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Abstract. In dimension greater than four, we prove that if a Hermitian
non-Kaehler manifold is of pointwise constant antiholomorphic sectional
curvatures, then it is of constant sectional curvatures.

1. Introduction. Let (M, g, J) (dimM = 2n ≥ 4) be an almost
Hermitian manifold. Any two-plane (section) E in the tangential space TpM ,
p ∈ M determines an angle θ =<) (E, JE), θ ∈ [0, π

2 ]. Two types of planes with
respect to the angle θ are remarkable: holomorphic sections – characterized by
the condition θ = 0 or E = JE; antiholomorphic sections – characterized by the
condition θ = π

2 or E ⊥ JE. The latter are also known as totally real in view of
the condition E ⊥ JE.

If Φ is the fundamental Kähler form of the manifold, then any antiholo-
morphic section E is characterized by the condition Φ|E = 0. Because of this
characterization, these tangent planes are also known as Lagrangian.
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An almost Hermitian manifold is said to be of pointwise constant antiholo-
morphic sectional curvature ν if the Riemannian sectional curvature K(E; p) does
not depend on the antiholomorphic section E in TpM , p ∈ M , i.e. K(E; p) = ν(p)
is only a function of the point p ∈ M .

A tensor characterization for an almost Hermitian manifold of pointwise
constant antiholomorphic sectional curvature in dimM ≥ 4 has been found in [2].

In [6] it has been proved that the antiholomorphic sectional curvature
ν(p) is a constant on the manifold under the condition dimM > 4.

A complete classification of compact Hermitian surfaces (dimM = 4)
with pointwise constant antiholomorphic sectional curvature has been given in
[1]. Four-dimensional almost Hermitian manifolds of pointwise constant antiho-
lomorphic sectional curvature have been studied in [8].

In this paper we consider the class of Hermitian manifolds and prove our
main

Theorem A. If a Hermitian non-Kähler manifold with a real dimension
greater than four is of pointwise constant antiholomorphic sectional curvature,
then the manifold is of constant sectional curvature.

2. Preliminaries. Let (M, g, J) (dimM = 2n ≥ 4) be an almost
Hermitian manifold with metric g and almost complex structure J . The tangent
space to M at an arbitrary point p ∈ M is denoted by TpM and the algebra of
all differentiable vector fields on M is denoted by XM . The Kähler form Φ of
the structure (g, J) is defined by the equality

Φ(X,Y ) = g(JX, Y ), X, Y ∈ TpM,p ∈ M.

The Levi-Civita connection of the metric g is denoted by ∇ and the Riemannian
curvature tensor R of type (1,3) is given by R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −
∇[X,Y ]Z, X,Y,Z ∈ XM . The corresponding curvature tensor of type (0,4) is
given by R(X,Y,Z, U) = g(R(X,Y )Z,U), for all vector fields X,Y,Z, U .

Let {e1, . . . , e2n} be an orthonormal basis at a point p ∈ M . The Ricci
tensor ρ and the scalar curvature τ of the metric g are determined as follows

ρ(X,Y ) =
2n
∑

i=1

R(ei, X, Y, ei), τ =
2n
∑

i=1

ρ(ei, ei); X,Y ∈ TpM.

The almost complex structure (g, J) gives rise to the ∗-Ricci tensor ρ∗ and to the
∗-scalar curvature τ ∗ defined by the formulas

ρ∗(X,Y ) =
2n
∑

i=1

R(ei, X, JY, Jei), τ∗ =
2n
∑

i=1

ρ∗(ei, ei); X,Y ∈ TpM.
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While the Ricci tensor is symmetric, the ∗-Ricci tensor has the property

(2.1) ρ∗(JX, JY ) = ρ(Y,X), X, Y ∈ TpM.

The following tensor of type (0,3)

F (X,Y,Z) = g((∇XJ)Y,Z), X, Y, Z ∈ XM

is closely related to the structure (g, J). This tensor satisfies the following
properties

(2.2) F (X,Y,Z) = −F (X,Z, Y ), F (X, JY, JZ) = −F (X,Y,Z).

The only trace of this tensor determines the Lee form θ of the manifold
in the following way

θ(X) = −

2n
∑

i=1

F (ei, JX, ei), X ∈ XM.

The well known classes of almost Hermitian manifolds have been obtained
in terms of the properties of the tensor F in [5].

