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ABSTRACT. New concepts of linear colligations and dynamic systems, cor-
responding to the linear operators, acting in the Banach spaces, are intro-
duced. The main properties of the transfer function and its relation to the
dual transfer function are established.

Introduction. The theory of operator colligations and open operator
system are the main tool to study linear non-self adjoint operators [2]. However,
generalizing of these constructions in general form for Banach spaces is still
unsolved problem. A new approach to study linear operators in Banach spaces
and linear dynamic systems, defined in Banach space, are presented in the article.
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1. Linear colligations in Banach spaces and associated dyna-
mic systems.

1.1. Let A be a linear bounded operator acting in the Banach space B[1].
Consider Banach spaces E and F', and operators

op: F—-F, K:EFE—F op:F—-F w:EFE—B, ¢:B—F
Define a linear colligation as the assembly
(]‘1) OZ:(O'E‘,E,§07B,A,B,1/),F,O'F,K),

where B is the inner space, E, F' are the outer spaces of the colligation a, A is
the main operator, ¢, ¥ are the canal operators, o, o are the metric operators,
and K is the deforming operator.

We will associate the linear dynamic system F, = {Rq, Sa}, describing
evolution from 0 to 7' (0 < T' < 00),

(1.2) R, - i%x(t) + Ax(t) = pogu(t),

z(0) = o, (0<t<T),

where z(t) € B is an internal state of the system F,, u(t) € E is the input of the
system F, and xg € B is the initial condition;

(1.3) Se 1 v(t) = Ku(t) —ix(t),

where the vector function v(t) € F is the output of the system F,, and also x(t)
is the solution of (1.2). In other words the mapping R is such that

and the transfer mapping S, is such that
(1.5) S (u(t), zo) = (v(t), 1),

where zp = z(T) is the solution of z(t) (1.2) at the point ¢t = T

If B= H and FE, F are Hilbert spaces, then the linear system F = {R, S},
as well as the colligation «, may be extended owing to the external space only (i.e.
owing to increase in the number of canal bonds) to the open system (for which
the energy of conservation law is valid) associated with a local colligation [2].
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Applied A into local colligation [2],
Ay = (A H,p1,E1,01),
where A — A* = ipjo1p;. Form the following colligation
A= (AH ¢ E,G),

WhereE:EEBEEBFEBFEBEl,and&hastheform

0 og 0 0 0
o, 0 0 0 0

6= 0 0 0 op 0|,
0 0 o 0 0
0 0 0 0 o

also @f = (¢*f,0,9f,0,01f) € E; feH.

Elementary calculations shows that A is a local colligation

A— A" =ip 5.

Associating A with an open system Fa = {EA, S’A}, where

Ra:
h(0) = ho,

then the transfer mapping of Sa has the form

& =& —igh(t),

& =&,

Sa: & =& —iph(h),
& =&
55 =& —ipih(t),

. d _ . a .
lah(t) + Ah(t) = poply +YTor, + 9010155 )

269

where £%(t) = (ffﬂ{;ﬂﬁf,ﬁf,{f) are input and output signals of the systems

Fa from the space E.
Applying signals, presented as

§7(t) = (0,6 (1), K& (1), 0,0),
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to the input of the system J’:"A, and projecting output signals onto the third
component

§7() = (0,0,£5(1),0,0)
we obtain the system F{R, S} (1.2), (1.3).

Proposition 1.1. An open system F, (1.2), (1.3), corresponding to
the linear colligation o, has extension (owing to increase in the number external
spaces) to open system .7:", associated with a local colligation A where B = H; FE,
F' are Hilbert spaces.

Thus, the problem of studying common linear systems may be reduced to
the analysis of the open systems, associated with local colligations. However, for
some problems it is more convenient to work with the initial system rather than
with its extension. For Banach spaces B, E, and F' such extension, in principle,
is presumably impossible.

1.2. Let us consider linear colligation o and & where,
(1.6) a=(op,F,$,B,A B4, E o, K).

We associate with a linear colligation & a linear dynamic system Fy = {Rs
describing evaluation in the backward, relative to the system F, (1.2
direction from 7' (0 < T < o0) to 0,

(1.7) Ra i%ﬂt) + A&(t) = ga(t),
#(T)=%r, (0<t<T),

where Z(t) € B is the internal state of the system Fj, @(t) € F is the input of
the open system Fg, and Z7 € B is the initial condition;

(1.8) Sa 1 0(t) = Ka(t) + iopi(t),

where #(t) € E is the output of Fj.
It is reasonable that mappings Rs and Sg consist in

(1.9)

where Zg = z(0).
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Definition 1.1. The colligation & is called dual colligation, relative to
the «, if there exists a linear bounded operator S from the space B into B such
that the following relations holds

1) SA— AS =igopip,

9) Spop = gorK
(1.10) ) Seon=corkK,

3) opyYS = Kory,

4) KopK = op.

