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LINEAR COLLIGATIONS AND DYNAMIC SYSTEM

CORRESPONDING TO OPERATORS

IN THE BANACH SPACE
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Abstract. New concepts of linear colligations and dynamic systems, cor-
responding to the linear operators, acting in the Banach spaces, are intro-
duced. The main properties of the transfer function and its relation to the
dual transfer function are established.

Introduction. The theory of operator colligations and open operator

system are the main tool to study linear non-self adjoint operators [2]. However,

generalizing of these constructions in general form for Banach spaces is still

unsolved problem. A new approach to study linear operators in Banach spaces

and linear dynamic systems, defined in Banach space, are presented in the article.
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1. Linear colligations in Banach spaces and associated dyna-

mic systems.

1.1. Let A be a linear bounded operator acting in the Banach space B[1].

Consider Banach spaces E and F , and operators

σE : E → E, K : E → F, σF : F → F, ϕ : E → B, ψ : B → F.

Define a linear colligation as the assembly

(1.1) α = (σE , E, ϕ,B,A,B, ψ, F, σF ,K),

where B is the inner space, E, F are the outer spaces of the colligation α, A is

the main operator, ϕ, ψ are the canal operators, σE, σF are the metric operators,

and K is the deforming operator.

We will associate the linear dynamic system Fα = {Rα, Sα}, describing

evolution from 0 to T (0 < T <∞),

(1.2) Rα :







i
d

dt
x(t) +Ax(t) = ϕσEu(t),

x(0) = x0, (0 ≤ t ≤ T ),

where x(t) ∈ B is an internal state of the system Fα, u(t) ∈ E is the input of the

system Fα and x0 ∈ B is the initial condition;

(1.3) Sα : v(t) = Ku(t) − iψx(t),

where the vector function v(t) ∈ F is the output of the system Fα, and also x(t)

is the solution of (1.2). In other words the mapping R is such that

(1.4) R
α
(u(t), x0) = x(t),

and the transfer mapping Sα is such that

(1.5) S
α
(u(t), x0) = (v(t), xT ),

where xT = x(T ) is the solution of x(t) (1.2) at the point t = T .

If B = H and E, F are Hilbert spaces, then the linear system F = {R,S},

as well as the colligation α, may be extended owing to the external space only (i.e.

owing to increase in the number of canal bonds) to the open system (for which

the energy of conservation law is valid) associated with a local colligation [2].
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Applied A into local colligation [2],

∆1 = (A,H,ϕ1, E1, σ1),

where A−A∗ = iϕ∗
1σ1ϕ1. Form the following colligation

∆̂ = (A,H, ϕ̂, Ê, σ̂),

where Ê = E ⊕E ⊕ F ⊕ F ⊕E1, and σ̂ has the form

σ̂ =













0 σE 0 0 0
σ∗E 0 0 0 0
0 0 0 σF 0
0 0 σ∗F 0 0
0 0 0 0 σ1













,

also ϕ̂f = (ϕ∗f, 0, ψf, 0, ϕ1f) ∈ Ê; f ∈ H.

Elementary calculations shows that 4̂ is a local colligation

A−A∗ = iϕ̂∗σ̂ϕ̂.

Associating 4̂ with an open system F̂∆ = {R̂4, Ŝ4}, where

R̂∆ :







i
d

dt
h(t) +Ah(t) = ϕσEξ

−

2 + ψ∗σF ξ
−

4 + ϕ∗
1σ1ξ

−

5 ,

h(0) = h0,

then the transfer mapping of Ŝ∆ has the form

Ŝ∆ :



























ξ+1 = ξ−1 − iϕ∗h(t),

ξ+2 = ξ−2 ,

ξ+3 = ξ−3 − iψh(t),

ξ+4 = ξ−4 ,

ξ+5 = ξ−5 − iϕ∗
1h(t),

where ξ±(t) = (ξ±1 , ξ
±

2 , ξ
±

3 , ξ
±

4 , ξ
±

5 ) are input and output signals of the systems

F̂∆ from the space Ê.

Applying signals, presented as

ξ−(t) = (0, ξ−2 (t),Kξ−2 (t), 0, 0),
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to the input of the system F̂∆, and projecting output signals onto the third

component

ξ+(t) = (0, 0, ξ+
3 (t), 0, 0)

we obtain the system F{R,S} (1.2), (1.3).