In this section we consider Hermitian manifolds, which are characterized
by the following property of the tensor F [5]:

(2.3) (∇JXJ)Y = J(∇XJ)Y ⇐⇒ F (JX, Y, Z) = −F (X, JY,Z).

Let T C
p M be the complexification of the tangent space TpM at any point

p ∈ M . By X
CM we denote the algebra of complex differentiable vector fields on

M . The complex structure J generates the standard splittings

T C
p M = T 1,0

p M ⊕ T 0,1
p M, X

CM = X
1,0M ⊕ X

0,1M.

If {e1, . . . , en; Je1, . . . , Jen} is an orthonormal frame at a point p ∈ M ,

then the vectors Zα =
eα − iJeα

2
and Zᾱ = Z̄α =

eα + iJeα

2
; α = 1, . . . , n

form a basis for T
1,0
p M and T

0,1
p M , respectively. Further, we call these bases

{Zα;Zᾱ} α = 1, . . . , n orthogonal complex bases.
For an arbitrary tensor T we denote Tα... = T (Zα . . . ) and Tᾱ... = T (Zᾱ . . . ).
In what follows, the summation convention is assumed and Greek indices

α, β, γ, . . . run from 1 to n.
It follows that the components of the metric tensor with respect to an

orthogonal complex basis satisfy the conditions

gαβ = 0 (for all α, β); gαβ̄ = 0, (for α 6= β); gαᾱ =
1

2
(for all α).
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We have the following

Lemma 2.1. Let (M, g, J) be a Hermitian manifold. If (∇Z̄J)Z = 0 for

an arbitrary Z ∈ T
1,0
p M , then ∇J = 0 at the point p.

P r o o f. Indeed, the condition (∇Z̄J)Z = 0 implies that (∇XJ)X = 0 for
all X ∈ TpM . Therefore M satisfies the condition characterizing a nearly Kähler
manifold at p. Since M is Hermitian, then M is Kählerian, i.e. ∇J = 0 at p

[5]. �

Now, let (M, g, J) be a Hermitian manifold with pointwise constant anti-
holomorphic sectional curvature. This means that for any orthonormal antiholo-
morphic frame {X,Y }, (g(X,X) = g(Y, Y ) = 1, g(X,Y ) = g(X, JY ) = 0) at an
arbitrary point p ∈ M the sectional curvature R(X,Y, Y,X) does not depend on
the antiholomorphic section span{X,Y }, i.e. R(X,Y, Y,X) is only a function of
the point p. We denote this function by ν(p).

Let Q(X,Y ) be a tensor on M having the symmetry (2.1), i.e.

(2.4) Q(JX, JY ) = Q(Y,X).

The following tensor construction Ψ(Q) is relevant to the considerations
in this paper:

Ψ(Q)(X,Y,Z, U) = g(Y, JZ)Q(X, JU) − g(X, JZ)Q(Y, JU)

− 2g(X, JY )Q(Z, JU) + g(X, JU)Q(Y, JZ)

− g(Y, JU)Q(X, JZ) − 2g(Z, JU)Q(X, JY ).

We also recall the basic invariant tensors π1 and π2 only formed by the
fundamental tensors g and Φ:

π1(X,Y,Z, U) = g(Y,Z)g(X,U) − g(X,Z)g(Y,U),

π2(X,Y,Z, U) = g(Y, JZ) g(X, JU) − g(X, JZ) g(Y, JU) − 2 g(X, JY ) g(Z, JU).

The first author has proved the following tensor characterization for an
almost Hermitian manifold of pointwise constant antiholomorphic sectional cur-
vatures.

Theorem [2]. An almost Hermitian manifold with dimM = 2n ≥ 4 is
of pointwise constant antiholomorphic sectional curvature ν(p) if and only if its
curvature tensor satisfies the identity

(2.5) R −
1

2(n + 1)
Ψ(ρ∗) +

τ∗

2(n + 1)(2n + 1)
π2 = ν

(

π1 −
1

2n + 1
π2

)

.
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We introduce the tensor

Q =
1

2(n + 1)
ρ∗ −

τ∗ + 2(n + 1)ν

4(n + 1)(2n + 1)
g,

which in view of (2.1) has the property (2.4). Then the condition (2.5) can be
written as follows:

(2.6) R = Ψ(Q) + ν π1.