Thus the operator S, ensuring duality of colligation a and &, we shall call
the dual operator of the colligations « and &.

Remark 1.1. If the spaces B = B = H and F = F are Hilbert
spaces, then the conditions (1.10) on the assumption that A= A* S = Iy,
p=¢=v" =9, K=K=Ig (0g = oF are self adjoint operators), reduce
to the colligation condition of the local colligation.

Remark 1.2. If the operators K, o, op are invertible, then it is not
difficult to show that for colligation « there always exists dual colligation &.

Indeed, let S be a linear boundedly invertible operator from the Banach
space B into the Banach space B.
We define the following operators

A = SAST!—iSpopK St
@ SpopK to7!,

b o= K 'S

K = UEK_lo';l.

Elementary calculation shows that the above assembly defines the colligation &

dual to the colligation a.. The duality conditions (1.10) superimpose some bonds

on the systems F, (1.2), (1.3) and F (1.7), (1.8), which we call the dual bonds.
Particularly, if S = I, then the colligation

a = (0—F7F17S5 = QPJEKilaj:laBaA?Baq/’; = K71¢7E7UE7R - O_EKilo—}:l):

is dual to «, where
A=A—ipogK 1.
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Proposition 1.2. Suppose that the colligation & is dual to the colligation
a. Then mappings Rs (1.7) and S (1.8) of the open system Fs are defined by
output v(t) and xr of the open system Fo (1.2), (1.3) as follows

Rsi(v(t),Szr) = Z(t) = Sz(t),
Sa(opv(t),Szr) = (opult),Szo),
where S is the dual operator of the colligations a and & in (1.10).
Proof. Let us apply operator S to the equation (1.2). Then, in virtue
of the conditions 1) and 2) (1.10), we obtain

i%Sx(t) + AS3(t) = —igomva(t) + gorKu(t).

Using (1.3), then we have

i%5$(t) + ASz(t) = ¢opv(t) and Zp = Szr.

Applying the operator Ko to the expression (1.3), then we obtain

opu(t) = Kopo(t) + i Sz(t). O

1.3. Define a concept of contraction. Note that for the dual colligation
a and & the contracting procedure [2] must be carried out in “the opposite
direction” since the respective dual system F, and Fj describe the evolution
in mutually inverse directions.

Consider the linear the colligation o and o’ where,

(1.11) a/ = (O—E/7E/7()0/7B/7 A/7B/7wl7F/7o-F/7K/)7
with ' = E’ and o = oF.

Definition 1.2. The linear colligation
(1.12) =o' Va=(opo, E° " B A% B 40 F° 540, KY),

is called the coupling of the linear colligation @ and o', where B = B'+B and
the main operator A° equal to

A i op
/ 0 YOoE . n0 0
(1.12") A—[O ].B — B,
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and
' = ptplom Koz,
(1.12") P =K'y + 9,
K% = K'K,
where EY = E, oo = op, FO = F', op = op.
Naturally, we suppose that o is an invertible operator.

Proposition 1.3. The linear dynamic system F° = {R°, S}, associated
with a® = o/ Va, is defined by Fo, = {Ra, Sa} and For = {Ryr, Sev}, corresponding
to the colligation o and o as follows

R® = R,,So+Ra,

(1.13) SO — S,
Proof. We write down componentwise the equation for the mapping R,
cd [ 2 Az + i oppx YopKu
1— + = .
dt | = Az YORU
Then
.d Ny - / .
i + A" = Yop [Ku—iva],
4 + Ax =
rred T = (Qogpu,

which it proves the first relation (1.13). The prove of the second relation directly
follows from the equation

SO =K — iR =8'S. O

Consider the linear colligations & and &', dual with respect to o and o’
where

(114) d/ = (O—F/7F/7()Z)/7B/7 A/7B/71L/7E/7O—E/7k/)'

Definition 1.3. The colligation

(1.15) A =avd =(op, F,3°, B, A° B 4° E, 05, K°)
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is called x-coupling of the colligations & and &' (when E = F, opr = op), with
respect to colligation (1.12), where B® = B'+B, and the operators AY, 3°, ¢° are

equals to
~ A 0
AY = - _
|:—ig5()'E/1/}/ A:| ’
(1.15') P = gk,
P = UEIKUE/%Z)/ + 1,
K% = KK/,

where the operator 051 exists and bounded.

