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ABSTRACT. The asymptotic of the first eigenvalue for linear second order
elliptic equations in divergence form with large drift is studied. A necessary
and a sufficient condition for the maximum possible rate of the first eigenvalue
is proved.

1. Introduction. We investigate the asymptotic behavior of the first
eigenvalue of linear second-order elliptic equations in divergence form with a large
drift term, i.e.

(1) Lu = — (a"(x)ug,, — ch(a?)u)mj + T (z)uz; + b(z)u
in a bounded smooth 2 C R"
(2) oecChH, a'd ewh>(Q), beL>®(Q), o =ad,

Here T is a large positive parameter and the nonsymmetric operator L is a
uniformly elliptic one, i.e.
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(3) agn(:n)gjgm > pl€)? forevery zeQ, £eR", u=const >0.
Consider the eigenvalue problem for L with Dirichlet boundary conditions
(4) Lp=X¢p in Q, ¢=0 on 0.

By the means of Krein-Ruttman Theorem, see [7] it is well known that there exists
a simple real eigenvalue A1 and eigenfunction ¢, € Wlif(Q) for every p > 1, such
that ¢1 > 0 in Q and it is unique up to multiplication with a constant. Moreover
any eigenvalue \ of (4) satisfies Re A > A\; and \; is called the first (or principle)
eigenvalue.

Let us recall that the asymptotic of the first eigenvalue A1 of the operator L.

(5) Lou= —sQa;?(:n)umjxk + (@) ug,

when ¢ — 0 was investigated by Friedman [5]. Under the condition ¢(x)ev(z) <
0 on 99, where c(z) = (c'(z), - ,c"(x)), v = (v (z), -+ ,v"(x)) is the unit
outward normal to 02, and “»” denotes the scalar product in R™, it is proved
in [5] that A\j(¢) — 0 exponentially fast as ¢ — 0. The same operator L. is
studied by Devinatz, Ellis and Friedman in [2] where a sufficient condition for
the estimate m;e2("=D/0+D < X1 (e) < mope( =D/ my  mgy = const > 0 is
given if the vector c¢(x) vanishes at some point xg € Q to the order r, for some
r > 0. Moreover, if there exists a function w € C1(Q) such that

(6) ceVw >0 in

the authors prove in the same paper that A\j(¢) — oo as ¢ — 0 at a maximum
possible rate ¢ 2. Most of the results in [2] are proved by two different methods:
i) L? a priori estimates and ii) maximum principle type arguments. A different
probabilistic approach closed to the Markov’s processes is used by Wentzel [8],
who gives a formula for the first term in the asymptotic of A for operator (5).
Let us also mention the paper of Berestycki, Hamel and Nadirashvili [1] where
boundness of the first eigenvalue for the operator

(7) Lu=—Au+Tdu,, dive=0

are investigated. They prove that A;(7") are bounded as T — oo if and only if
there exists a function w(z) € H}(Q), w(z) # 0, such that ce Vw = 0 almost
everywhere in 2. Moreover, the first term « in the asymptotic of A\{(T), A1 (T') =
k +o(1) as T — oo, is found in [1] Note that the choice T = £~2 makes the
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problem for the operators (5) and (7) equivalent with respect to the parameters
e and T.

2. Main result. In the present paper we give a formula for the principal
term k in the asymptotic of the first eigenvalue Ay of (1) at a maximum possible
rate T2, i.e.

(8) M =kT?+0(T?) as T — oo.

This formula is different from the formula of Wentzel in [8] and is obtained by
means of pure partial differential equation’s arguments. As a consequence Kk =
k(a,c,) is a monotone function on the matrix a, i.e. k(a,c,Q) < k(a,c,Q)
if a > a,a={aj't, a = {aj'}, a, @ > pl. Moreover, for the whole class
of uniformly elliptic operators L either k(a,c,) > 0 or k(a,c,Q) = 0 for all
matrices {af} satisfying (3). As for the dependence on 2, k is a monotone
and bounded function, i.e. s(a,c, Q') < k(a,c, Q") < supceAc, A = a~! when
Q

QD Q' > Q" Fimally, we give a necessary and a sufficient condition \; to have
a maximum possible rate T2 as T — oo which is exactly the sufficient condition
(6) of Devinatz, Ellis and Friednam [2].