Proposition 1.1. An open system Fα (1.2), (1.3), corresponding to

the linear colligation α, has extension (owing to increase in the number external

spaces) to open system F̂ , associated with a local colligation ∆̂ where B = H; E,

F are Hilbert spaces.

Thus, the problem of studying common linear systems may be reduced to

the analysis of the open systems, associated with local colligations. However, for

some problems it is more convenient to work with the initial system rather than

with its extension. For Banach spaces B, E, and F such extension, in principle,

is presumably impossible.

1.2. Let us consider linear colligation α and α̃ where,

(1.6) α̃ = (σF , F, ϕ̃, B̃, Ã, B̃, ψ̃, E, σF , K̃).

We associate with a linear colligation α̃ a linear dynamic system F̃α̃ = {R̃α̃, S̃α̃},

describing evaluation in the backward, relative to the system Fα (1.2), (1.3),

direction from T (0 < T <∞) to 0,

(1.7) R̃α̃ :







i
d

dt
x̃(t) + Ãx̃(t) = ϕ̃ũ(t),

x̃(T ) = x̃T , (0 ≤ t ≤ T ),

where x̃(t) ∈ B̃ is the internal state of the system F̃α̃, ũ(t) ∈ F is the input of

the open system F̃α̃, and x̃T ∈ B̃ is the initial condition;

(1.8) S̃α̃ : ṽ(t) = K̃ũ(t) + iσEψ̃x̃(t),

where ṽ(t) ∈ E is the output of F̃α̃.

It is reasonable that mappings R̃α̃ and S̃α̃ consist in

(1.9)
R̃α̃(ũ(t), x̃T ) = x̃(t),

S̃α̃(ũ(t), x̃T ) = (ṽ(t), x̃0),

where x̃0 = x̃(0).
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Definition 1.1. The colligation α̃ is called dual colligation, relative to

the α, if there exists a linear bounded operator S from the space B into B̃ such

that the following relations holds

(1.10)

1) SA− ÃS = iϕ̃σFψ,

2) SϕσE = ϕ̃σFK,

3) σEψ̃S = K̃σFψ,

4) K̃σFK = σE.

Thus the operator S, ensuring duality of colligation α and α̃, we shall call

the dual operator of the colligations α and α̃.

Remark 1.1. If the spaces B = B̃ = H and E = F are Hilbert

spaces, then the conditions (1.10) on the assumption that Ã = A∗, S = IH ,

ϕ = ϕ̃ = ψ∗, ψ = ψ̃, K = K̃ = IE (σE = σF are self adjoint operators), reduce

to the colligation condition of the local colligation.

Remark 1.2. If the operators K, σE , σF are invertible, then it is not

difficult to show that for colligation α there always exists dual colligation α̃.

Indeed, let S be a linear boundedly invertible operator from the Banach

space B into the Banach space B̃.

We define the following operators

Ã = SAS−1 − iSϕσEK
−1ψS−1,

ϕ̃ = SϕσEK
−1σ−1,

ψ̃ = K−1ψS−1,

K̃ = σEK
−1σ−1

F .

Elementary calculation shows that the above assembly defines the colligation α̃

dual to the colligation α. The duality conditions (1.10) superimpose some bonds

on the systems Fα (1.2), (1.3) and F̃α̃ (1.7), (1.8), which we call the dual bonds.

Particularly, if S = I, then the colligation

α̃ = (σF , F, ϕ̃ = ϕσEK
−1σ−1

F , B, Ã, B, ψ̃ = K−1ψ,E, σE , K̃ = σEK
−1σ−1

F ),

is dual to α, where

Ã = A− iϕσEK
−1ψ.
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Proposition 1.2. Suppose that the colligation α̃ is dual to the colligation

α. Then mappings R̃α̃ (1.7) and S̃α̃ (1.8) of the open system F̃α̃ are defined by

output v(t) and xT of the open system Fα (1.2), (1.3) as follows

R̃α̃(v(t), SxT ) = x̃(t) = Sx(t),

S̃α̃(σFv(t), SxT ) = (σEu(t), Sx0),

where S is the dual operator of the colligations α and α̃ in (1.10).

