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ABSTRACT. We find the obstructions to realizability of groups of order 32 as
Galois groups over arbitrary field of characteristic not 2. We discuss explicit
extensions and automatic realizations as well.

1. Introduction. Let k be arbitrary field of characteristic not 2. In
this article we discuss certain embedding problems with kernel of order 2 or 4.
First, let us recall the general description of the embedding problem. Let G be a
finite group and let
1-A—-G z F—-1

be a finite group extension. Let also K/k be a Galois extension with Galois
group F'. The embedding problem then consists in determining whether there
exists a Galois extension L such that K C L,G = Gal(L/k) and for all g € G the
restriction g|x equals 1(g). The embedding problem we denote by (K/k,G, A).
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The group A we call the kernel of the embedding problem. Now, let us restrict
ourselves to the embedding problem with kernel py = {1} of order 2, so we can
regard s as the group of the square roots of unity, contained in the multiplicative
group K *. Then the injection us — K™ induces the map:

i: HX(F, up) — H*(F,K*).
Denote by v the 2-coclass of the group extension

(1.1) 1_>N2—>GZF—>1

in H2(F, o).

The element i(7) is called the obstruction to solvability of the embedding
problem (or simply to realizability of the group G as a Galois group over k).
Given that the extension (1.1) is nonsplit, the embedding problem (K/k, G, u2)
is solvable if and only if i(y) = 1 (the cohomological groups are written multipli-
catively), see [5], for example.

Let ¢ € Z2(F,p2) represent . It is well known that H2(F,K*) is
isomorphic to the relative Brauer group Br(K/k) of K/k by i(y) — [K,F,d],
where [K, F,c|] € Br(K/k) is the equivalence class of the crossed product algebra
(K,F,c), i.e., (K, F,c) is a central simple algebra over k, generated by K and
elements u, with relations uy = c¢11,usu; = CorUer and v,z = o(z)u,, for
o,7€ Fand x € K.

It is well known also that the absolute Brauer group Br(k) is identified
with limBr(K/k), where K/k runs through all finite Galois extensions. Since

is an element of order 2, the obstruction i(7y) lies in the 2-torsion of the Brauer
group Br(k). By Merkurjev’s Theorem [10] the obstruction can be written as
a product of classes of quaternion algebras. One of our goals is to find these
products for each group under consideration.

Another goal is to describe all Galois extensions, solving the embedding
problem (K/k,G, ps2). That can be achieved in the following manner. Assume
that the obstruction is split, i.e., i(y) = 1. Then ¢ € B?(F, K*), i.e., there exists
amap a: F — K*, such that ¢, = aaaaTa;Tl,Va,T € F. Since ¢4 is in o,
we have that o + a2 is a crossed homomorphism F — K. Then by Hilbert’s
Theorem 90, there exists an w € K such that ow/w = a2,¥o € F. This is part
of the proof of the following theorem, proven in [5] not only for group extensions
with kernel p2, but also for central group extensions with kernel f,,, for an odd
prime p.
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Theorem 1.1. In the above notations, all solutions to the embedding
problem (K /k,G, u2) are K(y/rw)/k, where r runs through k*.

In the light of these observations we may proceed by the following scheme,
when looking for the element w:

(1) Check whether ow/w is in K*2,Vo € F. This will guarantee that K (1/7w)/k
is Galois. To this end it is enough to consider only a minimal generating
set of the group F.

(2) Take arbitrary preimages of the generating set in the group Gal(K (1/rw)/k).
Check that they fulfil the relations defining the group G. That this is
enough is explained in the introduction of the paper [9]. For example, if
o € F is of order k, the preimage of o, say 6 € Gal(K(\/rw)/k), is of
order at most 2k. We always may put &/rw = \/rwa,, whence 6*\/rw =
VTWagoay, - - -0 ta,. Therefore, & is of order k iff agoay, ---0F ta, = 1
and of order 2k iff a,cay - - 0¥ ta, = —1.

In works such as [7], [2] the obstructions to realizability of the groups
of orders 8 and 16 are expressed as products of quaternion classes. In [8], [11],
[12] and [14] are considered several groups of order 32. Some of the obstructions
to realizability of these groups are given at the end of our work. We will not
consider the cyclic group Cso, for which our methods are inapplicable. We will
not consider also groups which are a direct product of groups : G x H, since their
realizability depends solely on the realizability of the groups G and H. In this
way, it remains to calculate the obstructions of 27 groups out of the total number
of 51 groups of order 32. We employ the computer program GAP 3 to list the
presentations of the groups and some other details in the appendix. Minimal
presentations for the groups of order 32 can be found also in [13] and [3].

2. Groups of orders 8 and 16. We will need some notations about
the groups of orders 8 and 16 and also several criteria, which are found in [7].
The notations in this section are used throughout all the work, unless otherwise
stated.

The dihedral group Dg of order 8 is generated by elements o and 7 such
that 0% = 72 = 1 and 70 = o®7. The full set of Dy extensions is described thus:
Let a and b be quadratically independent over k such that (a,ab) = 1 € Br(k),
and let oy € k and as € k* be such that ab = af — aa3. Then

K/k=k ( r(ay — asy/a), \/E> /k
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is a Dg Galois extension, for all r € k. Put a = a1 — agy/a and o = a1 +asv/a.
Then we can assume that ¢ and 7 act in this way:

o Vra— vrd, vra — —/ra, \/EH\/E;
T Vrae— Jra, Vra = —Vra!, Vb —Vb.

The quaternion group Qg of order 8 is generated by elements ¢ and 7,
such that 0% = 7 = 1,02 = 72 and 70 = o37. We will not need the description
of Qg extensions.

The group Cy4 x (s is generated by two elements, say, p1 and p2, such that
pt = p2 =1and p1ps = pap1. The full set of Cy x Cy extensions is described thus:
Let a and b be quadratically independent over k such that (a,a) =1 € Br(k) and
let ¢ € kX be such that a = 1 4 ¢2. Then

K/k = k< r(a+\/5),\/5> /k

is a (4 x Cy extension, for all » € £*. Assume also that p; and po act in this
way:

pr i yJrla+va) = /r(a— va), Vb Vi
p2 i fr(at va) o \fria+ va), VB~V

The non abelian groups of order 16 are: Mig-the modular group, SD1g-
the semidihedral (quasidihedral) group (also denoted as SDg and QDs), Dig-the
dihedral group (also denoted as Dg), Q16-the quaternion group, Q A C-the pullback
of the homomorphisms Qg — Cs and C4 — C5, D A C- the pullback of the
homomorphisms Dg — Cy and Cy — Co, DC-the central product of Dg and Cjy,
Dg x Cy and Qg x C5. Their presentations by a set of generators are:

57_>,

37_>,

)

Y ro=0"17),

M= (or|o®=m>=1,70=0
SDiyg = (0,7 |0 =12 =170 =0
Dig= (o, 7|0 =72=1,170 =01
Q= (o, 7|o%=1,12=0
QAC = (o7 |t =11=1,70 = o37),

DAC={o,1,p|lot=1=p*=1,70 =>1p,[o,p] = [r,p] = 1),

DC = (o,1,p|ot =12 =1,70 = 031,06 = p?,[0,p] = [1,p] = 1).



Groups of order 32 as Galois groups 5

We will use the following criteria, proven in [7].

Theorem 2.1. Let K/k = k(\/a1,...,\/an)/k be a C3 extension, and
let o1,...,0n € CF be given by oi(\/a;) = (—1)‘5”’\/a_j. Let

(2.1) l—pu—G—0Cy —1
be a non split extension, and choose pre-images $i,...,8, € G to o1,...,0n,.

Define dij, i < j, by s? = (-1)% and $iSj = (—1)dijsjsi, 1 < 3. Then the
obstruction to the embedding problem given by K/k and (2.1) is

H(ai, aj)d"j € Bl“(k‘).

1<j
(Here we use the standard notation (a;,a;) of the quaternion class in Br(k).)

Theorem 2.2. Let K/k be an C} x C§ extension. We can write:

K:k( Q1(a1+\/a)7~~7 QT(ar_"\/a)v\/ar+17---7\/ar+5)7

where a1, ...,ar15 € k™ are quadratically independent, a; = 1+ C? fori<r, and
q € k*. Let p1,...,pres € Gal(K/k), such that p;(\/a;) = (—1)% V- Let

(2.2) l—=p—-G—-CyxC; —1

be a non split extension, and choose pre-images t1,...,trrs € G t0 p1,..., Pris-
Then the obstruction to the embedding problem given by K/k and (2.2) is:

r4+s r
[T (aiva)® Tlas2)(~1, )% - T[ (@i, a5)%,
i=r+1 i=1 i<j

where t2 = (—1)% for i >r, t} = (=1)% fori <r, and t;t; = (—1)%it t;.
Theorem 2.3. Let K/k be a Dg extension as described above, and let
(2.3) l1—pe—G—Dg—1

be a non split extension, and choose pre-images s and t in G of o and T respectively.
Then the obstruction to the embedding problem given by K/k and (2.3) is:

[(a, —2)(=b, 2017)]* (b, —1)’ (a, —1)k € Br(k),
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where s* = (—1)%,t2 = (—1)7 and ts = (—1)*s>t.