Theorem 1. Suppose L satisfies (2) and (3). Then the first eigenvalue
A1 of L has the asymptotic A\; = kT2 + o(T?) as T — oo where

(9) K = infsup/(c-Vz— iVZ-aVZ)’LdeSL',

v
2
(10) k = infsup /C.Vzuzdzn //Vz.aVqud:z:
b Q Q

(11) K = iunf{/(c—h).A(c—h)qua?,

Q

2

(12) K = 1un£ /c.Achda?— /C-Ah’u,le' //h.Ahqu:c

Q Q Q

and the infinimum is taken over all functions u € H(Q), qudaf =1, h e L*>,
Q

div (h uz) = 0 in weak sense, while the supremum is over all Lipschitz functions
z € COL(Q).



50 Alexander Fabricant, Nikolai Kutev, Tsviatko Rangelov

Proof. From Corollary 4 in [4] we have the following formula for \;

1
A1 = inf / (VueaVu + bu?)dx + sup / (TceVz— sz caVz)ulde
Q )
where u € H}(R), [u?dx =1, z € C%1(Q). Hence if z is replaced with Tz in the
Q

above formula we get the inequality

1
A1 = inf / (VueaVu + bu?)dz + T2 sup / (ceVz— ZVz.aVz)qu:E
Q Q

1
> inf/ (Ve aVu + bu?)dz + T? inf sup/ (ceVz— sz «aVz)ulde
Q s
=\ + 7%k
where A is the first eigenvalue of the operator

(13) Lou = —(aj"ug,, )z; + bu.

In order to prove the opposite inequality in (9), we use the estimate

Ay /T? §T_Q/(Vu.aVu—FbuQ)d:c—i—sup/(c.Vz— in.aVz)qua:
Q s

for every u € H}(Q), [u?dx = 1. After the limit 7 — oo we obtain that
Q
1
Tlim (\/T?) < sup/ (ceVz— ZVz.aVz)UQd:L‘
- Q
for every u € H}(Q2) and therefore the inequality Tlim (A\1/T?) < &k holds too.

As for the second formula (10) it is enough to maximize the expression
under the sup in (9) replacing z with Nz, N = const . Simple computations show
z

that this maximum with respect to N is attained for

2
N = /C.Vzuzd:c //Vz.aVquda:
Q Q

which proves (10).



The asymptotic behaviour of the first eigenvalue ... 51

In order to prove (11) we will use the following formula for A; given in
Corollary 4 in [4]

Al = in}{ / (VueaVu + bu®)dz + / (Tc—h) e A(Tc — h)u’dx
" Lo Q
where, div(hu?) = 0, h € L>®(Q), u € H}(Q?), [u’dz = 1.
9)

Replacing h with T'h we get the following chain of inequalities

Kk = Tlim (A /T?) < Tlim T2 / (VueaVu + bu?)dz + / (c—h)eA(c — h)ulda
Q Q

IN

572 /(Vu.aVu + 5%(c — h)« A(c — h)u? + bu?)dz — /(Vu.aVu + bu?)dx
Q Q

< 572 /(Vu.aVu + 82(6 —h)eAc— h)uz + buQ)dw - )‘(1)
Q

where as above \{ is the first eigenvalue of the operator Lo in (12). The infinimum
with respect to u and h in the above inequality and the limit s — oo gives us

k< inig/ (c —h)e Alc — h)ulde < lim (M (s) — A))/s® = &
s
where A1 (s) is the first eigenvalue of the operator L in (1) for T' = s.
Let us note that (10), (11) can be considered as infinimum on weight
u € H} () of the norms of the linear functional over the spaces

u

L? =z, /Vz.AVzu2d$ < 00
Q

As for (12) the proof follows from (11) replacing h with Nh, where N is
the optimal constant, N = fC-Ahuzdl'/fh.AhUQd:L‘. O
Q Q