P r o o f. Let us apply operator S to the equation (1.2). Then, in virtue

of the conditions 1) and 2) (1.10), we obtain

i
d

dt
Sx(t) + ÃSx(t) = −iϕ̃σFψx(t) + ϕ̃σFKu(t).

Using (1.3), then we have

i
d

dt
Sx(t) + ÃSx(t) = ϕ̃σF v(t) and x̃T = SxT .

Applying the operator K̃σF to the expression (1.3), then we obtain

σEu(t) = K̃σFv(t) + iψ̃Sx(t). �

1.3. Define a concept of contraction. Note that for the dual colligation

α and α̃ the contracting procedure [2] must be carried out in “the opposite

direction” since the respective dual system Fα and F̃α̃ describe the evolution

in mutually inverse directions.

Consider the linear the colligation α and α′ where,

(1.11) α′ = (σE′ , E′, ϕ′, B′, A′, B′, ψ′, F ′, σF ′ ,K ′),

with F = E′ and σE′ = σF .

Definition 1.2. The linear colligation

(1.12) α0 = α′ ∨ α = (σE0 , E0, ϕ0, B0, A0, B0, ψ0, F 0, σF 0 ,K0),

is called the coupling of the linear colligation α and α′, where B0 = B′+̇B and

the main operator A0 equal to

(1.12′) A0 =

[

A′ iϕ′σE′ψ

0 A

]

: B0 → B0,
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and

(1.12′′)

ϕ0 = ϕ+̇ϕ′σE′Kσ−1
E ,

ψ0 = K ′ψ + ψ′,

K0 = K ′K,

where E0 = E, σE0 = σE, F 0 = F ′, σF = σF ′.

Naturally, we suppose that σE is an invertible operator.

Proposition 1.3. The linear dynamic system F 0 = {R0, S0}, associated

with α0 = α′∨α, is defined by Fα = {Rα, Sα} and Fα′ = {Rα′ , Sα′}, corresponding

to the colligation α and α′ as follows

(1.13)
R0 = R′

αSα+̇Rα,

S0 = S′
αSα.

P r o o f. We write down componentwise the equation for the mapping R0,

i
d

dt

[

x′

x

]

+

[

A′x′ + iϕ′σE′ψx

Ax

]

=

[

ϕ′σE′Ku

ϕσEu

]

.

Then

i
d

dt
x′ +A′x′ = ϕ′σE′ [Ku− iψx] ,

i
d

dt
x+Ax = ϕσEu,

which it proves the first relation (1.13). The prove of the second relation directly

follows from the equation

S0 = K0 − iψ0R0 = S′S. �

Consider the linear colligations α̃ and α̃′, dual with respect to α and α′

where

(1.14) α̃′ = (σF ′ , F ′, ϕ̃′, B̃′, Ã′, B̃′, ψ̃′, E′, σE′ , K̃ ′).

Definition 1.3. The colligation

(1.15) α̃0 = α̃ ∨ α̃′ = (σF ′ , F ′, ϕ̃0, B̃0, Ã0, B̃0, ψ̃0, E, σE , K̃
0)
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is called ∗-coupling of the colligations α̃ and α̃′ (when E = F , σE′ = σF ), with

respect to colligation (1.12), where B̃0 = B̃′+̇B̃, and the operators Ã0, ϕ̃0, ψ̃0 are

equals to

(1.15′)

Ã0 =

[

A 0

−iϕ̃σE′ψ̃′ Ã

]

,

ϕ̃0 = ϕ̃′+̇ϕ̃K̃ ′,

ψ̃0 = σ−1
E K̃σE′ψ̃′ + ψ̃,

K̃0 = K̃K̃ ′,

where the operator σ−1
E exists and bounded.

Proposition 1.4. The linear dynamic system F̃0 = {R̃0, S̃0}, associated

with α̃0 = α̃ ∨ α̃′, is defined by the relations

(1.16)

{

R̃′ = R̃′ u R̃S̃′,

S̃0 = S̃S̃′.

P r o o f. The proof is similar to that of Proposition 1.3. �

1.4. Let us show that the duality of the colligations α and α̃ in (1.10) is

inherited under the coupling.

Theorem 1.1. Suppose that the coupling α0 = α′ ∨ α of the linear

colligations α and α′ corresponds the ∗-coupling α̃0 = α̃∨α̃′ of the dual colligations

α̃ and α̃′, where the colligation α̃ is dual to α, and α̃′ is dual to the colligation α′.