Proposition 1.4. The linear dynamic system F° = {R°, S°}, associated
with &° = & Vv &, is defined by the relations
R =R + RS,
(1.16) S
SV =89

Proof. The proof is similar to that of Proposition 1.3. O

1.4. Let us show that the duality of the colligations o and & in (1.10) is
inherited under the coupling.

Theorem 1.1. Suppose that the coupling a® = o/ V o of the linear
colligations o and o' corresponds the x-coupling 6° = aV@&' of the dual colligations
& and &', where the colligation & is dual to o, and &' is dual to the colligation o'.
Then the colligations o® and &° are also dual, and the dual operator S° is the
direct sum of the respective dual operators, i.e. S° = S' + 8.

Proof. Let us verify that there took place the relation 1) (1.10)
S'A —A'S iSSP opnp
ipopy'S"  SA—AS
= {‘f’/Uﬁww/ +@lop K'Y+ ¢K'opp + 950F¢} :

in virtue of 1) — 3) (1.10) for the dual colligations « () and & (&'). If we use
the definitions (1.12”) and (1.15") for the corresponding colligation we obtain the

SOAO _ AOSO

following expression required

(@ + @K Yo (K" + 1) = i’y
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The proof of 2) (1.10) is verify directly
5900 = Spop + S'Yop K = PomKY,

in virtue of respective formulas (1.12), (1.15) and (1.10).
The relations 3) and 4) (1.10) are proved similarly. O

1.5. Let us apply the signals of the form u(t) = e**ug, (A € C) to the
input of the system (1.2). Then it is reasonable to expect that for the “complex
it it

frequency A” there exists internal state z(t) = e"**x, and output v(t) = e"vy.

Hence

=(A-A)"! ,
(1.17) { 20 = ( )= wono

vo = Sa(A)uo,
where the transfer function S, () of the linear colligation « is
(1.18) Soa(N) = K —ith(A = AI) " pog.

Similarly, if the plain wave is applied to the input of the system Fj (1.7), (1.8)
we get

(1.19) Fo = (A — AI)~' @i,
. o = Sa(A)to,
where,
(1.20) Sa(\) = K +iopp(A—A)"1g

is the transfer function of the colligation & dual with respect to a.
From the Proposition 1.2 it follows the next

Proposition 1.5. If the colligation & is dual with respect to o, then for
the transfer functions So(X) (1.18) and Ss(N) (1.20) the relation

(1.21) Sa(N)opSa(N) = op,

1s valid.

Thus, the duality between colligations & and a means that the transfer
function S, (\) has the left invertible o' Sz(\)of if oF is invertible.
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Definition 1.4. The subspace
(1.22) By(a) = Span{A"¢f : f € E; n € Z4},

is called the controllability space of the systems Fq (1.2), (1.3).

To define the abservability space for the system F, it is necessary to
consider the dual system Fj (1.7), (1.8), describing evolution in the backward
direction. It is reasonable to suppose that the colligation & is dual to «.

Let B, (&) be the controllability space of the system F,

B,(&) = Span{A"¢ f': f' € E'; necZ}.

Suppose that the dual operator S is boundedly invertible then the observability
space of the system F, is called the subspace

(1.23) By(a) = S7'By(a).

It is obvious that the controllability of system F5 means observability of system
Fo and vice versa, i.e.

Bu(a) = S™'By(a), Bu(a) = SBy(a),

where the colligation & is dual to the colligation «. The inverse duality for the
colligations a and & must also exist (see Subsection 1.6).

The system F, (1.2), (1.3) corresponds to the colligation «, is called a
controllable (observable) colligation if

B=B,(a) (B=5"'B,@)
Note that the controllability or observability assumptions means that the duality

conditions (1.10) are also dependent.

Lemma 1.1. Suppose that the colligation o is controllable and observable.
Furthermore, let the colligation & exist, such that for the transfer function S, (\)
(1.18) and Si(A) (1.20), the relation (1.21) is valid. Then if there exist operator
S : B — B such that 1) and 4) (1.10) are valid, then

(1.24) |opS — f(apz/)] (A= X)"toop =oph(A— )" [Spop — porK].
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Formula (1.24) follows from (1.21). That is the validity of 2) or 3) (1.10)
implies validity of the others.