Corollary 1. Under the assumptions of Theorem 1, k(a,c,) has the
following properties k(a,c,Q) < k(a,c,Q) if a > a and k(a,c,Q) < k(a,c,Q) if
a>a+ K.I, K =const > 0. Moreover, k(a,c,) >0 or (a,c,Q) =0 for all
matrices a satisfying (3).
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It is curious to mention that according to Proposition 2 in [3] and the
above Corollary 1, A\1(T") is a monotone increasing function of a for a sufficiently
small 7" and a monotone decreasing one with respect to a for a sufficiently large
T. In general, for arbitrary finite 7 > 0 the monotonity of A\;(7") on a, is an open
question (see for more details Proposition 2 in [3] and Proposition 5 in [4]).

Proposition 1. Under the assumptions of Theorem 1 the following
inequalities hold

z T

1
(14) sup inf <c. Vz— ZVz.aVz) <k <infc.Ac
1 2
Moreover, when ¢ = Qan for some p € W=°(Q), then
. 1 :
(15) Kk = sup inf (c. Vz— sz . aVz) = infc. Ac

Proof. The proof of (14) follows from the chain of inequalities

x T

sup inf < Vz — —Vz aVz) 1nf sup 1nf (C-Vz — sz-avz> u?dx
< 1nf Su

( Vz— sz aVz) wldr = K

1nf Sup

\D\

1 1
( o Ac— 2aVz —C)e A(iaVz - c)) uldx
Q
< 1nf/c.Acu2d:E =infc. Ac
Q

2de = 1,

To obtain the last inequality we use a sequence u, () € H}(Q), [u?

Q
where B(uy,) = suppu, — {zo}. Since

infce Ac < inf/ (inf co Ac)u’dz < inf/c.Achdaf

< lim c.Acu?Ld:c < lim sup c.Ac
n—>ooQ n—oo (EEB(UH)

So we get the inequality

infce Ac < inf/c.Ac wldr < c(zq) o Azo)c(zo)
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for every xg € 2. This proves (14).
Ifc= Qan we get the estimates

infce Ac < iianp.an < supinf <C.Vz — in.aVz) < k <infc.Ac

and (15) is proved. O

Remark 1. As a consequence of Proposition 1 we obtain that a ne-
cessary condition for the asymptotic (8) with the maximum possible rate T2 as
T — 00 is ¢(z) # 0 in Q. Unfortunately, unless in the two dimensional case (see
Proposition 3 below) this condition is not a sufficient one. The following theorem
gives an answer of this question.

Theorem 2. Suppose (2), (3) hold. Then xk > 0 if and only if (6) is
satisfied.

Proof. If (6) holds then the statement of Theorem 2 follows immediately
from (10). As for the necessity of (6) we will apply Lemma 2.3 in [2] which we
present here for completeness.

Lemma 1 (J. Frank and K. Robinson). Suppose that c € Cl in some
neighborhood €21 of Q. Every solution of the initial-value problem

p(t) = c(ep(t))
(16) ©0(0) =29 € Q

remains in Q1 for only a finite time in the time interval (—oo,00) if and only if

there exist a function w € C*(Q) such that (6) holds.
Moreover we will use the following estimate from above for k.

Lemma 2. Suppose (2) and (3) are satisfied. Then for every CH! reqular

closed curve o(t) : [-N, N|] — Q the estimate

N
a7) w< 37 [ @0 -8 A)ete) - D)7
N
Nodt
holds, where, M :_{V W

Proof. Suppose that ¢(t) contains in 2 and p(x) is the distance from =
to the nearest point t(x) € v = {p(t), —N <t < N}. Let us consider the domain

Ge) ={z €, p(x) <e} = {(t,y) € [-N,N] x D(e, 1)},
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and D(e,t) = {y : r = \y—cp(t)] < g (y—¢)e¢p = 0} where ¢ > 0 is
sufficiently small so that p(xz) € CH'(G(e)\y)and (5) C Q. For every z €
G(e)\y differentiating the equality (xz — p(t(x)))« 4(t(z)) = 0 with respect to x’s
we get the identities