Now, we extend the latter criterion for the group Dg x C5, generated by
o,7 and p, such that 0% = 72 = p? = 1,70 = 07 and p is central. We may also
apply [12], Theorem 4.1, to obtain:

Theorem 2.4. Let K/k = k(y/ra, Vb, \/c)/k be a Dg x Cy extension and
let

(2.4) 1—>M2—>G—>D8XCQ—>1

be a non split extension, and choose pre-images s,t and p of o, 7 and p respectively.
Then the obstruction to the embedding problem given by K/k and (2.4) is:

[(a, —2)(=b, 2c17)]"(b, —1)’(a, —1)k(clad1 bz, c),

where st = (=1)', # = (=1), ts = (=1)*s’, p* = (=1)!, ps = (~=1)"sp,
pt = (—1)%tp.

3. The groups of order 32. We write in a table in the appendix
the relations between the generators of all groups of order 32, the rank (i.e. the
minimal number of generators of the quotient group by the Frattini subgroup),
the centre and the exponent. In the notations of GAP 3, each group G; (i =
1,...,51) is generated by 5 elements: ai,...,as. We put [a;,a;] = ai_laj_laiaj
— the commutator of the two elements a; and a;. The appearance of certain
expression in the field with relations means that it is equal to 1. In order to write
less, we skip the commutators in which one of the elements lies in the centre. For
example, the element a5 is in the centre for each group G;, so we need not write
the commutators of the kind [a;, as].

The 24 groups, for which we will not calculate the obstructions are:
the abelian groups — G1,G3, G1g, Go1, Gsg, G4s, Gs1; the non abelian groups of
exponent 16 — G17,G1s, G19 and Gag; the non abelian groups of the kind H x Cy
— G92,Go3,Gs7,G39, G0, Ga1, Gas, G47 and Gug; the non abelian groups of the
kind H x C4 — G24 and Ga5; and the extra-special groups G49 and Gjsg.

4. The pullbacks. Let ¢ : G’ — F and ¢” : G” — F be homo-
morphisms with kernels N’ and, respectively, N”. The pullback of the pair of
homomorphisms ¢’ and ¢” is called the subgroup in G’ x G” of all pairs (¢/, "),
such that ¢'(0’) = ¢”(¢”). The pullback is denoted by G’ A G”. Tt is also called
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the direct product of the groups G’ and G” with amalgamated quotient group F
and denoted by G’ xp G”.

Now, let Ny = N’ x {1} and N = {1} x N”. Then N; and N» are normal
subgroups of G’ A G”; such that Ny N Ny = {1}. The converse is also true (see
[4], 1, §12):

Lemma 4.1. Let N1 and Na be two normal subgroups of the group G,
such that Ny Ny = {1}. Then G is isomorphic to the pullback (G/N1) A (G/N3).
Also, we have the commutative diagram:

1 1
N2 p— N2
| s
1 N1 G/N2 L) G/N1N2 — 1
1 1

where a homomorphism of a group onto a quotient group is natural.

The application to embedding problems is given by:

Theorem 4.1. Let K/k be a Galois extension with Galois group F. In
the notations of the lemma, let F = G/N1Ny and G = (G/N1) A (G/N2). Then
the embedding problem (K/k,G, N1 x Na) is solvable iff the embedding problems
(K/k,G/N1,N3) and (K/k,G/Na, N1) are solvable.

Since we will consider groups of order 32, we will be looking for normal
subgroups N1 and N> of order 2. In that case, the group G is a pullback iff the
centre Z(G) has at least two elements of order 2 (in other words, Z(G) is not
cyclic). The pullbacks, which we will discuss are 18: Ga, G4, G5, Go, G1g, G2,
Gi3, Gia, Gog — Gi35.

Let us begin with the group Go. We give all the details for this group as
an example.

4.1. The group G3. The centre Z(G2) = (as,a4,as) is isomorphic to
C3. Let Ny = (a4), Na = {as) and N = NNy = N; x Ny. Then the quotient
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group G5 /N is isomorphic to Dg. Consider the embedding problem given by K/k
with Galois group Dg (according to the notations in Section 2) and the group
extension

1—>N—>G2a—> Dg — 1,

1—01
ag—T1
where 0 = 72 = [01,71)2 = 1. Let 0 = o171 and 7 = 71. Then |o| = 4, |7| = 2

and 70 = o°7.

Now, consider the embedding problem given by K/k and the group ex-

tension
1—>N2—>G2/N1 e D8—>1.

bi1bo—o

bor—T
The group G2/Nj is generated by elements b; = a;{aq) € G3/Ny,i # 4 such
that b2 = b2 = b2 = 1, b3 = bs, [ba,b1] = b3, b is central, whence Ga/Ny is
isomorphic to D A C. Also, we have the relations (b1bg)? = bsbs, (bibg)? = 1
and bg(blbg) = (b1b2)3bgb5 = —(b162)3b2. Then Theorem 2.3 implies that the
obstruction to the latter embedding problem is (ab, —1) € Br(k).

Now, consider G5/Ns, which is generated by elements b; = a;{as) €
Go/Na, i = 1,...,4, such that b = b3 = b3 = b2 = 1, by = b3, [b1,ba] =
b3, bs is central, whence Ga/N3 is isomorphic to D A C. We have the relation
ba(b1ba) = —(b1bz)3by. The obstruction then to the embedding problem given by
K /k and the group extension

1—>N1—>G2/N2 o D8—>1.
bi1bo—o
bor—T

is (a,—1) € Br(k).

Thus, we obtain that the embedding problem (K/k, G2, N) is solvable iff
(ab,—1) = (a,—1) = 1 € Br(k), where a,b € k* are quadratically independent
such that (a,ab) =1 € Br(k) (a necessary condition).

The remaining groups can be investigated in the same way. We write
down only the main points in our calculations.

4.2. The group G4. Z(G4) = (as,a4,a5) = {az,aq) = Cy x Cy, N1 =
<a4>, N2 = <a5>, N = N1 X NQ, G4/N1 = M16,G4/N2 = 04 X 04. The embedding
problem (K /k,G4, N) given by a C4 x Cy extension K/k and the group extension

1-N—-Gy — Cypx(Cy—1.

air—pi1
a2—p2
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is solvable iff (a,2b)(—1,7) = (b,b) =1 € Br(k), where (a,a) = 1 is necessary for
the existence of a C,4 extension.

4.3. The group Gs. Z(G5) = (as,aq,a5) = {az,aq) = Cy x Cyq, N1 =
(as), Ny = (as), N = N1 X Ny, G5 /N1 = CsxCo,G5/Ny = D AC. The embedding
problem (K/k,G5, N) given by a Cy x Cs extension K/k and the group extension
1—>N—>G5 aml C4><CQ—>1.
ag—p2
is solvable iff (a,2)(—1,7) = (a,b) = 1 € Br(k), where (a,a) = 1 is a necessary
condition.

4.4. The group Go. Z(Gy) = (a4, as) = C2, Ny = {a4), No = {a5), N =
Ny X No, Gg/N1 = Dqg, Gg/NQ = D A C. The embedding problem (K/k’, G, N)
given by a Dg extension K/k and the group extension

1-N—-G9g — Dg—1.

ajaz—o
ag—T

is solvable iff (ab,2)(—b,a17) = (a,a) = 1 € Br(k), where (a,ab) = 1 is a

necessary condition.

4.5. The group Gig. Z(Gio) = {(a4,a5) = 022, Ny = {(a4), Ny = (as),
N = Nj X Ny, G1g/N1 = SD1g, G1o/N2 = D A C. The embedding problem
(K/k,G19, N) given by a Dg extension K/k and the group extension
1-N—>G9g — Dg—1.

al1agx+—ao
ag—T

is solvable iff (a,—2)(—b,2a17) = (a,a) = 1 € Br(k), where (a,ab) = 1 is a
necessary condition.