1.6. The duality of the colligations & and o means that the function S, (\)
(1.18) has left invertible (1.21). However the presence of unilateral invertibility
does not guarantee, in general case, the operator invertibility on the whole.

Definition 1.5. The linear colligation « is called x-dual to the colligation
@, if there exists the linear operator QQ, mapping the Banach space B into B, so
that

(1.25) 2) Ko=va,
3) Q¢ =K,
4) Kop'K =op'.

Remark 1.3. Suppose that the dual operator .S, enhancing duality
(1.10) of the colligations & and «, has bounded invertible and let there exist ng,
op', K=, K~1. Then using 1) (1.10) we conclude that

AST - 57 A =iS o ppSTL.
Using the relations 2) and 3) (1.10), presented as
S eop = popK STt = a}lf(*la;ﬂ/;,
we obtain
ASTV = S7YA = ipop,
coinciding with 1) (1.25) if Q = S~

It is not difficult to ascertain that the relations 2) — 4) (1.10) lead to the
conditions 2) and 3) (1.25) if @ = S~!. And from 4) (1.10) it follows that

(05'K)(orK) = I,

and since the right invertible coincides with the left invertible (for bounded
invertible operator), then
orKop'K = I,
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and we obtain 4) (1.25).

Thus #-duality conditions (1.25) follow from conditions (1.10) if S is
boundedly invertible Q@ = S~! and the operators K !, K1, Ugl, UEl exist
and are bounded.

Similarly to (1.21) it follows from the conditions of *-duality that

(1.26) Sa(Nog'Sa(\) — opt = 0.

The relations (1.21) and (1.26) follow from the next theorem.

Theorem 1.2. If the points A and p do not belong to the spectra of main
operators of the dual and x-dual colligations alpha and &, respectively, then the
formulas

Sa(p)orSa(A) — ok

1) = dop(A—p)'S(A - ) "Lpop,
W= A
(1.27) Sa(N oz Sa(p) — o7t .
2) — EM_O“A = (A= p)'QA — D)1,
are valid.

Proof. We prove formula 1). Using duality conditions (1.10), we obtain

Sa(1)orSa(\) —op = iog YA — p) ' porK —iKopip(A — X)) ' pog
+op P(A = pl) 1 gop YA — M) pog
= —i(u— Nopd(A - uD)S(A - AD) o
Formula 2) is proved similarly. O
The next theorem shows that from the relations (1.21), (1.26) it follows
that Q = S~1.

Theorem 1.3. Let the colligations & and « be dual and the colligations
a and & be x-dual. Suppose that the colligation « is controllable and observable
and the following relations holds

a) SQlzr = Izp
b QS| =g

Then the operators Q and S are dually invertible, i.e. Q = S™1.
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Proof. From relations 1) (1.10) and 1) (1.25) it follows that

R(A)S — SR(\) = iR(\)goryR(N),

QR(\) — RNQ = iR(NpopdR(N),

where

RO\ =(A=X)"L, R\ = (A— D).

Multiplying the first equality by @ from the right and subtracting from it the
second equality multiplied by S from the left we obtain

SQR(\) — R(\)SQ = iSR(\)poptR(\) — iR(\)@opipR(N)Q.

Applying operator ¢ from the right and using the transfer functions S, () (1.18)
and Sz(A) (1.20) we derive the equality

SQRO) ~ RNSQ| ¢ = ROGE(Sa(N) — K) + or(Sa(V) — K)

x5 (Sa(\) — K) + 0r(Sa(N) — K)o K }.

Since the right-hand side of the equality equals to zero, in virtue of (1.26), (1.21),
and Theorem 1.3(a) we obtain that

SQR(N)@F = R(\)SQ@F = 0.

Observability of colligation « leads to the equality Q.S = I 5. The relation QS =
Ip is proved similarly. O

Definition 1.6. The linear system Fo (1.2), (1.3) is called S-simple, if
for the linear colligation « there exists the dual colligation &, where operator S
is invertible and the following relation holds

(1.28) B = By(a) V By(a).

Definition 1.7. The colligaton « is called S-simple, if the system F,
(1.2), (1.3), associated with the colligation, is S-simple system.

Hereinafter, we will suppose that dual operator S belonging to the colligations
a and @& is boundedly invertible unless otherwise stated.
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1.7. It is not difficult to see that any analytical operator-function S(A)
in the vicinity of the infinite point or any fixed one from C may be realized as
transfer function for some linear colligation « [2].