Then the colligations α0 and α̃0 are also dual, and the dual operator S0 is the

direct sum of the respective dual operators, i.e. S0 = S′ u S.

P r o o f. Let us verify that there took place the relation 1) (1.10)

S0A0 − Ã0S0 =

[

S′A′ − Ã′S′ iS′ϕ′σE′ψ

iϕ̃σF ψ̃
′S′ SA− ÃS

]

= i
{

ϕ̃′σ′Fψ
′ + ϕ̃′σF ′K ′ψ + ϕ̃K̃ ′σF ′ψ + ϕ̃σFψ

}

,

in virtue of 1) – 3) (1.10) for the dual colligations α (α′) and α̃ (α̃′). If we use

the definitions (1.12′′) and (1.15′) for the corresponding colligation we obtain the

following expression required

i(ϕ̃′ + ϕ̃K̃ ′)σF ′(K ′ψ + ψ′) = iϕ̃0σF ′ψ0.
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The proof of 2) (1.10) is verify directly

S0ϕ0σE = SϕσE + S′ϕ′σE′K = ϕ̃0σF ′K0,

in virtue of respective formulas (1.12), (1.15) and (1.10).

The relations 3) and 4) (1.10) are proved similarly. �

1.5. Let us apply the signals of the form u(t) = eiλtu0, (λ ∈ C) to the

input of the system (1.2). Then it is reasonable to expect that for the “complex

frequency λ” there exists internal state x(t) = eiλtx0, and output v(t) = eiλtv0.

Hence

(1.17)

{

x0 = (A− λI)−1ϕσEu0,

v0 = Sα(λ)u0,

where the transfer function Sα(λ) of the linear colligation α is

(1.18) Sα(λ) = K − iψ(A− λI)−1ϕσE .

Similarly, if the plain wave is applied to the input of the system F̃α̃ (1.7), (1.8)

we get

(1.19)

{

x̃0 = (Ã− λI)−1ϕ̃ũ0,

ṽ0 = Sα̃(λ)ũ0,

where,

(1.20) Sα̃(λ) = K̃ + iσEψ̃(Ã− λI)−1ϕ̃

is the transfer function of the colligation α̃ dual with respect to α.

From the Proposition 1.2 it follows the next

Proposition 1.5. If the colligation α̃ is dual with respect to α, then for

the transfer functions Sα(λ) (1.18) and Sα̃(λ) (1.20) the relation

(1.21) Sα̃(λ)σFSα(λ) = σE,

is valid.

Thus, the duality between colligations α̃ and α means that the transfer

function Sα(λ) has the left invertible σ−1
E Sα̃(λ)σF if σF is invertible.
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Definition 1.4. The subspace

(1.22) By(α) = Span{Anϕf : f ∈ E; n ∈ Z+},

is called the controllability space of the systems Fα (1.2), (1.3).

To define the abservability space for the system Fα it is necessary to

consider the dual system F̃α̃ (1.7), (1.8), describing evolution in the backward

direction. It is reasonable to suppose that the colligation α̃ is dual to α.

Let By(α̃) be the controllability space of the system F̃α̃,

By(α̃) = Span{Ãnϕ̃ f ′ : f ′ ∈ E′; n ∈ Z+}.

Suppose that the dual operator S is boundedly invertible then the observability

space of the system Fα is called the subspace

(1.23) BH(α) = S−1By(α̃).

It is obvious that the controllability of system F̃α̃ means observability of system

Fα and vice versa, i.e.

BH(α) = S−1By(α̃), BH(α) = SBy(α),

where the colligation α̃ is dual to the colligation α. The inverse duality for the

colligations α and α̃ must also exist (see Subsection 1.6).

The system Fα (1.2), (1.3) corresponds to the colligation α, is called a

controllable (observable) colligation if

B = By(α) (B = S−1By(α̃)).

Note that the controllability or observability assumptions means that the duality

conditions (1.10) are also dependent.

Lemma 1.1. Suppose that the colligation α is controllable and observable.