4.6. The group Giz. Z(G12) = (as,as,a5) = (as,a4) = Cy x Cy,
Ny = (a3), No = (as), N = Ny x N, G12/N1 = Cg x Cy, G12/N2 = Q A C. The
embedding problem (K/k,G12,N) given by a Cyq x Co extension K/k and the
group extension

1— N — Gz Py Cy xCy— 1.
az—p2

is solvable iff (a,2)(—1,7) = (ab,b) = 1 € Br(k), where (a,a) = 1 is a necessary
condition.
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4.7. The group Gi3. Z(G13) = (a4,a5) = C2, N1 = (a4), No = {as),
N = Ni X Na, G13/N1 = SDyg, G13/No =2 Q A C. The embedding problem
(K/k,G13,N) given by a Dg extension K/k and the group extension

1—- N — Gi3 P Dg — 1.
1—T

ax—o

is solvable iff (a,—2)(—b,2aq7) = (b,b) = 1 € Br(k), where (a,ab) = 1 is a

necessary condition.

4.8. The group G14. Z(G14) = (a4,a5) = C2, N1 = {a4), Na = {as),
N = Nj x Ny, G14/N1 = Dig, G1a/N2 = Q A C. The embedding problem
(K/k,G14,N) given by a Dg extension K/k and the group extension

1—-N— Gy — Dg— 1.
a1—T

ag—o

is solvable iff (ab, 2)(—b, a17r) = (b,b) = 1 € Br(k), where (a, ab) = 1 is a necessary
condition.

For each of the remaining groups Gog — G35 we put N1 = (a4), No = (as)
and N = Nj x Np. The quotient group G;/N is isomorphic to C3. Therefore we
consider the embedding problem given by a C3 extension K/k = k(v/a, Vb, \/c)/k
and the group extension

1-N—-G — C§’—>1,
ai — o1
ag — 02
a3z +— o3

for ¢ = 26, ...35. Now, we can apply Theorem 2.1. The obstructions to solvability
of the embedding problems (K /k,G;, N) are given in Table 1.

5. Groups having a quotient group ot the kind H X C5. There
are four groups, having a quotient group ot the kind H x Cy: Gsg, G432, G4s and
Gyy.

5.1. The group Ggg. The centre Z(Gss) = (aj,a4,a5) = (aq) is
isomorphic to the cyclic group Cg and the quotient group Gsg/(as) is isomorphic
to Oy x C3. Let a,b and ¢ be quadratically independent and (a,a) = 1 € Br(k).

Then K/k = k(y/r(a+ /a),Vb,\/c)/k is a Cy x C3 extension for all r € k*.
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Table 1
i obstructions
26 (ac, ac), (ab,b)(c, c)
27 (a,c), (a,b)
28 (a,c), (b,ab)
29 (a,c), (a,ab)(b,b)
30 (a,c), (c,c)(a,b)

31 (b,b)(a,c), (¢, c)(a,b)

32 | (b,b)(a,c), (a,a)(c, c)(a,b)
33 | (b,b)(a,c), (b,b)(c,c)(a,d)
34 (ac, ¢), (ab, b)

35 (ac, c), (a,ab)(b,b)

From Theorem 2.2 follows that the embedding problem given by K/k and the
group extension

1—>u2%<a5)—>G38 — C4><022—>1
ai — p1
az — p2
asz +— p3

is solvable iff
(a,2)(—1,7r)(b,c) =1 € Br(k).

For the remaining three groups we have that the quotient group by the
cyclic subgroup pe = (as) is isomorphic to the group Dg x Cy = (0, 7) X (p), so
we apply Theorem 2.4. Now, we discuss the following three embedding problems
given by a Dg x Cy extension K/k and the group extensions

1—=p=(as) = G — DgxCy—1,
asai — o
ag — T
as — p

for i = 42,43,44. In all three cases we have that (a,ab) = 1 is a necessary
condition in order to construct the embedding problems. The obstructions to
solvability of the embedding problems (K/k,G;, (as)) are given in Table 2.

We note that the obstruction for ¢ = 43 is a product of two quaternion
algebras. Therefore, at this point we can turn our attention to Galois extensions,
realizing the group Gys. Firstly, we give a parametrization of all G435 extensions
in the general case, when b #9 —1, i.e. b and —1 are quadratically independent
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Table 2
i obstructions
42 | (a,2)(=b,2a17)(c, )
43 (a,2c)(—=b,2a17)
44 | (a,—2¢)(=b,2a17)(b,b)

mod k*2 (for abuse of notation we will use the symbol =5 to denote that two
elements are quadratically dependent, and #5 if they are independent).

Let us give before that some notations, following [9]. For a,b € k*,
the quaternion algebra (a,b/k) is the k-algebra generated by elements « and
B with relations o = a, 3> = b and fa = —af. The equivalence class as
an element in the Brauer group Br(k) we denote by (a,b). To the quaternion
algebra we associate the quadratic form in canonic type {(a,b, —ab) = azx? + by? —
abz?. Then (a,b/k) is split iff (a,b, —ab) is isotropic (i.e., represents 0). Two
quaternion algebras (a,b/k) and (c,d/k) are isomorphic, iff the quadratic forms
(a,b,—ab) and (c, d, —cd) are equivalent. For an abuse of notation we will denote
by (a,b, —ab) also the diagonal matrix diag(a,b, —ab). Then the equivalence of
the quadratic forms (a, b, —ab) and (¢, d, —cd) is expressed by the matrix equation
P!(a,b, —ab)P = (c,d, —cd), for some non-singular 3 x 3 matrix P over k.

Theorem 5.1. Let K/k be a Dg x Cy extension as above, and assume
ay # 0. Then the embedding problem (K/k,G4s, (as)) is solvable iff the quadratic
forms (b, ra;jc,brasc) and {(ab,2ca,2bc) are equivalent over k. If this equivalence
is expressed by the matriz Q, i.e., if

Q'(b,raic, braic)Q = (ab, 2ca, 2bc),
we may assume det Q = 2a/aqr and get the solutions
K(V/sw)/k = k(v/sw,Vb,\/¢) [k, s € k>,

where

w=1-qu/Va+ %(%2 + qa3/Va)Vra + %(Qm/b — q33/Va)Vrd [\/a.

Proof. The obstruction to the embedding problem is (a,2c¢)(—b,2ray),
which is equivalent to (—ab, —2ca)(—b, —ra;c) € Br(k). This gives the criterion.
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We now restrict ourselves to the embedding problem given by K/k(\/c)
and the group extension

1 — pe = (as) — Dig = (aza1,as) s Dg — 1.

at—T

Define the matrix P with entries from k(/c):

P = (1,V2vaQ(l, 1/vE 1/V0),
so that we get
P! (b, ra1,brog)P = (ab, 2a, 2b).

Since the subgroup generated by asaq and as is isomorphic to D1g, we obtain the
criterion given in [9]. Then K (y/sw)/k(y/c), for s € k* are the solutions to the
embedding problem (K/k(y/c), D¢, pi2), where

w=1-pu/Va+ %(p32 + pa3/Va)Vra + %(pm/b — p3s/Va)Vrd//\/a.

(The entries of P and Q are p;; and ¢;;, ¢,j = 1,2,3.) It is easy to show that

P11 = q11,P23 = 23,32 = ¢32,P22 = G2 and p33 = gz3. Furthermore, K(/sw)/k
is Galois, since pw = w. We let to the reader to check that this is exactly a Gg3

extension. O

Now, we give the description of (G43 extensions in the special case when b
and —1 are quadratically dependent mod k*2.

Theorem 5.2. Let K/k = k(/a,i,/c)/k be a Dg x Cy extension. Then
the embedding problem (K /k,G4s, (as)) is solvable iff

Ip,qek : p*—ag® = 2.
In that case, the solutions are
K(Vsw)/k, s € k™,
where w = (p + gv/a)v/a.

Proof. The obstruction to the embedding problem is (a,2c) € Br(k), so
there exist p,q € k, such that p? — ag® = 2c. Put w = (p + ¢y/a)/a. Then we

have ow/w = a2, where
1 .

a, = ———=
7 pt+aqva
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Tw/w = 1 and pw/w = 1. Therefore K(y/sw)/k is Galois. Here, it is easy

to show that it is a G4z extension. Obviously, a3 = 1 and a3 = 1. Next,
ay0a,0%a,0%0, = —1, whence asa; is of order 8. Also, asajy/sw = ay\/5w,

ag\/sw = £y/sw and asy/sw = +4/sw. Then [ag,as]\/sw = +/sw, whence
[as,a3] = 1; and [a1, a3]\/sw = —/sw, whence [a1,a3] # 1, but [a1,a3]?> =1. O

We need the so-called common slot property (see [6], Ch. III, Exercise
12) for the proof of the following Theorem.

Lemma 5.3. Leta,b,c,d € k*. Then (a,b)(c,d) =1 € Br(k) < 3Jz €
k*, such that (a,br) = (c,dz) = (ac,z) = 1.

Theorem 5.4. Realizability of Guq as a Galois group over k implies the
realizability of Gas (i.e., there is an automatic realizability G414 = Gy3).