Theorem 1.4. Let the analytical in the vicinity of the infinite point
operator-function S(X), mapping Banach space E into F such, that S(oo) # 0.
Then there exists a linear colligation o with the transfer function Sq(X) (1.18),
coinciding with S(X), i.e. Sq(A) = S(N).

Proof. Let us define a contour I', that encloses the zero point and lies in
the domain of analyticity of the function S(A). Then in virtue of integral Cauchy
formula [1, 2] for S(A) — So we have

S()\)_Soo_%/ﬁdgv
r

where A lies in the holomorphy domain of S()), and the integration along I" is in
the appropriate direction.
Define the space of vector-function in F' over the curve I,

Br(F) = { f(€) € F.( € T); / 1£(E)] de < oo
T

Define the linear bounded operators:
of = (S(6) = Sw)og' f,(f € E),
viE) = / F©)de. (f(©) € Br(E)),

Af(€) = &1, (f(§) € Br(E)).

where o is the bounded, invertible, arbitrary operator in £. From the mentioned
above Cauchy formula we deduce that

Sa(N) = K — ity(A — \I) "' pop = S(N),

where K = S, and the colligation « consist of the elements A, ¢, 1, B = Bp(E),
og that were defined earlier. O
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By the transfer function S(A) it is reasonable to raise a question of the
unambiguity of such reconstruction of the linear colligation o and of the open
linear system J, associated with the colligation.

1.8. Consider two linear colligations « and o’ with coinciding outer spaces
E =FE' and F = F’, and the operators opr = o, K = K.

Definition 1.8. The colligations o and o' are called linear-equivalent
colligations if there exists the linear bounded operator N from B into B’ (such
that N~ exists and is bounded) which satisfies the conditions

NA=AN,Np=¢ 1) =¢'N.

It is evident, that the transfer functions S, (A\) and S,/ (A) for the linear-
equivalent colligations « and o’ coincide i.e. Su(A) = Sy (N).

From pointview of the open systems, the linear equivalency means that
the realization of the system F = {R, S} by its transfer mapping S, supposed to
be known in the different “complex frequencies \”, includes ambiguity, defined
by similarity transformation of the linear operator V.

2. Factorization of the transfer functions.

2.1. In various problems of the systems theory and the theory of operator-
functions, the problem, concerning the factorization of the transfer function
S (M), may have particular interest [2]. This problem is reduced to the decom-
position, in terms of the coupling operation (Proposition 1.2), into subsystems of
the open system F, (1.2), (1.3).

Lemma 2.1. Suppose that the operator S, mapping the Banach space
B1 + By into By + Bs, in terms of the given expansion is presented as

g [ S11 Sz

:B1+By,— B +B
Sor 522} 1+ b2 — b1 + D,

such that S11 is invertible and Sﬁl 1s bounded. Then S permits the factorization
S=UV,

where operators U and V' have the triangular form
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Vo= [VH V12}131+B2—>B1+32»

0 Vi
Ui 0 AL A L
U = :B1+ B By + Bs.
[Um U22:| 1 2 — B 2

The assertion of a lemma is satisfied for example, if the elements Vi g,
Uk s of the operators V, U are

Vit = S, Viz = Sia, Voo = P,

(2.1) i | .
Unn =P, U = 52157, Ux = S22 — 521577 Si2,

where P, and Pk are projectors on By and B (k = 1,2), respectively, and
Bi+ By =B1 + Bs.
Note that the operator V! always exists,

St -5, St

-1 _
Vo= 0 i)

Assuming that the operator S is invertible, then for Q = S~! one may easily get
that

Qa2 = Usy'

Theorem 2.1 (On the factorization). Let the dual operator S (1.10), of
the colligations o and & such that Q = S~ is bounded and operators K, K and
og are invertible. Suppose that B = B1+ Bs, the subspace Bj is invariant relative
to A, and By is invariant relative to A where B = By +B2 SBy. = By, (k=1,2).
Let the operator 5’11 exist and be invertible. Then the transfer function So(X\) of
the colligation o is equal to

(2.2) Sa(A) = S1(A)S2(N),
where

S1(\) = Ky —ipPi(A; — X))~ S Prpop Ky,

(2.3) R
SQ()\) =Ky — ZKQ1/)P2Q221 (A1 — )\1)71P2§00'E,
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and A, = P,AP, (P and Py, are projectors on By, and Bk) and K1, Ko are
boundedly invertible, such that K1Ko =K, Ko: F —- FE, K1 : F — F, and E is
a Banach space.

Proof. The invariance of the subspace B relative to A means that

(AT
A_[O AJ.

