1(O(y0)). Hence, for every y ∈ e(U) we have Φ(y) ∩W 6= ∅ and

Φ(y) ⊂ UβX , a contradiction.

So, we have a continuous compact-valued map Φ: Y → X with Φ(y) ⊂
f−1(y) for all y ∈ Y . Therefore, by Theorem 3.3, f admits a normed weakly
additive averaging operator with compact supports preserving min (resp., max)
and weakly preserving max (resp., min).

For the converse implication, suppose f admits a normed weakly ad-
ditive averaging operator with compact supports preserving min (resp., max)
and weakly preserving max (resp., min). Then, by Theorem 3.3, there exists
a compact-valued continuous map Φ: Y → X with Φ(y) ⊂ f−1(y), y ∈ Y .
We define e(U) = {y ∈ Y : Φ(y) ⊂ U} for every U ∈ TX . Since Φ is upper
semi-continuous, each e(U) is open in Y . Obviously, e satisfies conditions (1),
(2) and (4). To show that condition (2) also holds, let U ⊂ V for some open
U, V ⊂ X. Then, for every y ∈ e(U) there exists a net {yα} ⊂ e(U) converging
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to y. So, Φ(yα) ⊂ U for all α. This yields Φ(y) ⊂ U . Indeed, otherwise there
would be a neighborhood O(y) of y in Y with Φ(z)∩X\U 6= ∅ for all z ∈ O(y)
(because Φ is lower semi-continuous). But that would imply the existence of α
with Φ(yα) ∩X\U 6= ∅, a contradiction. Hence, Φ(y) ⊂ U ⊂ V , i.e., y ∈ e(V ).
Consequently, e(U) ⊂ e(V ).

4 Linear averaging operators

In this section we provide a characterization of surjective maps between
metric spaces with complete fibers. We say that an operator u : C∗(X)→ C∗(Y )
is a regular averaging for a given surjection f : X → Y if u is linear, monotone,
normed and u(g ◦ f) = g for all g ∈ C∗(Y ). A map f : X → Y is said to have a
metrizable kernel if there exists a metric space M and a map q : X → M such
that the diagonal map f4q : X → Y ×M is an embedding. If each q(f−1(y)),
y ∈ Y , is a complete subspace of M (with respect to a given metric on M), then
we say that f has complete fibers.

Proposition 4.1 Let f : X → Y be a surjective map with complete metrizable
fibers, where Y is paracompact. Then f admits a regular averaging operator
with compact supports if and only if there exists a lower semi-continuous map
ϕ : Y → X with ϕ(y) ⊂ f−1(y) for all y ∈ Y .

P r o o f. We fix a metric space M and a map q : X →M such that f4q
is an embedding and all sets q(f−1(y)), y ∈ Y , are complete.

Suppose f admits a regular averaging operator u with compact supports.
Then Su(y) ⊂ f−1(y) for every y ∈ Y , where Su is the support map of u. Since,
by Proposition 2.2, every regular averaging operator is supportive, Su is lower
semi-continuous (see Proposition 2.5).

For the converse implication, suppose ϕ : Y → X is a lower semi-continuous
map with ϕ(y) ⊂ f−1(y) for all y ∈ Y . Considering the closures of all ϕ(y) in X,
we may assume that ϕ is closed-valued. By [15], there exists a zero-dimensional
paracompact space Z and a perfect surjection g : Z → Y admitting a regular
averaging operator v : C∗(Z) → C∗(Y ). Since all functionals νy, y ∈ Y , gener-
ated by v are probability measures, v is support-preserving. Hence, according to
Corollary 3.2, S(νy) ⊂ g−1(y) for all y ∈ Y . Consider the lower semi-continuous
map Φ = q ◦ ϕ ◦ g : Z → M . Each value Φ(y) is closed in q(f−1(y)), y ∈ Y .
Hence, all values of Φ are complete. By Michael’s zero-dimensional selection
theorem, Φ admits a continuous selection k. Then the map ḡ = k4g : Z → X is
a continuous selection for the map f−1 ◦ g. Now, define u : C∗(X)→ C∗(Y ) by
u(h)(y) = v(h ◦ ḡ)(y). Obviously, u is linear, normed and monotone. Moreover,
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it is easily seen that S(supp(µy)) ⊂ f−1(y) for any functional µy generated by
u. So, according to Proposition 3.1, u is averaging for f .