Proof. Depending on the behavior of the elements —1 and 2 we consider

the following cases.

(1) —1 and 2 are quadratically independent over k. Given that G 44 is realizable,
we have that |k/k*?| > 8. Weputb= —landc=2: (a,1) = (a,4)(1,20;7)
= 1 for all a — quadratically independent with —1 and 2. Therefore, we
obtain something more in this case: if |k/k*2| > 8, the group Gys is
realizable.

(2) =1 € k*2. Then the obstructions to realizability of G43 and G44 are
identical: (a,2c)(b,2a17) € Br(k).

(3) —1¢ k*2,2 € k*2 and —2 ¢ k*2. Then Gy3 is realizable iff
(a,=b) = (a,¢)(=b,aar) = 1;
and Gy4 is realizable iff
(a,—b) = (a,—c)(=b,aq1r)(b,—1) = 1.

Now, let G4 be realizable for some a,b and c. Consider the following
sub-cases.

If a =9 —b then (a,c)(—b,a17) = (=b,ayrc) =1 for r = ayc, so Gy3 is
realizable.

If a =9 —1, then (—1,—b) =1 and (b, —1) = (—1,—1). Whence

(a,—c)(=b,ayr)(b,—1) = (—=1,¢)(=1,—1)(=b,ay7)(b,—1) =
=(-1,¢)(=b,ayr) = 1.
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If b =5 —1, then (a,—c)(—1,—1) = 1. We use the common slot
property: (a,—c)(—1,—1) = 1 iff Iy € k* such that (a,—cy) = (-1, —y) =
(—a,y) = 1. If (a,a) = 1, then we can put b/ = —a (quadratically
independent with a): (a,—b") = (a,a) = 1 and (a, ¢)(=bV', a1r) = (a,a1rc) =
1 for » = apc. Now, we have several possibilities:

If —cy =2 a, then (a,a) = 1 and Gy3 is realizable as we have just
shown.

If —cy =9 —1, then again (a,a) = 1.

If —cy € kX2, then y =3 —c, (—1,—y) = (=1,¢) = 1 and (—a,y) =
(—a, —c) = 1. In this case we can put ¢’ = —a and ¢ = —c. Then o/, —1 and
¢ are again quadratically independent. Thus, (a’,1) = (d/,)(1,aq7) = 1.

If —cy =3 —a, theny =3 ca, (—1,—y) = (-1, —ca) = 1 and (—a, ca) =
(—a,c) = 1. We can put here a’ = —a and obtain (a’,1) = (d’,¢)(1,a17) =

If —1, a and —cy are quadratically independent, then we can put
d =—cy:(a,d) =1, whence Gy3 is again realizable.

If a,b and —1 are quadratically independent, then we can put ¢ = —b:
(a,—b) = (a,—b)(=b,a1r) =1 for r = ;. The last case is:

—1¢ kX2, 2¢ k*? and —2 € k*2. Then Gy3 is realizable iff
(a,=b) = (a, =¢)(=b,—arr) = 1;
and G4 is realizable iff
(a,—b) = (a,c)(=b,—aqr)(b,—1) = 1.

Now, let G44 be realizable for some a, b and c. Consider the following
sub-cases.
If a =9 —b then (a, —¢)(—=b, —ayr) = (=b,aqrc) = 1 for r = ayc, so Gy
is realizable.
If a =9 —1, then (—1,—b) =1 and (b, —1) = (—1,—1). Whence
(a,c)(=b,—ayr)(b,—1) = (=1, —¢)(—1,—1)(=b,—ayr)(b,—1) =
=(-1,—¢)(=b,—ayr) = 1.

If b =5 —1, then (a,c)(—1,—1) = 1. Analogously to the same sub-case
of case 3, we obtain that (G43 is realizable.
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And, finally:

If a, b and —1 are quadratically independent, we can put ¢ =9 —1 :
(a,—c)(=b,—ayr) =1forr = —a;. O

Theorem 5.5. Let K/k be a Dg x Cy extension as in Theorem 5.1 or 5.2,
and let (ab,ab) = 1 € Br(k). In that case 3y1,72 € k, such that v3 — aby3 = ab.
Then the obstructions to solvability of the embedding problems (K/k,G 44, {(as))

and (K/k,Gys,{as)) are identical and the solutions to the embedding problem
(K/k,Gy4,{as)) are

K(\/s(’yl +Vaby)w)/k, s € k>,

where w s as in Theorem 5.1 or 5.2.

Proof. Put v =y + Vabys. Then o(yw)/(yw) = a2, 7(yw)/(yw) = a2,
p(yw)/(yw) = 1, where ayoa,0%a,0%a, = —1,a;7a; = —1, whence |asa;| =
8, |az| =4 and |as| = 2. Therefore K (,/s7w)/k is a Galois G44 extension. O

6. The group Gg. The centre is Z(Gg) = (a5) = Co and the quotient
group is

G6/<a5> = <fL‘,y,Z | ot = y2 =2 = L, [y,a:] =z [:U?Z] = [y,z] = 1>a

which is isomorphic to D A C. In order to calculate the obstruction to realizability
of the group Gg, we must describe all D A C' extensions.

The notations in this section are slightly different from those in Section
2. Let a and b be quadratically independent over k. Let (a,a) = 1 € Br(k)
and assume «q,as € k are such that Oz% — aa% = a. Put @ = a1 — ag/a and
o = a1+ azy/a. Then ao/ = a and K /k = k(\/ra,Vb)/k is a Cy x Cy extension
for all » € k*. Conversely, all Cy x C5 extensions are described in this way. The
group Cy x Cy is generated by elements o and 7, such that 0% = 72 = 1 and the
actions are:

o Vrae Vrd, Vra — —ra, Vb — Vb;
T rae— Vra, Vrd — Vrd, Vb —Vb.

Then the obstruction of the embedding problem given by the extension K1 /k and
the group extension

1—><z>—>D)\C'mC4><CQ—>1

Yy—=T
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s (a,b) € Br(k). Now, let (a,b) = 1, so there exist 81,02 € k, such that a =
B? —bB3. Put = B — Bovband B = By + Bov/b. Then B = a and Ky /k =
k(v/5B,Vab)/k is a Dg extension for all s € k*. The group Dg is generated by
elements o1 and 7y, such that 0% = 712 = 1,|o171| = 4 and their actions are:

o1 1 VsB =58, sB = /sB, Vabi —Vab;
T VsB sB, /5B /3B, Vabi— —Vab;
cim : 5B /5T, /5 o —/35, Vb Vab.

The obstruction of the embedding problem given by the extension Ko /k
and the group extension

1—><x2>—>DAC'x:U> Dg —1
yor1
is (a,a) € Br(k). Given that (a,a) = (a,b) = 1, we can make the composite K =
K1 Ko = k(y/ra, Vb)k(v/sB, vVab). We will show that K/k is a D A C extension.
Since the field K depends on r and s, we obtain in this way a description of all
D & C extensions.

Clearly, K/k is a Galois extension. Now, let z,y € G = Gal(K/k) be
such that their restrictions on K7 and K are:

Tk, = 0,2|K, = 013Y|K, = T, Y|k, = T1-
Then the actions of x and y are:

x o rawe Vrd, Vrd - —ra, Vb Vb
Vs f, s /s, Vab e —Vab;

Yy Vra— ra, Vrd — Vrd/, Vbi— —Vb,
VB /58, \/sB — /5B, Vab— —Vab.

Thus we obtain what we looked for: |z| = 4, |y| = 2 and the elements of Ky are
fixed under the action of 2. Now, put z = [y, z]. Then the action of z is:

2 ra— ra, Vra —Vrd, Vb — Vb,
VsB = —/sB, \/sB — —+/sB', Vab+— Vab.
Therefore |z| = 2 and the elements of K are fixed under the action of z. Also, it

is easy to check that [z, 2] = [z,y] = 1. Whence we obtain that K/k isa D A C
extension and all D A C extensions are described in this way.



18 Ivo M. Michailov

Now, let E = k(y/a, VD) and let v = —(ay + 1) + az/a+ B2v/b. Then for
the norm map NN we obtain the equations Np 5, /z)(7) = da and N /k(vB) (v) =
dB, where d = 2(a; + 1).