Furthermore, let the colligation α̃ exist, such that for the transfer function Sα(λ)

(1.18) and Sα̃(λ) (1.20), the relation (1.21) is valid. Then if there exist operator

S : B → B̃ such that 1) and 4) (1.10) are valid, then

(1.24)
[

σEψ̃S − K̃σFψ
]

(A− λI)−1 ϕσE = σEψ̃(Ã− λI)−1 [SϕσE − ϕ̃σFK] .
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Formula (1.24) follows from (1.21). That is the validity of 2) or 3) (1.10)

implies validity of the others.

1.6. The duality of the colligations α̃ and αmeans that the function Sα(λ)

(1.18) has left invertible (1.21). However the presence of unilateral invertibility

does not guarantee, in general case, the operator invertibility on the whole.

Definition 1.5. The linear colligation α is called ∗-dual to the colligation

α̃, if there exists the linear operator Q, mapping the Banach space B̃ into B, so

that

(1.25)

1) AQ−QÃ = iϕσEψ̃,

2) Kψ̃ = ψQ,

3) Qϕ̃ = ϕK̃,

4) Kσ−1
E K̃ = σ−1

F .

Remark 1.3. Suppose that the dual operator S, enhancing duality

(1.10) of the colligations α̃ and α, has bounded invertible and let there exist σ−1
E ,

σ−1
F , K−1, K̃−1. Then using 1) (1.10) we conclude that

AS−1 − S−1A = iS−1ϕ̃σFψS
−1.

Using the relations 2) and 3) (1.10), presented as

S−1ϕ̃σF = ϕσEK
−1, ψS−1 = σ−1

F K̃−1σEψ̃,

we obtain

AS−1 − S−1Ã = iϕσEψ̃,

coinciding with 1) (1.25) if Q = S−1.

It is not difficult to ascertain that the relations 2) – 4) (1.10) lead to the

conditions 2) and 3) (1.25) if Q = S−1. And from 4) (1.10) it follows that

(σ−1
E K̃)(σFK) = IE ,

and since the right invertible coincides with the left invertible (for bounded

invertible operator), then

σFKσ
−1
E K̃ = IF ,
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and we obtain 4) (1.25).

Thus ∗-duality conditions (1.25) follow from conditions (1.10) if S is

boundedly invertible Q = S−1 and the operators K−1, K̃−1, σ−1
E , σ−1

F exist

and are bounded.

Similarly to (1.21) it follows from the conditions of ∗-duality that

(1.26) Sα(λ)σ−1
E Sα̃(λ) − σ−1

F = 0.

The relations (1.21) and (1.26) follow from the next theorem.

Theorem 1.2. If the points λ and µ do not belong to the spectra of main

operators of the dual and ∗-dual colligations alpha and α̃, respectively, then the

formulas

(1.27)

1)
Sα̃(µ)σFSα(λ) − σE

µ− λ
= iσEψ̃(Ã− µ)−1S(A− λI)−1ϕσE ,

2)
Sα(λ)σ−1

E Sα̃(µ) − σ−1
F

µ− λ
= iψ(A− µ)−1Q(Ã− µI)−1ϕ̃,

are valid.

P r o o f. We prove formula 1). Using duality conditions (1.10), we obtain

Sα̃(µ)σFSα(λ) − σE = iσE ψ̃(Ã− µ)−1ϕ̃σFK − iK̃σFψ(A− λI)−1ϕσE

+σE ψ̃(Ã− µI)−1ϕ̃σF ψ(A − λI)−1ψσE

= −i(µ− λ)σEψ̃(Ã− µI)S(A− λI)−1ϕσE .

Formula 2) is proved similarly. �

The next theorem shows that from the relations (1.21), (1.26) it follows

that Q = S−1.

Theorem 1.3. Let the colligations α̃ and α be dual and the colligations

α and α̃ be ∗-dual. Suppose that the colligation α is controllable and observable

and the following relations holds

a) SQ |ϕ̃F = Iϕ̃F ,

b) QS |ϕE = IϕE .

Then the operators Q and S are dually invertible, i.e. Q = S−1.
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P r o o f. From relations 1) (1.10) and 1) (1.25) it follows that

R̃(λ)S − SR(λ) = iR̃(λ)ϕ̃σFψR(λ),

QR̃(λ) −R(λ)Q = iR(λ)ϕσE ψ̃R̃(λ),

where

R(λ) = (A− λI)−1, R̃(λ) = (Ã− λI)−1.