(18) P(t) + [(x — @) « B(t) — % (1))(0t/0x) = 0
ot

So — = p(x)¢, where p(x) is a scalar function. Then we have

ox
b (E) 2 () n
ol ~at \fgl) "o~ \l " oY) oa

(19) L
P PP . .
(t(x)) BN
Now we will apply (11) for the domain G(e) and for the functions u =
(e —»p) . 2 dt )2

——— and h(z) = ¢(t(z)) where, K2 = [ (e —p)* —=M [ (¢—1)%dS,
K. || e el e
D(e) = D(e,0).

Let us check that div (hu?) = 0 in G(g). Indeed, we have the equality

. p\l=p? ,pe- .
div (hu?) = div ( ) — 2= Vp. The first term is zero from (19)
ol) Kz ol K2

and the second term is zero from the geometry property

ﬁ . Vp 0.
From (11) and the continuity properties of the coefficients in (2) we have
the chain of inequalities

k<K [ (c(2) = (t(@) « Alx)(e(w) — @(t(2)))(e — P(ﬂ?))zwfﬁ

G(e

< K77 i (clp(t(x)) = () « Alp(t(2)))(c(p(t(z)))
G(e

e~ pla)* i + K20 [ (= plo) s

<K.? / (c(ep(t) = () -A(sﬁ(t))(C(@(t))Ci(E;( )))|d—t)| (€ —=r)%dS + —~¢

g
where the constant C is independent of ¢. Since K2 = ((f) (e —1)2dS after

the limit € — 0 we get (17).
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In order to prove (17) for curves p(t) € Q it is enough to approximate
in C! topology with curves ¢, € Q. O

In the proof of Theorem 2 we will use, in the multidimensional case n > 3,
the following simple corollary of Lemma 2.

Corollary 2. Suppose (2), (3) are satisfied and n > 3. For every C'H!

reqular curve o(t) : [-N, N] — Q without self intersection points the estimate
K 1 T d
t
(20) k<3t [ o) -9 A ~ &)
i e ol

holds where the constant K depends only on the mazximum of A, ¢ and the
diameter R of €.

Proof. Without loss of generality we assume that ¢(t) € Q. Now let
us construct a closed curve with a length under control containing the curve
©(t). Then applying Lemma 2 to the new closed curve we get the estimate (20).
Suppose for this purpose that S = {|z — z¢| = ¢} C 2 is a sphere with sufficiently
small radius § such that y NS =0, v = {x € Q; x = (t)}. If n are the lines
through the points ¢(N) and ¢(t), t € [-N, N] we denote with ~; the set of
all intersection points of n; and S, i.e. v = {z € 3y N S}. Correspondingly, 72
is the set v2 = {z € SN ¢} where ¢; are the lines through the points ¢(—N)
and (t), t € [N, N]. Since mesgy; = mesgys = 0, where mesg is the n — 1
dimensional Hausdorf measure on the sphere S, there exists point y € S such
that the segments 7 and ¢ connecting ¢(N) and y, ¢(—N) and y resp., do not
intersect . In this way the curve 4 defined by +, the segments n and ¢ is a
closed curve in € without self intersecting points (see Figure 1). Moreover, we
have the following estimate for the length M of 4, M < M < M + 2R. By the
means of approximation arguments, there is no problem to construct 4 as a C'b!
smooth curve without self intersection points and length smaller than M + 2R
for instance.

Let us now finish the proof of the necessity in Theorem 2. Suppose k > 0
but condition (6) fails. Note that according to Remark 1 ¢(x) # 0 in 2. We extend
the coefficients of L in a larger domain Q¢ D Q, Qo = QU {x € R™, p(z) < po},
where p(z) is the distance from z to 92 and pg is a sufficiently small positive
constant. We shall use the notation ¢, a, b for the even extensions of ¢, a, b
in Qg through the boundary 0f) in the normal direction v of the coefficients of
L. More precisely, if = y(z) + s.v(y(x)), 0 < s < po, v is the unit outward
normal to 0 at the point y(z) € 0L, nearest to x, then é(x) = c(—sv(y(z)),

a(z) = a(—sv(y(x)), b(x) = b(—sv(y(z)) for z € Qo\Q.
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Fig. 1. Construction of the closed curve.