Consider now the embedding problem given by the extension K/k =
K1K>5/k, described above and the group extension

1—>u2%<a5>—>G6al—H>mDAC—>l.

az2—y

Denote by I' = (K, D A C, —1) the crossed product algebra, corresponding to the
latter group extension. The dimension of I is 162 = 4% and I can be decomposed
as a tensor product of 4 quaternion algebras. The algebra I' is generated by the
following elements over k: g, uy, u, (corresponding to x,y and z); /ra, V/sf3, a
and v/b. The relations in G imply the following relations in T' (recall that —1 in
I' corresponds to as in Gg):

u;’j, = uZ = uz =1, uyuy = UglUyls, [Ug, uz] = —1,
[uy?uz =1, [ui,uy] = -1, [ui,uz] =1L

The elements ug,,u,,u, change their places with the elements of K/k in this
manner: ug\/ra = r(y/ra)u, = Vro u,.

In order to obtain the decomposition, we have to use the well-known
theorem: If A is a central simple finite dimensional algebra over k and B is a
subalgebra of A, then A = B® C4(B), where C4(B) is the centralizer of B in A.
Calculations show that the following subalgebras I'y,I's and I's centralize each
other:

Ty ocoir= Vb1 = uy

Ty @ dg=u2Vb, jo = Vrd/[—(oq + 1) + aav/a + BoVbu?;

s @ iz=uzva,j3=(/sB8+VsF)[(B1+1) —Va+ (51 — 1) — Va)u.],
where Z% = b7 .7% = 17 Z.1.7‘1 - _jlih Z% = b7 ]22 - 2@(0&1 +ﬂl)r - CLdT’, i?j? - _j2i27

i3 = a, j2 = 8s(8} —a) = 8sbB3. ThenI' = T'1 @ I'y ® 'y ® ['y, where I'y =
CF(F;[ RIY® Fg); and

[[1 ® Ty @ T3] = [[4][[2][T3] = (b,1)(b,adr)(a,8sbB3) = (b, adr)(a, 2sb).

We did not succeed in finding explicitly the generators of I'4, due to the
enormous calculations. Some observations, however, brought us to the supposition
that I'4 is isomorphic to a quaternion algebra of the type (a, ¢), where the element
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¢ does not depend on r or s. Fortunately, the same group Gg is considered in the
paper [1] (there denoted as G1), where is given a Galois extension, realizing the
group as a Galois group over arbitrary field of char # 2. For the most part we
try to conform our notations to that paper. In Proposition 3.6 there is proven
that L/k = E(Vad,/Bd,\/7)/k is a Gg Galois extension.

Therefore for r = s = d the group G is realizable, so if we assume that
¢ does not depend on r or s, we get

[[] = (b, ad®)(a,2db)(a,c) = (b,a)(a,2db)(a,c) = (a,2cd) = 1.
Then for arbitrary r and s we obtain
[[] = (b,adr)(a,2sb)(a,c) = (b,dr)(a,ds)(a,2cd) = (b,dr)(a,ds) € Br(k).

Now, we will prove that the obstruction is exactly this one by constructing
the Galois extensions, realizing Gg.

Theorem 6.1. The obstruction to solvability of the embedding problem
(K/k,Gg,{as)), described above, is (b,dr)(a,ds) € Br(k). If (b,dr)(a,ds) =1 €
Br(k), then there exist elements 61,02,03 € E and v € k*, such that drv =
NE/k(\/a)((Sl),dSU = NE/k(\/l_;)(CSQ)’U = NE/k:(\/E)(63) = NE/k(\/E)((S?’) Then M/k‘ =
E(\/ra,«/sB,Vt010203) /k,t € k> are all Galois extensions, solving the embedding
problem (K/k,Gg, (as)).

Proof. Firstly, assume that (b,dr)(a,ds) =1 € Br(k). By the common
slot property (Lemma 5.3) there exists v € k*, such that (b, drv) = (a,dsv) =
(ab,v) = 1. Then there must exist elements 01,092,035 € E and v € k*, as in the
statement of the theorem. Recall that Np (/5 (7) = do and N /1) (v) = dg.
Now, put d = yd19263. Then

NE/k(\/a)(é) = d2v25§7"a S KXQ

and
Ny v (0) = 0?6156 € K2,

Therefore M/k = E(\/ra,/sB,Vtd)/k,t € kX, is a Galois extension. Now,
we shall prove that M/k is a Gg extension. For convenience, we may assume
that t = 1. Calculations show that yd/6 = ag, for ay, = dvy/ra/(v6103) and
28/§ = a2, for a; = dv\/sB/(70203). Therefore ayya, = 1, so the preimage of
y in Gal(M/k) is of order 2 and a,za,z%a,2%a, = 1, so the preimage of z is of
order 4. Denote the preimages of z,y and z by a1, as and as respectively. Since
20/0 = [z,2]0/6 = 1, we obtain that ag and [as, aq] are of order 2. Additional
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calculations show that the remaining relations necessary to have the group Gg
are also fulfilled.

Now, assume that M/k = E(y/ra, /s3,V&')/k is a G extension. Accor-
ding to Theorem 1.1 and some additional checks, involving the relations in the
group, we conclude that §' = 815203, where 61 € k(V/D), 62 € k(/a),d3 € k(v ab)
and t € k*. Then there always exist elements vy, v and v € k>, such that
drvi = Ngp(ya)(01), dsva = NE/k(\/E)(52) and v = Np i /a)(03) = NE/k(\/E)(53)‘
Since M /k is Galois, we must have yé'/d’ = aZ, for some a, € k*. But y&'/§' =
d2rav1v3/(725%5§), therefore vivs is in K*2Nk = kX2 Uak*?Ubk*?Uabk>?. The
splitting of the quaternion algebras (a,b) and (a,a) implies that we can reduce
the possibilities to this one: vivs € k*2. Thus, we can assume that v; = vs.
Similarly, from x6’/§’ = a2, we obtain that vy = v3. By applying the common

€T’
slot property in the reverse direction, we obtain the obstruction. O

Remark. Another approach for the calculation of the obstruction, valid
for another description of D A C' extensions, can be found in the work [15].

Finally, consider the special case r = s. Then [I'] = (ab,dr). Assume

that (ab,dr) = 1, i.e., 3y1,72 € k, such that dr = 4% — abys and denote M =
E(/ra, 1B,/ (71 + Y2Vab)y). Then M/k is a Galois extension:

(71 + ~2Vab)yz[(1 + 12 Vab)y] =
(7 — aby3)yz(y) = d°rp € K™%
(m + 72\/@)79[(71 + 72\/%)7] = d*ra € K*2.

Similarly to the proof of the previous Theorem we verify that M/k is a G¢ Galois
extension.

7. Embedding problems with cyclic kernel of order 4. The
investigation of the groups G7,Gg,G11 and Gis requires a different approach.
Instead of embedding problems with kernel of order 2, we will discuss embedding
problems with cyclic kernel of order 4. The reason is this: for each of these groups
the element a; is of order 8 and (a?) is a normal cyclic subgroup of order 4.

Now, we write down the criteria from [8]. Let K/k be a finite Galois
extension with Galois group F and assume that i = /—1 is in K. Also, let

(7.1) 1—>C4_)GZ>F_>1
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be a group extension. We identify Cy with the group p4 of the fourth roots of
unity. We then have two F-module actions on p4 = Cy : the Galois action of F' on
g C K, which we will write as (o, () — o(, and the action of F' on Cy induced
by (7.1), which we will write as (0,() — ?¢. If °¢ = 0(,Vo € F, the embedding
problem (K/k,G,Cy) is called Brauer. If the embedding problem (K/k,G,Cy) is
not Brauer, it is always possible to reduce the embedding problem to two Brauer
problems as is seen in the following theorems.

Theorem 7.1. Leti € K and let K be the fized field of N = {o € F |
oi = %i}. Then the embedding problem (K/k,G,Cy) is solvable iff the embedding
problems given by K/K~ and

L= 0T (N) 2 N = 1,

respectively by K/k and

1—=pu—G/Cy— F —1
wl

are solvable.

Theorem 7.2. Leti ¢ K. Extend the elements o € F to K (i) by oi = 1,
and let r be the generator of Gal(K (i)/K). Let N ={oc € F | “i=i}, K@) =
k(vb), and let L = k(iv/b). Then Gal(K(i)/L) = F by restriction, and the
embedding problem (K/k,G,Cy) is solvable iff the embedding problems given by
K(i)/L and

1—pus— G E} F—1,

respectively by K/k and

L—p2—Glug — F—1
w/

are solvable.

8. The group G7. As we noted in the previous section, (a4) is a normal
subgroup of G7, and also G7/{(as) = Dsg. We have to find the Brauer problem,
i.e., to determine the position of 7 in a Dg extension K /k, such that the action of
Dg on (a4) and py C K* is the same. Let a =9 —1 and b € k* be quadratically
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independent over k, and let K/k be a Dg extension, described in Section 2. (For
example, we have —b = a? + a3 and o = a; — agi.) In this case the embedding
problem given by K/k and the group extension

. — — — —
(8.1) l—A(as) = Gr — Dg—1
ag—oT
is Brauer. Indeed, 7i = i, "a4 = a1a4a1_1 = aq4,07t = —i, “Tay = a2a4a2_1 =
aqas = ai.