Multiplying the first equality by Q from the right and subtracting from it the

second equality multiplied by S from the left we obtain

SQR̃(λ) − R̃(λ)SQ = iSR(λ)ϕσE ψ̃R̃(λ) − iR̃(λ)ϕ̃σFψR(λ)Q.

Applying operator ϕ̃ from the right and using the transfer functions Sα(λ) (1.18)

and Sα̃(λ) (1.20) we derive the equality

[

SQR̃(λ) − R̃(λ)SQ
]

ϕ̃ = R̃(λ)ϕ̃{K̃−1(Sα̃(λ) − K̃) + σF (Sα(λ) −K)

×σ−1
E (Sα̃(λ) − K̃) + σF (Sα(λ) −K)σ−1

E K̃}.

Since the right-hand side of the equality equals to zero, in virtue of (1.26), (1.21),

and Theorem 1.3(a) we obtain that

SQR̃(λ)ϕ̃F = R̃(λ)SQϕ̃F = 0.

Observability of colligation α leads to the equality QS = IB̃ . The relation QS =

IB is proved similarly. �

Definition 1.6. The linear system Fα (1.2), (1.3) is called S-simple, if

for the linear colligation α there exists the dual colligation α̃, where operator S

is invertible and the following relation holds

(1.28) B = By(α) ∨BH(α).

Definition 1.7. The colligaton α is called S-simple, if the system Fα

(1.2), (1.3), associated with the colligation, is S-simple system.

Hereinafter, we will suppose that dual operator S belonging to the colligations

α and α̃ is boundedly invertible unless otherwise stated.
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1.7. It is not difficult to see that any analytical operator-function S(λ)

in the vicinity of the infinite point or any fixed one from C may be realized as

transfer function for some linear colligation α [2].

Theorem 1.4. Let the analytical in the vicinity of the infinite point

operator-function S(λ), mapping Banach space E into F such, that S(∞) 6≡ 0.

Then there exists a linear colligation α with the transfer function Sα(λ) (1.18),

coinciding with S(λ), i.e. Sα(λ) = S(λ).

P r o o f. Let us define a contour Γ, that encloses the zero point and lies in

the domain of analyticity of the function S(λ). Then in virtue of integral Cauchy

formula [1, 2] for S(λ) − S∞ we have

S(λ) − S∞ =
1

2πi

∫

Γ

S(ξ) − S∞

ξ − λ
dξ,

where λ lies in the holomorphy domain of S(λ), and the integration along Γ is in

the appropriate direction.

Define the space of vector-function in F over the curve Γ,

BΓ(F ) =







f(ξ) ∈ F, (ξ ∈ Γ);

∫

Γ

‖f(ξ)‖F dξ <∞







.

Define the linear bounded operators:

ϕf = (S(ξ) − S∞)σ−1
E f, (f ∈ E),

ψf(ξ) =
1

2π

∫

Γ

f(ξ)dξ, (f(ξ) ∈ BΓ(E)),

Af(ξ) = ξf(ξ), (f(ξ) ∈ BΓ(E)).

where σE is the bounded, invertible, arbitrary operator in E. From the mentioned

above Cauchy formula we deduce that

Sα(λ) = K − iψ(A− λI)−1ϕσE = S(λ),

whereK = S∞, and the colligation α consist of the elements A, ϕ, ψ, B = BF (E),

σE that were defined earlier. �
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By the transfer function S(λ) it is reasonable to raise a question of the

unambiguity of such reconstruction of the linear colligation α and of the open

linear system F , associated with the colligation.

1.8. Consider two linear colligations α and α′ with coinciding outer spaces

E = E′ and F = F ′, and the operators σE′ = σE , K = K ′.

Definition 1.8. The colligations α and α′ are called linear-equivalent

colligations if there exists the linear bounded operator N from B into B ′ (such

that N−1 exists and is bounded) which satisfies the conditions

NA = A′N,Nϕ = ϕ′, ψ = ψ′N.

It is evident, that the transfer functions Sα(λ) and Sα′(λ) for the linear-

equivalent colligations α and α′ coincide i.e. Sα(λ) = Sα′(λ).

From pointview of the open systems, the linear equivalency means that

the realization of the system F = {R,S} by its transfer mapping S, supposed to

be known in the different “complex frequencies λ”, includes ambiguity, defined

by similarity transformation of the linear operator N .