To calculate I' we write the condition 1) (1.10) in the form
(2.4) VAV —UTAU = iU opypV 1,

in virtue of Lemma 2.1. Since the operators VAV 1 and U 'AU are in the
respective triangular form then in virtue of 2) (1.10) we have

Ayg = iP\Vpop K 'YV =1Py,

where A = VAV L. Thus we have calculate the coupling coefficient Al’g for the
main operator

fevav [ ]

0 Ay
of the colligation &, which is linearly equivalent to the initial colligation «,

(2.5) &= (op, E,$,B,A B¢, Fop, K),

where

B=VB=B,+B,, ¢=Vp, o=29V7L
Let us fix an intermediate Banach space E and operators
KQ:E—>E, Kl:E—>F, UEA,IEA—>EA‘,

such that K1 Ky = K, and K1, K», o are boundedly invertible.
Define the linear colligations

oy = (0E7E7P1@UEK2_10517BlvAlvéhq[}plvFa UF7K1)7

(2.6) Prekz 541, By
Qo = (0E7E7P2§0aB27A27327K1 11/)P27E70-EA‘7K2)'

Immediate verification shows in virtue of (1.12) that

a=o1Vas.
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Therefore in virtue of Proposition 1.3 the transfer function of the colligation & is
equal to
Sa(A) = Say (A)Saz (M),

where S, (A) are the transfer functions of the colligations ay(k = 1,2).
Since the transfer functions of the linearly equivalent colligations « and
& coincide then
Sa(N) = 51(A)Sa(N).
=1,

2),

Sl()\) = K1 — M[)Pl(zzh — )\I)ilplgﬁ(fEKgl
= K, — P (A — NS P Spop K, !
== K1 - M/J.Pl(Al - )\I)_lsﬂlpﬁﬁO’FKl

Now we calculate Si () (k

Similarly

SQ()\) == K2 - iK;l'(Z;QPQQ2721(A2 — )\I)_IPQC)OO'E
= K2 — iKQl/JPQQ;;(AQ — )\I)il.PQQOO'E. O

2.2. From the relation (2.5), taking into account the respective duality
conditions (1.10), we conclude that coupling coefficient of the operator U ' AU
is equal to

—PUTAUP, = iR U '\¢K log)UP,.
By repeating the above reasoning, we obtain that the transfer function
Sa(\) = K +iogp(Ay — M),
of the dual colligation & is factored as
(2.7) Sa(A) = S2(A)S1(N),
where
51()\) = Kl + iKlapif)PlSil(Al — )\I)_lplgﬁ,

(2.8) . S = _
So(\) = Ko +ioph Po(Ag — M)~ 1Q5y Pop Ko,

the invertible operators K 1, I~(2 are such that

KoKy =K, K\:F—E, Ky:F—E,
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and E is an intermediate factorization space (2.7).

Similarly to the decomposition of the colligation & into the coupling o
(k =1,2), some metric invertible operator oz appears in the space E.

In general, the factorizations of S, () (2.2) and S5(\) (2.7) are not have
to be consistent in the sense that for Si()\) (2.3) and S(\) (2.8) the “duality”
relations (1.21) are valid. Since for S, (A) and Sz(A) the relation (1.21) holds,
then to prove the similar equalities for Si(\) and Si()\) it is necessary to show
that

S1(NorSi(\) = o,

with some 0. To prove that it is necessary to regard that the intermediate
spaces E and E coincide (E = E). Now we calculate

Sl()\)apsl()\) —0p = f{lo'FKl —op+ iKl(fF’(Z)Plgil(Al — )\I)flplsﬁo'FKl
- iKIUFwPI(Al — AI>_1S;11]51(/~)UFK1
—iKjopp P ST (A — M) TP (SA — AS)Py
X (Al — )\I)_lSﬁlﬁlcﬁapKl,
which in virtue of (1.10) reduce to
klUFKl — O’E.
Thus it is necessary to assume that

(29) UE:f(lo'FKl-

Theorem 2.2. Suppose that the suppositions of the Theorems 2.1 are
true. Then the transfer functions So(N) (1.18) and Sa(A) (1.20) of the dual
colligations o and & are decomposed simultaneously into the products (2.2) and
(2.7) and there always exists intermediate factorization space E = E and metric
operator o, (defined, for example, by (2.9)), so that for the factors Sp(X\) (2.3)
and Si(A\) (2.8) the duality relations

gl(A)Upsl(A) =0z, gQ(A)U’ESl(A) =0g,

are valid.
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