Denote by I' = (K, G7, i) the crossed product algebra, related to the group
extension (8.1). Let u; correspond to 7 in I', ug correspond to o7, and u = uguy.
We then have the relations:

u? =i, us =1, ut=—1;

uy/roa = vro'u, uvr roau, ut = —iu, uVb = \/l;u;
uiy/ra = vraur, wiVre = —Vrd'ur, wi = iug, wvvVb = —Vbu;.
3

The relations a3 = a?(aga;)? and al_l(azal)al = (aga1)3aqas imply uuy = iugud.
Calculations show that I' is decomposed as tensor product of the following three
quaternion subalgebras:

Iy ot oip= Vb, j1=(1+i)us;
Ty o dg = Vbu?, jo = i(vra+ Vrau?);
I's : igzi,jgzu—l—u.
Therefore [I'] = (b, —2)(—b,2a;7)(—1,—2) = (=b, —ayr). We can summarize:
Theorem 8.1. The obstruction to solvability of the Brauer embedding
problem (K/k,G7,{a4)), described above, is (—b, —a1r) € Br(k).
Note that a necessary condition to solvability of the Brauer problem

(K/k,Gs, (a4)) is the solvability of the associated embedding problem given by
K /k and the group extension

1 —(as)/{as) = Gr/{as) = DA C — Dg— L.

a—oT

The obstruction is (—1, —b) which equals 1. This explains why we have obtained
the decomposition of I" so easily. If the obstruction were not trivial, the calculations
would have been much complicated. Fortunately, the same situation happens for
the groups Gg, G117 and Gis.

Next, we will discuss in details all five possibilities regarding to the
position of i in K/k.
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(1) Let ¢ € k and let K/k be arbitrary Dg extension. Consider now the
embedding problem given by K/k and the group extension (8.1). We then
obtain

N={peDs| Pay=pi=1i}={1,7,0% 0’1} = C%;

N (N) = (a1, (aga1)*) = (a1, a3) = Mg,
where 1 is the homomorphism G7 — Dg from the group extension (8.1).
Let B = KN = k(y/a). Then we can write K = E(y/c,V/d), where ¢ = ra

and d = b. By Theorem 7.1 the embedding problem (K/k,G7,{a4)) is
reduced to the embedding problem given by K/E and the group extension

1—>,u4§<a4>—>¢_1(N)%M16;>N§C'22—>1,

respectively by K/k and

1— (a4>/<a5) — G7/<CL5> =2pDirC al_H;' Dg — 1.

ag—oT

Let N 22 C2 be generated by o and o9, such that

(o \/EH—\/E, \/EH\/g,
g \/EH\/E, \/EH—\/g

In this way the homomorphism ¢ : My = (a1,a3) — N is described by
ay +— o9 and ag — o1. Then the embedding problem (K/E, Mg, g = {(a4))
is solvable iff (d,d) = (d,2¢)(—1,z) = 1 € Br(E) for some z € E. But
i € k, whence the embedding problem is solvable iff (d,2c) = (b,2r(a; —
agy/a)) = 1 € Br(F). Furthermore, the embedding problem (K/k,D A
C, o) is solvable iff (b, —1)(a,—1) = 1 i.e., (ab,—1) = 1 € Br(k), which
holds in this case.

(2) a =9 —1. This is the Brauer problem (see Theorem 8.1).

(3) b =9 —1. Here b = —f3%,3 € k* and ab = —af3?® = oy — aa3 for a; = 0,

ay = —fB. For a = a; — ag\/a = \/f%a, we get \/ra = va/, where
a' = r?23%a. Then K/k = k(v/d,i)/k is a Dg extension. The generators o
and 7 of Dg act, for example, thus:

o Va— Vi, i i
T WHW, 1+ —1.
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We have that

N ={1,0% o1,0%1} = {p € Dg | *i = pi}.
Put 2 = (aga1)? = aza;’,y = ag, 2 = a3 and E = KN = k(v/d’i). Then
we have ¢~ (N) = {z,y,as) = {z,4) x () = Dy x C and K = E(&, Vd),

where ¢ = 2v/a/i,d = —1. The group N = C? is generated by elements oy
and o9, such that

o1 ¢ Ve —Ve, Vde Vi
oy 1 e e, Vde— —Vd.

The homomorphism v : Dg x Cy — C3 can be described in this way:
X 01,y > 02,2 > 01, since z = a4.

Consider now the associated embedding problem given by K/E and the
group extension

1—>M4§<a4>—>¢_1(N)§D8xCQZN%Cg—&.

A necessary condition to solvability of the latter embedding problem is the
solvability of the associated embedding problem given by K/FE and

1 — p = {aq)/(as) — ™1 (N)/(as) = C3 S N= C3 — 1.

The associated embedding problem is solvable iff de € E*, such that ¢, d
and e are quadratically independent over E. Denote K1 = E(\/c,Vd,/€)
and let us consider the embedding problem given by K;/FE and

1—>u2§<a5>—>¢_1(N)§D8XCQ — 023—>1.
T — o1
Yyr— o2
a4 — 03

We have the relations 2% = —1,y? = l,ai =—1,2y = —yz,a4x = xay and

a4y = —ya4. From Theorem 2.1 follows that the latter embedding problem
is solvable iff (¢, ¢)(c,d)(e, e)(d,e) = 1 € Br(E), which, clearly, always holds
(here d = —1).

The embedding problem given by K/k and the group extension

1= (as)/{as) — Gr/(as) =D A C  — Dg—1

ag—oT
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is solvable iff (—a,—1) =1 € Br(k).
Thus we can summarize: The embedding problem (K /k, G7, (a4)) is solvable

iff 3e € E*, such that ¢ = 2v/a/i, d = —1 and e are quadratically independent
over F = k(v/a'i) and (—a,—1) = 1 € Br(k).

ab =9 —1. Here o(i) = —i and 7(i) = —i, whence N = (o). Let K/k be
a Dg extension. Denote F = KV = k(vb) = k(\/ai). Put = asa; and
y = a3. Then " Y(N) = (z,y) = My and 1 (N)/{a5) = Cy x Cy. The
embedding problem (K/E,Cy x Cy, u2) is solvable iff e € E*, such that
a and e are quadratically independent over E. Denote K; = K(y/e) and
consider the embedding problem given by K;/E and the group extension

1 — pe = {as) — ¢_1(N) l':ﬁ')l Cy x Cy — 1.
y—p2

Here we need some preparation before applying Theorem 2.2. Let 81 = raq,
By = rag and ab = — (3%, where 8 € k*. Then 3 — a5 = r?ab = —r?32.
For v = ir/\/a € E we get ay? = —r?. From [2] now follows that the
embedding problem is solvable iff (a,2¢)(—1,31) = (a,2raqe) = 1 € Br(E),
since a =9 —1 (mod E?).

Therefore the embedding problem (K/E,v~'(N), (a4)) is solvable iff Je €
E*, such that (a,2raje) =1 € Br(E). The associated embedding problem
(K/k,G7/{as), p2) is solvable iff (—=1,—1) = 1 € Br(k). Whence the
embedding problem (K/k,Gr,(a4)) is solvable iff Je € E*, such that
(a,2raje) = 1 € Br(F) and (—1,—1) = 1 € Br(k), where a and e are
quadratically independent over FE.

Finally,

i ¢ K/k — arbitrary Dg extension. Let x generate Gal(K (i)/K) and identify
Gal(K/k) with Gal(K (i)/k(i)). According to Theorem 7.2 we must take
the group N = (ok, ), which is the Galois group of K (i)/k(i\/a). Then
the embedding problem given by K (i)/k(iy/a) and

1—(ay) =Gy — Dg—1

a;—T

ao—OKT
is Brauer. Since —a € k(i\/a)?, we get @ = a3 — az\/a = a; — ial
for proper of, € k(iv/a)*. Thus we obtain that the embedding problem
(K (i)/k(iv/a),G7,{aq)) is solvable iff (—b,—ayr) = 1 € Br(k(iv/a)). It
remains only to add the condition (ab, —1) = 1 € Br(k) to solvability of the
associated embedding problem (K /k,G7/{as), (as)).
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9. The group Gg. Here again (a4) is a normal subgroup of Gg, and
Gg/(as) = Dg. Let a =9 —1 and b € k™ be quadratically independent over k,
and let K/k be a Dg extension, described in Section 2. We then have that the
embedding problem given by K/k and the group extension
(9.1) 1—{a4) =G — Dg—1

ai—T
ag—oT

is Brauer. Let I' = (K, Gg, ) be the crossed product algebra, related to the group
extension (9.1). Let u; correspond to 7 in I', ug correspond to o7, and u = uguy.
Then we have the relations u? = i,u3 = —1,u* = —1 and wu; = —iugu3. The
algebra I' is decomposed as tensor product of the following three quaternion
subalgebras:

Iy o: i =vVb, ji=(1—i)u;
Ty o dg = Vbu?, jo = i(vra+ Vrau?);

Dy : d3=1, js=u+u’
Therefore [I'] = (b,2)(—b,2a;7)(—1,—2) = (=b,ay7)(—1,—1). We can summarize:

Theorem 9.1. The obstruction to solvability of the Brauer embedding
problem (K/k,Gs, {a4)), described above, is (—b,a1r)(—1,—1) € Br(k).
The associated embedding problem (K /k, Gg/{as), (as)) is always solvable.