2. Factorization of the transfer functions.

2.1. In various problems of the systems theory and the theory of operator-

functions, the problem, concerning the factorization of the transfer function

Sα(λ), may have particular interest [2]. This problem is reduced to the decom-

position, in terms of the coupling operation (Proposition 1.2), into subsystems of

the open system Fα (1.2), (1.3).

Lemma 2.1. Suppose that the operator S, mapping the Banach space

B1 uB2 into B̃1 u B̃2, in terms of the given expansion is presented as

S =

[

S11 S12

S21 S22

]

: B1 uB2 → B̃1 u B̃2,

such that S11 is invertible and S−1
11 is bounded. Then S permits the factorization

S = UV,

where operators U and V have the triangular form
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V =

[

V11 V12

0 V22

]

: B1 uB2 → B̂1 u B̂2,

U =

[

U11 0
U21 U22

]

: B̂1 u B̂2 → B̃1 u B̃2.

The assertion of a lemma is satisfied for example, if the elements VK,S,

UK,S of the operators V , U are

(2.1)
V11 = S11, V12 = S12, V22 = P2,

U11 = P̃1, U21 = S21S
−1
11 , U22 = S22 − S21S

−1
11 S12,

where Pk and P̃k are projectors on Bk and B̃k (k = 1, 2), respectively, and

B̂1 u B̂2 = B̃1 u B̃2.

Note that the operator V −1 always exists,

V −1 =

[

S−1
11 −S−1

11 S12

0 P2

]

.

Assuming that the operator S is invertible, then for Q = S−1 one may easily get

that

Q22 = U−1
22 .

Theorem 2.1 (On the factorization). Let the dual operator S (1.10), of

the colligations α and α̃ such that Q = S−1 is bounded and operators K̃, K and

σE are invertible. Suppose that B = B1uB2, the subspace B1 is invariant relative

to A, and B̃2 is invariant relative to Ã, where B̃ = B̃1uB̃2, SBk = B̃k (k = 1, 2).

Let the operator S−1
11 exist and be invertible. Then the transfer function Sα(λ) of

the colligation α is equal to

(2.2) Sα(λ) = S1(λ)S2(λ),

where

(2.3)
S1(λ) = K1 − iψP1(A1 − λI)−1S−1

11 P̃1ϕ̃σFK1,

S2(λ) = K2 − iK2ψ̃P̃2Q
−1
22 (A1 − λI)−1P2ϕσE ,
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and Ak = PkAP̃k (Pk and P̃k are projectors on Bk and B̃k) and K1, K2 are

boundedly invertible, such that K1K2 = K, K2 : E → Ê, K1 : Ê → F , and Ê is

a Banach space.

P r o o f. The invariance of the subspace B1 relative to A means that

A =

[

A1 Γ
0 A2

]

.

To calculate Γ we write the condition 1) (1.10) in the form

(2.4) V AV −1 − U−1ÃU = iU−1ϕ̃σFψV
−1,

in virtue of Lemma 2.1. Since the operators V AV −1 and U−1ÃU are in the

respective triangular form then in virtue of 2) (1.10) we have

Â1,2 = iP̂1V ϕσEK
−1ψV −1P2,

where Â = V AV −1. Thus we have calculate the coupling coefficient Â1,2 for the

main operator

Â = V AV −1 =

[

Â1 Â1,2

0 Â2

]

of the colligation α̂, which is linearly equivalent to the initial colligation α,

(2.5) α̂ = (σE , E, ϕ̂, B̂, Â, B̂, ψ̂, F, σF ,K),

where

B̂ = V B = B̃1 uB2, ϕ̂ = V ϕ, ψ̂ = ψV −1.

Let us fix an intermediate Banach space Ê and operators

K2 : E → Ê, K1 : Ê → F, σ
Ê

: Ê → Ê,

such that K1K2 = K, and K1, K2, σÊ
are boundedly invertible.

Define the linear colligations

(2.6)
α1 = (σ

Ê
, Ê, P̃1ϕ̂σEK

−1
2 σ−1

Ê
, B̂1, Â1, B̂1, ψ̂P̃1, F, σF ,K1),

α2 = (σE, E, P2ϕ̂, B2, Â2, B2,K
−1
1 ψ̂P2, Ê, σÊ

,K2).