Proposition 2.5 and Proposition 4.1 imply next corollary.

Corollary 4.2 Let Y be a paracompact space and f : X → Y a surjective map
with complete metrizable fibers admitting a supportive averaging operator with
compact supports. Then f admits also a regular averaging operator with compact
supports.

We say that a set-valued map Φ: Y → X is weakly lower semi-continuous
(br., wlsc) if there exists a function θ : TX → TY such that:

(5) θ(X) = Y ;

(6) θ(U) ⊂ Φ−1(U) = {x ∈ X : Φ(x) ∩ U 6= ∅};

(7) If {Uα : α ∈ Λ} ⊂ TX and U ⊂
⋃
α∈Λ Uα, then θ(U) ⊂

⋃
α∈Λ θ(Uα).

Obviously, conditions (5) and (6) imply that Φ(y) 6= ∅ for all y ∈ Y .
Next theorem provides a characterization of wlsc maps in terms of selec-

tions.

Theorem 4.3 Let (X, d) be a metric space and Φ: Y → X a set-valued map
such that each Φ(y), y ∈ Y , is complete in X. Then Φ is wlsc if and only if Φ
admits a lower semi-continuous selection.

P r o o f. Suppose Φ is wlsc and θ : TX → TY is a function satisfying the
above conditions. For every y ∈ Y let By = {U ∈ TX : y ∈ θ(U)}. Obviously,
X ∈ By 6= ∅ for all y ∈ Y . Define φ(y), y ∈ Y , to be the set of all x ∈ X
such that x = limxn, where xn ∈ Un and {U}n≥1 ⊂ By is a sequence with
diam(Un) ≤ 2−n, n ≥ 1. Since θ(U) ⊂ Φ−1(U),

(8) Φ(y) ∩ U 6= ∅ for any y ∈ θ(U).

Claim 2. If y ∈ θ(U), then φ(y) ∩ U 6= ∅.
Indeed, let U ⊂

⋃
{Vα : α ∈ Λ1} with U∩Vα 6= ∅ and diam(Vα) ≤ 2−1 for

all α ∈ Λ1. By condition (7), y ∈ θ(Vα(1)) for some α1 ∈ Λ1. We put U1 = Vα(1).
Continuing in this way, we construct by induction a sequence {Un} ⊂ By such
that diam(Un) ≤ 2−n and Un∩Un+1 6= ∅ for all n. Then, by (8), we can choose
points xn ∈ Φ(y)∩Un, n ≥ 1. Since Un meets Un+1, we have d(xn, xn+1) ≤ 2n−1.
Consequently, {xn} is a Cauchy sequence in Φ(y). Because Φ(y) is complete,
there exists a point x ∈ Φ(y) which the limit of {xn}. Obviously, x belongs to
φ(y) ∩ U .
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Claim 3. For every y ∈ Y we have ∅ 6= φ(y) ⊂ Φ(y).

Claim 2 implies φ(y) 6= ∅ for any y because θ(X) = Y . Suppose there
exists x ∈ φ(y)\Φ(y) for some y ∈ Y . Then the distance between x and Φ(y) is
positive (recall that Φ(y) ⊂ X is closed). So, according to the definition of φ(y),
x is contained in some W ∈ By with W ∩ Φ(y) = ∅. Hence, y ∈ θ(W ) and W
is disjoint with Φ(y), which contradicts condition (8). This completes the proof
of Claim 3.

Claim 4. φ is lower semi-continuous.

Let x0 ∈ φ(y0) ∩ U 6= ∅, where y0 ∈ Y and U ⊂ X is open. Using the
definition of φ(y0), we can find an open set V ⊂ X containing x0 such that
V ⊂ U and y0 ∈ θ(V ). Then, according to Claim 2, φ(y) ∩ U 6= ∅ for all
y ∈ θ(V ). Therefore, φ is lower semi-continuous selection for Φ.

To prove the sufficiency in Theorem 4.3, suppose Φ admits a lower semi-
continuous selection φ. Then θ(U) = φ−1(U) is open in Y for any U ∈ TX .
Conditions (5) and (7) are obviously satisfied. Condition (6) also holds because
φ(y) ⊂ Φ(y) for all y ∈ Y . So, Φ is wlsc.

Next remark follows from the proof of Theorem 4.3 (see the proof of
Claim 2).