We will again discuss all 5 cases. Our goal is to prove the automatic realizability
Gs = Gr.

(1) ¢ € k. The embedding problem (K/k,Gg,{a4)) is solvable iff (d,2¢) =1 €
Br(E), ie., (b,2r(a; —azy/a)) = 1 € Br(E). Therefore in this case we
obtain the automatic realizability G7 < Gs.

(2) a =2 —1. This is the Brauer problem. If we replace r by —a; in the
obstruction (—b, —ayr) to solvability of the embedding problem (K/k,G7,
4), we obtain the automatic realizability Gg = G7.

(3) b =9 —1. We keep the notations of the same case for the group G7. Consider
the embedding problem given by K/k and the group extension (9.1). Again,
N = {1,02%,07,0%7}. Put # = (asa1)? = aszas,y = as and z = a3. Then
U N) = (2, a4) = (2,y) x (2) = Qs x Co.
Since z = xa;l, the homomorphism 1 : Qg x C2 — C3 can be described by
T +— 01,y — 09,z +— o1. Consider the associated embedding problem given
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by K/E and the group extension
1—>M4§<a4>—>¢_1(N)%QsszZN%Cg—ﬂ.

A necessary condition to solvability of the latter embedding problem is the
solvability of the associated embedding problem given by K/E and

1 — p = {aq)/(as) — = (N)/(as) = C3 o= C3 — 1.

The latter associated embedding problem is solvable iff 3e € E*, such that
¢, d and e are quadratically independent over E. Denote K| = E(\/c,Vd,
ve) and let us consider the embedding problem given by K;/FE and
1—pp={as) = I (N)=QsxCy — C5—1.
X — o1

Yy— o2
a4 +— 03

We have the relations z2 = y? = a?l = -1, zy = —yzx, agx = xay and

a4y = yay. From Theorem 2.1 follows that the latter embedding problem
is solvable iff (c,c)(d,d)(e,e)(c,d)(d,e) =1 € Br(E) <— (-1,—-1)=1¢
Br(E).

The embedding problem given by K/k and the group extension
1— (a4>/<a5> — G8/<a5> =DAC ap——>>7 Dg — 1
ag—oT
is solvable iff (—a,—1) =1 € Br(k).

Thus we can summarize: The embedding problem (K /k, Gs, (a4)) is solvable
iff 3e € E*, such that ¢ = 2v/a/i,d = —1 and e are quadratically independent
over E = k(Vd'i),(—1,—1) = 1 € Br(E) and (—a,—1) = 1 € Br(k). In
particular, we obtain again the automatic realizability Gg = G7.

Analogously to the group G7, we obtain that the embedding problem
(K/k,Gs, (a4)) is solvable iff (a,2raje) =1 € Br(E) and (—1,-1) =1 €
Br(k).

Finally,
a,b and —1 are quadratically independent over k. Similarly to the group

G we obtain that the embedding problem(K/k,Gg, (as)) is solvable iff
(=b,a17)(—1,-1) =1 € Br(k(iy/a)) and (—1,ab) =1 € Br(k).
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Comparing each case for the groups G7 and Gg we have shown in this
way that the automatic realizability Gg = G7 holds.

10. The group G1;. We did not discover an automatic realizability
between the groups G1; and Gys, so we decided to investigate only the Brauer
problem. Again, the centre Z(G11) = (a4) is isomorphic to Cy and the quotient
group G11/{a4) is isomorphic to Dg. Let K/k be a Dg extension, and let i € k.
Then the embedding problem given by K/k and the group extension

(101) 1— <(l4> i GH a1—'—>>’7‘ Dg —1

ag—oT

is Brauer. Indeed, 7i =4, "aq4 = a1a4a1_1 = a4,07t =1, “Tay = a2a4a2_1 = ay.
Denote by I' = (K,G11,i) the crossed product algebra, related to the group
extension (10.1). Let u correspond to 7 in I', ug correspond to o1, and u = uguy.
We then have the relations:

u% =1, u% =1, ut = 1, uu; = iulug;

ura = Vrau, wra = —/rau, ua = —/au, uwb = Vbu;

uivra = vrauy, uivra = —vVra'ui, uiva = auy, u Vb = —Vbu,.

Calculations show that I' is decomposed as tensor product of the following
three quaternion subalgebras:

Iy o: i =vVh, ji =
Ty ¢ dg = Vbu2, jo = Valvra +ivra'u?l;
s : i3=+/a, jz=u+iu’.
Therefore [I'] = (b,1)(b,2a17a)(a,2i) = (b, ayr) € Br(k), since 2i = (1 + )2 € k?
and (a,—b) = 1 € Br(k). We can summarize:
Theorem 10.1. The obstruction to solvability of the Brauer embedding
problem (K/k,G11,{a4)), described above, is (b,c7) € Br(k).
In particular, if ¢ € k, we obtain the automatic realizability Dg = G11 (we

have to replace r by « in the obstruction). Here again the associated embedding
problem (K/k,G11/{as) = D A C,{as)) is always solvable.

11. The group Gi5. As before, the centre Z(G15) = (a4) is isomorphic
to Cy and the quotient group Gi5/(a4) is isomorphic to Dg. Let K/k be a Dg
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extension, and let i € k. Then the embedding problem given by K/k and the
group extension

(111) 1— <a4> — G15 a—> Dg — 1

1!—)7'
ag—o

is Brauer. Denote by I' = (K, G15,4) the crossed product algebra, related to the
group extension (11.1). Let u; correspond to 7 in I and wug correspond to 0. We
then have the relations:

u% =1, Uy = —1, ujus = —u%ul;
ui/ra = vraur, wivVre = —Vrdu, wiva = vaur, wvVb = —Vbuy;
U = Vraluy, usVra = —\/raus, usva = —vaus, usVb = Vbus.

The algebra I' is decomposed as tensor product of the following three
quaternion subalgebras:

Iy i =V, ji = Vaus;
Ty iy = Vbud, jo = Valvra+ Vra/ud);
Ty : iz=+a, j3s=us+u

Therefore [['] = (b,ai)(—b,2a17a)(a, —2) = (b,a1r)(a,2) € Br(k), since 2i =
(1+1i)? € k% and (a, —b) = 1 € Br(k). We can summarize:

Theorem 11.1. The obstruction to solvability of the Brauer embedding
problem (K /k,G15,{a4)), described above, is (b,a17)(a,2) € Br(k).

Here again the associated embedding problem (K/k,G15/(as) = Q A
C, (as)) is always solvable.

12. The groups G17, Glg, Glg, Gzo, G49 and G50. We decided to
include in this section the main obstructions to realizability of these groups for
convenience of the reader. The non abelian groups of exponent 16 are: G17 — the
modular group M3o, G1g — the dihedral group D32, G19 — the semidihedral group
SD3s, and Goy — the quaternion group (J32. We begin by giving the obstructions
to solvability of the Brauer problems for these groups found in [8], [11] and [12].

Let the group G be generated by two elements s and ¢, such that s is
of order 16. Identify the cyclic subgroup (s*) with the group ju4 of the fourth
roots of unity, i.e., s* = 9,55 = —1. Let also t> = ¢; and ts = 25~ 't, where
€1,69 € {£1}. Then we have the isomorphisms: for ¢y = ey = 1,G = Dsy; for
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g1 = 1,62 = —1,G = SD32; for g1 = —1,82 = 1,G = Qgg. Let K/k‘ = k(%,i)/k’,
where a and —1 are quadratically independent over k. Then the embedding
problem given by the Dg extension K/k and the group extension

1— — G — Dg — 1
Ha st S0 8
t—T1

is Brauer. The obstruction to solvability of this embedding problem is
(—1,e1)(2,0101)(a,e2a1 (a1 — 1)) € Br(k),

where oy € k™, 81 € k are such that Oz% + aﬂ% = 2. For the remaining cases see
[3].