First, let us consider the multidimensional case n > 3. Since (6) fails,
according to Lemma 1, there exists a solution ¢(t) of (16) such that the curve
v = {x = ¢(t)} remains in some fixed neighborhood Q; of Q, Q C Q; C Qq, for
infinite time in the time interval (—oo, co). If v or a part of Wlth infinite length
belongs to 2 then by means of Corollary 2 it follows from (20) that

N
K 1 ~ dt K
(1) S NC ORI (I C ORI
=u” ()] M
“N
Here the curve 7 is considered only on some finite time interval, ¢ : [-N, N| —

Q1. When N is chosen sufficiently large, i.e. the curve has sufficiently large length
(for example M > K/k) we get a contradiction, see (21).

If the part of « with infinite length belongs to 1\, then the even
extension ¢ of ¢ with respect to 9§ belongs to © and is a solution of (16).
Thus we can repeat the previous arguments and get a contradiction.

In the two dimensional case we will apply the theory of Poincare-Bendick-
son. More precisely, if there exists an infinite curve 8 = {x = ¥(t)} C Qo which
is a solution of (16), then from the even extension of ¢(z) in Qg it follows that
there exists an infinite curve in Q. Now according to theorem 4.3, chapter VII in
[6], there exists a closed curve v = {z = ¢(t)} C Q, where ¢(t) is a solution of
(16). Using Lemma 2 instead of Corollary 2, the rest of the proof follows as in



The asymptotic behaviour of the first eigenvalue ... 57

the multidimensional case.

We obtain also the following geometric necessary and sufficient condition
for the maximum possible asymptotic (8) for A\; by the means of Theorem 2 and
Lemma 1.

Proposition 2. Suppose (2), (3) hold. Then x > 0 if and only if every
solution o(t) of (16) remains in some fixed neighborhood Q1 C Qo of Q only for
a finite time.

3. Applications about the two-dimensional case. For Q € R?
the necessary and sufficient conditions in Theorem 2 and Proposition 2 can be
replaced with an easy checkable and simple condition.

Proposition 3. Suppose (2), (3) hold and Q is a simply connected
domain in R?. Then k > 0 if and only if c(x) # 0 in Q.

The proof of the Proposition 3 follows from Theorem 4.4, chapter VII in
[6] and the Proposition 2.

The necessity of the condition that € is a simply connected domain in R?
is shown by the following example.

Example 1. Consider in G = {1 < |z| < 2} C R? the operator
Lu = —(ug, + Txou)y, — (ugy — Tx10)zy — TaoUy + TT1Us,

In this case c'(z) = —x9, c2(z) = z; and the system &) = —x9, 49 = w1,
21(0) = y1, 22(0) = y2, ¥ = (1, y2) € G has a periodic solution ¢(t) € G which is
a circle with radius |y|. Note that c(x) # 0 in G, but according to the Proposition
2 we get k = 0. The reason is that G is not a simply connected domain in R?.

A similar example in the multidimensional case illustrates that the necessary
condition ¢(x) # 0 in Q for the positiveness of x in Remark 1, is not sufficient
one in the case n > 3 even in a simply connected domain.

Example 2. Let G C R? is a solid torus with radii 1 and 2, i.e. a solid
of revolution, revolving a circle {z1 = 0, (z3 —2)? +3 < 1} about the axis Ox3.
Remain that the torus is a simply connected domain. Consider in G the operator

Lu=—(ug, — T(—z2 + x3)t) s, — (ugy — T(—x3 4+ 1)Uz,
— (Ugy — T'(—21 + 2)U) 3y + T (—x2 + 3) Uy,
+ T(—$3 + :cl)uxz + T(—.’L‘l + 372)11,903

Since @ = c(z), (0) = y € G has a periodic solution which remains in G, then it
follows that x = 0 from the Proposition 2.
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