Remark If X is a compact metric space, then Theorem 4.3 remains
true provided Φ satisfies conditions (4), (5) and the following one:

(7′) if U ⊂
i=k⋃
i=1

Ui, then θ(U) ⊂
i=k⋃
i=1

θ(Ui).

Corollary 4.4 Let Y be a paracompact space and f : X → Y a surjective map
with complete metrizable fibers. Then f admits a regular averaging operator with
compact supports if and only if there exists a function θ : TX → TY such that
θ(U) ⊂ f(U) for all U ∈ TX and θ satisfies conditions (5) and (7).

P r o o f. Let M be a metric space and g : X →M a map such that f4g
embeds X into Y ×M . Suppose there exists a function θ : TX → TY satisfying
the conditions from Corollary 4.5. Consider the set-valued map Φ: Y → M ,
Φ(y) = g(f−1(y)), and define the function θ1 : TM → TY defined by θ1(V ) =
θ(g−1(V )). Then θ1 satisfies conditions (5) - (7). So, by Theorem 4.3, Φ admits
a lower semi-continuous selection φ1. It is easily seen that the map φ : Y → X,
φ(y) = (f4g)−1(y × φ1(y)), is lower semi-continuous and φ(y) ⊂ f−1(y) for all
y ∈ Y . Therefore, according to Proposition 4.1, f admits a regular averaging
operator with compact supports.
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If f admits a regular averaging operator u with compact supports, the
support map Su : Y → X is a lower semi-continuous selection for the map f−1.
Then the function θ : TX → TY , θ(U) = S−1

u (U), satisfies conditions (5) and (7),
and θ(U) ⊂ f(U) for all U ∈ TX .

The case of Corollary 4.5 when X is a metric compactum and f satis-
fies conditions (5), (6) and (7′) was established in [3, Theorem 10]. Another
description of surjective maps between compacta (not necessarily metrizable)
admitting lower semi-continuous selections, which is quite different from the
above one, was obtained in [7, Corollary 4.3].

5 Averaging operators with semi-continuous values

Suppose f : X → Y is a surjective map. In this section we consider
operators u : C∗(X) → C∗lsc(Y ) or u : C∗(X) → C∗usc(Y ), where C∗lsc(X) (resp.,
C∗usc(X)) is the set of all bounded lower (resp., upper) semi-continuous functions
on X. As above, any such an operator is said to be averaging for f if S(µy) ⊂
f−1(y) for all y ∈ Y , where µy are the functionals on C∗(X) generated by u.

Here is a result analogical to Theorem 3.3.

Theorem 5.1 For any surjective map f : X → Y the following conditions are
equivalent:

(i) The map f admits s a normed weakly additive averaging operator u : C∗(X)→
C∗usc(Y ) with compact supports such that u preserves min and weakly pre-
serves max;

(ii) The map f admits a normed weakly additive averaging operator u : C∗(X)→
C∗lsc(Y ) with compact supports such that preserves max and weakly pre-
serves min;

(iii) There exists a lower semi-continuous map Φ: Y → X with compact nonempty
values such that Φ(y) ⊂ f−1(y) for all y ∈ Y .

P r o o f. First, let us observed that conditions (i) and (ii) are equivalent.
Indeed, if u satisfies (i), then the operator v, v(h) = −u(−h), satisfies (ii).
Similarly, (ii) implies (i). So, it suffices to prove that (i) is equivalent to (iii).
Suppose u : C∗(X)→ C∗usc(Y ) is a normed, weakly additive averaging operator
of f with compact supports such that u preserves min and weakly preserves
max. Then each functional µy, y ∈ Y , is normed, weakly additive preserving
min and weakly preserving max. Moreover S(µy) ⊂ f−1(y). By Proposition
2.2 and Proposition 2.5, the support map Su is lower semi-continuous. This
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implies (i) ⇒ (iii). To prove the implication (iii) ⇒ (i), we define u(h)(y) =
min{h(x) : x ∈ Φ(y)}, h ∈ C∗(X), where Φ: Y → X is a lower semi-continuous
selection for the map f−1 with nonempty compact values. It is easily seen that
u(h) ∈ C∗usc(Y ) for any h ∈ C∗(X), u is normed, weakly additive, preserves min
and weakly preserves max. It also follows that S(µy) = Φ(y), y ∈ Y . Hence, u
is an averaging operator for f .
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