Now, let the modular group M3, be generated by elements s and ¢, such
that s'6 =2 = 1,ts = s°t. Let i € k, and let K/k = k(/a,/b)/k, where a and
b are quadratically independent over k. Assume the group C4 x C5 is generated
by elements p; and ps, which act on K/k thus:

prs Vars Yai, Vb Vi
p2 o Va— Va, Vb —Vb.

Then the embedding problem given by K/k and the group extension

1— — M3y — CyxCy —1
M4 e 82 o 2

t—p2

is Brauer. The obstruction is (a,ab)(i,a) € Br(k), where is necessary that
Ja € kX, B € k, such that o — a3? = i. For the remaining cases see [12].

Finally, for the two extra-special groups DD =2 Gy49 and D@ = Gsp we
have from [14]:

Proposition 12.1. There exists a Galois extension L/k with Galois
group Gal(L/k) = DD iff there exist a,b,c,d € k>, quadratically independent
over k, such that (a,b)(c,d) =1 € Br(k).

Proposition 12.2. There exists a Galois extension L/k with Galois
group Gal(L/k) = DQ iff there exist a,b,c,d € k>, quadratically independent
over k, such that (—a, —b)(—1,—-1)(c,d) = 1 € Br(k).
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Appendix
Group Relations Centre Rank | Exp
Gy atay ', aaz ', a3ay’, alas ', a? Gy 1 32
G2 a%all7 ag%_lé [037 al]aglv a§7 <CL3, aq, a5> 2 4
a47 a5
Gs a§a§17 a%ail7 a%a;l, ai, ag Gs 2 8
Gy a%a;l, a%ail7 [2a2,2al]a5_1, a%a§17 (as, aq,as) 2 8
a47 a5
Gs a%ail7 a3, [ag,al]agjl, a3, aia§17 (as, aq,as) 2 8
a3
Gs a%ail7 a3, [ag,al]agjl, a3, (as) 2 8
[a37a1]a517 [a37a2]7 a4217 [a47a1]7
[a47a2]a5_17 lag, as), a2
G7 G%QZ17 057 [a2a al]a?jla a%a <a5> 2 8
[a37a1]a517 [a37 a2]7 aiagl
[aq, a1], [a a]a_l la4, a3], a2
4, U1}, 4,d2|Uy5 4, Ud3], Uy
Gy a%a;l, a%agl, [ag,al]agl, (as) 2 8
a§7 [a37a1]a517 [a37 a2]7 aia517
[a47a1]a [a47a2]a5’?17 [(14,(13}7 ag
Gy alay’, a2, [az,a1]as ', alaz’, (a4, as5) 2 8
[a37a1]a517 a?h ag
Go alay ', aaz ', [az,a1laz’, (aq,as) 2 8
agag17 [a?)a 01]045_1, [a37a2]ag17
G11 ata;’, a%l, [ag, aﬂa;ll, a%agll, (a4, as5) 2 8
[a37a1]a5_ ) [a372a2]a5_ ’ aiag )
a5
G12 a%az]_t17 a%a517 [a27 al]a??17 agﬂ <a37 a4, a5> 2 3
aiag17 a?
Gi3 a%aizl, adaz’, [lag,al]agl, (a4, as) 2 8
a§a5_ ; [a37 al]a25_ ) [03, 02]7 a‘i?
as
G 2, — 2 — —1 —1 9 8
14 aia, ,a3a5 as -, [azyal]ag , <a4,a5>
agag ) [a?nal]ag 5 [a37 a2]7a47
a2
5
Gis a%agl,agagjl, [(127(11](1??17 (aq,as) 2 8
agag y [a3v al}agla [a37a2]a
ajas ', a3
Gig a%a;l,ag,agagl,aﬁa?,ag Gig 2 16

31
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2

Gir
2o T
Taz ,a%,[ag,al](fl 2q,1
Gis 2 aiafl 25 s <a
— ]5 _,1a5 3,04, A5) 2
[a37a1]a—1’ g™, agas ar .
it |
) st s a2)ay ,ajag’ as) 2
19 a2a—’1 427 asjag Y las, a3 a2 ’
2 -1 175 ,a3, [a = e
2a 1 2,(11](1 !
3a5 a; ,la n o
a2a=l las, ar]a;’,[a 2! o)
G 2a5, [ag, a1]az D 2
20 afagl a72 17?5 7}a4’a3} a3 7 ’
b
a2a*14 lag,ar]ag [a asJar! o)
2a3", lag, ar]azt ’ 37@2]7(14 ’ 2 ’
_ [ 5 a[a47a2]a !
21 7 —T a1, as], 57
- ajay ,a3az ', a2
22 a%cfl a2 e 7a37ai7a2
G23 2 E ? 2,[(127(11](171 3 ; -
a1a517a§a71 4 7a‘37a1217a2 » 3
< laz,atla; a3 e :
Gaa 2 a2 * 7a37ai7 < “ ; 4
P P N PP P -
5 2, Q1 a, 20, 4
G2 - ! 4 a03a417az217 <
5 : 1 : as, a
i ,ay,a5) 3
,a1lay ,agtf1 2 4
Gag 3 . :
FaT BT I
204, 02,0 i
Gar 2 a§a5 10_71 027 12]a4 7 “
a1’a§a[a2 a1) _41 ) Ay, A5 ) ’
_ 7[a1a4 7&%,[@3,@1}(1_1 4
28 a%a%af’{“z]?aia% B o ’
a0 e ailey e 4
Gag 5 1Jas_ [a o |
a1a;1,a2a*17 3’a2]’a4217a§ a47a5> ’
[a 274 7[a2,a1]a’1 3 4
Gs 3, a1fas [a b
0 a? a3, la ’ 37_‘12]’05’“? ! ’
o e o 4
Gs1 el o <
a%ﬂlga*l ’ 37a2]7a4217a2 a47a5> 3
[ 5 [a2,a1]a; 0} 0 4
S B A ht |
fosmleg " on,cal b R
a2a_1 ) 2(15 a[a2 a] i 4
G33 2a7 ", [ag, arlaz !, [a: ol “
T v
G aza;t,[a 5 Oy 3[%7@1]‘1217 ) 4
7 _
34 5 3§aﬂa5 ,las, a 2 )
ay, asa T 2],0, 02 ’ ’
271’247[020 T 4
G3 a3as v[az’naﬂa*l’ e
5 ata;? a2a751 ;las, as, af, a3 ) ’
2a-l ,aZa; ", Jag, ar]ay’ ; 4
2a;!, [as, a1]ag ! o <
5 ’[a?ﬂa?]aaivag a47a5> ’ '
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Glsg a%a;l,ag,ag,aiagl, a? Giss 3 8
Gsr ata; ', a2, lag, a1]as ', a2, (as,aq,as) 3 8
aiagl,ag
ez atay ' a2, a2, [as, az)as ", (a1, a4, as) 3 8
aia;l,ag
Gsg a2,a3, [az,ai]ay’, a2, ala; ", (as,as) 3 8
[a47 al]a5_17 [a47 a2}a5_17 ag
Gy atas ', a3, las,a1]a; a2, aas ", (a3, as) 3 8
[a47 al]a5_17 [a4a a2}a5_1’ a%
Ga a%agl,agagl, [ag,al]azl,ag, (as,as) 3 8
afaz ', [as, ar)az’, [as, as)a; ', o
Gao a3,a3, [ag,a1]ayt, a3as ", (a3, as) 3 8
aias_lv [a4a al}a5—1’ [a47 a2]a5_17 ag
Gus a?, a3, [ag,al]all,ag, [ag,al}agl, (as) 3 8
[a?n a2]7 aiagl, [a47 al}a5717
[a47 a2]ag17 [a4’ a3}7 ag
Gas a%,a%agl, [ag,al]all,ag, (as) 3 8
[a?n al]aglv [a37 a2]7 aia517
[a4v aﬂa;l, [a47 a2]ag17 [a4a a3}7 ag
Gus a%agl,ag,ag,ai,ag Gus 4 4
Glg a?, a3, [ag,al]agl,ag,ai,ag (as,aq,as) 4 4
Gar a%a;l,agagl, [ag,al]agl,ag, (as,aq,as) 4 4
af, a3
Glag a?, a3, [ag,al}agl,agagl, (as,aq,as) 4 4
aj, a3
Glao a?, a3, [ag,al]agl,ag, (as) 4 4
[as, a1], [as, ag]agl, a?,
[aq, aﬂa;l, [a4, as], a4, as],a?
G50 a%,a%a;l, [ag,al]agl,agagl, (as) 4 4
[as, a1], [as, ag]agl, a?,
[aq, aﬂa;l, [a, az), [a4, as], a?
Gs1 a?, a3, a3, a3, a? Gs1 5 2
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