Immediate verification shows in virtue of (1.12) that

α̂ = α1 ∨ α2.
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Therefore in virtue of Proposition 1.3 the transfer function of the colligation α̂ is

equal to

Sα̂(λ) = Sα1
(λ)Sα2

(λ),

where Sαk
(λ) are the transfer functions of the colligations αk(k = 1, 2).

Since the transfer functions of the linearly equivalent colligations α and

α̂ coincide then

Sα(λ) = S1(λ)S2(λ).

Now we calculate Sk(λ) (k = 1, 2),

S1(λ) = K1 − iψ̂P̃1(Â1 − λI)−1P̃1ϕ̂σEK
−1
2

= K1 − iψP1(A1 − λI)−1S−1
11 P̃1SϕσEK

−1
2

= K1 − iψP1(A1 − λI)−1S−1
11 P̃1ϕ̃σFK1

Similarly

S2(λ) = K2 − iK−1
1 ψ̃QP̃2Q

−1
22 (A2 − λI)−1P2ϕσE

= K2 − iK2ψ̃P̃2Q
−1
22 (A2 − λI)−1P2ϕσE . �

2.2. From the relation (2.5), taking into account the respective duality

conditions (1.10), we conclude that coupling coefficient of the operator U−1ÃU

is equal to

−P̃2U
−1ÃUP1 = iP̃2U

−1ϕ̃K̃−1σEψ̃UP1.

By repeating the above reasoning, we obtain that the transfer function

Sα̃(λ) = K̃ + iσEψ̃(A2 − λI)−1ϕ̃,

of the dual colligation α̃ is factored as

(2.7) Sα̃(λ) = S̃2(λ)S̃1(λ),

where

(2.8)
S̃1(λ) = K̃1 + iK̃1σFψP1S

−1
11 (Ã1 − λI)−1P̃1ϕ̃,

S̃2(λ) = K̃2 + iσEψ̃P̃2(A2 − λI)−1Q−1
22 P2ϕK2,

the invertible operators K̃1, K̃2 are such that

K̃2K̃1 = K̃, K̃1 : F → Ẽ, K̃2 : Ẽ → E,
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and Ẽ is an intermediate factorization space (2.7).

Similarly to the decomposition of the colligation α̂ into the coupling αk

(k = 1, 2), some metric invertible operator σẼ appears in the space Ẽ.

In general, the factorizations of Sα(λ) (2.2) and Sα̃(λ) (2.7) are not have

to be consistent in the sense that for Sk(λ) (2.3) and S̃k(λ) (2.8) the “duality”

relations (1.21) are valid. Since for Sα(λ) and Sα̃(λ) the relation (1.21) holds,

then to prove the similar equalities for Sk(λ) and S̃k(λ) it is necessary to show

that

S̃1(λ)σFS1(λ) = σẼ,

with some σẼ. To prove that it is necessary to regard that the intermediate

spaces Ẽ and Ê coincide (Ẽ = Ê). Now we calculate

S̃1(λ)σFS1(λ) − σẼ = K̃1σFK1 − σẼ + iK̃1σF ψ̃P1S̃
−1
11 (Ã1 − λI)−1P̃1ϕ̃σFK1

− iK̃1σFψP1(A1 − λI)−1S−1
11 P̃1ϕ̃σFK1

− iK̃1σF ψ̃P1S
−1
11 (Ã1 − λI)−1P̃1(SA− ÃS)P1

× (A1 − λI)−1S−1
11 P̃1ϕ̃σFK1,

which in virtue of (1.10) reduce to

K̃1σFK1 − σẼ.

Thus it is necessary to assume that

(2.9) σẼ = K̃1σFK1.

Theorem 2.2. Suppose that the suppositions of the Theorems 2.1 are

true. Then the transfer functions Sα(λ) (1.18) and Sα̃(λ) (1.20) of the dual

colligations α and α̃ are decomposed simultaneously into the products (2.2) and

(2.7) and there always exists intermediate factorization space Ê = Ẽ and metric

operator σẼ (defined, for example, by (2.9)), so that for the factors Sk(λ) (2.3)

and S̃k(λ) (2.8) the duality relations

S̃1(λ)σFS1(λ) = σẼ, S̃2(λ)σẼS1(λ) = σE ,

are valid.
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