The second author has proved in [6] that in dimM ≥ 6 the function ν(p)
in (2.5) is constant. Thus, we shall speak about almost Hermitian manifolds
of constant antiholomorphic sectional curvature instead of “pointwise constant”
antiholomorphic sectional curvature.

3. Proof of Theorem A. In this section we prove Theorem A on the
base of the following statement.

Proposition 3.1. Let (M, g, J) (dimC M ≥ 3) be a Hermitian manifold
of constant antiholomorphic sectional curvature. Then any non-Kähler point of
M has a neighborhood in which (M, g, J) is of constant sectional curvature.

P r o o f. Let p0 be a point in M with F 6= 0 at p0. We consider a
neighborhood U of p0, such that F 6= 0 at any point of U . We shall prove that
(M, g, J) is of constant sectional curvature in U .

For any p ∈ U , we consider an orthogonal complex basis {Zα, Zᾱ}
α = 1, . . . , n at the point p.

The property (2.4) of the tensor Q implies that

(3.1) Qαβ̄ = Qβ̄α, Qαβ = −Qβα.

Taking into account the property (2.3) of the covariant derivative of the
complex structure and the symmetry (2.4) of the tensor Q, we compute

(3.2) (∇XQ)(JY, JZ) = (∇XQ)(Z, Y ) − Q((∇XJ)Y, JZ) − Q(JY, (∇XJ)Z)

for arbitrary X,Y,Z ∈ XU .
Since the tensor F has the symmetries (2.2) and (2.3), then its essential

components (those which may not be zero) with respect to an orthogonal complex
basis {Zα, Zᾱ} are only Fᾱβγ and their conjugates. These components satisfy
the condition Fᾱβγ = −Fᾱγβ . These properties of the tensor F can be expressed
in terms of the covariant derivative (∇XJ)Y as follows

(3.3) ∇αJ
γ
β = ∇ᾱJ

γ
β = ∇αJ

γ̄
β = 0.
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The equalities (3.2) and (3.3) imply that

(3.4) ∇αQγ̄β = ∇αQβγ̄ + i∇αJσ
γ̄ Qβσ;

(3.5) ∇αQβγ = −∇αQγβ , (especially ∇αQββ = 0);

(3.6) ∇ᾱQββ = i∇ᾱJ σ̄
β Qσ̄β.

First we prove the following statement

Lemma 3.2. Let Z,W ∈ T
1,0
p M and g(Z, W̄ ) = 0. If F (Z̄, Z,W ) 6= 0,

then Q(Z,W ) = 0.

P r o o f. Since g(Z, W̄ ) = 0, then we can find an orthogonal complex basis
{Zα, Zᾱ} α = 1, . . . , n such that the vectors Z and W are collinear with Zα and
Zβ, respectively, for some α 6= β.

Applying the Bianchi identity for the curvature tensor R in the form

∇αRβγβγ̄ + ∇βRγαβγ̄ + ∇γRαββγ̄ = 0,

we find

(3.7) ∇βQαβ = 0.

Further we apply the Bianchi identity in the form

∇ᾱRαβαβ + ∇αRβᾱαβ + ∇βRᾱααβ = 0

and taking into account (3.7), we obtain

(3.8) FᾱαβQαβ = 0.

Under the conditions of the lemma we have Fᾱαβ 6= 0. Then it follows
from (3.8) that Qαβ = 0. �

Next we prove

Lemma 3.3. The tensor Q is symmetric at any point p ∈ U .

P r o o f. Since the tensor F 6= 0 at the point p, then because of the Lemma
2.1 there exist indices α 6= β so that Fᾱαβ 6= 0. Applying Lemma 3.2, it follows
that Qαβ = 0.

Let γ 6= α, β. Since Fᾱαβ 6= 0, then the complex function w(t) =
F (Zᾱ, Zα, Zβ + tZγ) 6= 0 for all sufficiently small t ∈ R. It follows from Lemma
3.2 that Q(Zα, Zβ + tZγ) = 0. Hence, Q(Zα, Zγ) = 0, i.e. Qαγ = 0.
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Similarly, the inequality F (Zα + tZγ , Zα + tZγ , Zβ) 6= 0 for all sufficiently
small real t and Lemma 3.2 imply that Q(Zα + tZγ , Zβ) = 0. Hence, Qγβ = 0.
So far, we obtained

Qαβ = Qαγ = Qβγ = 0.

In dimM > 6, let δ 6= α, β, γ. As in the above, we find

Qαδ = Qαδ = Qβδ = 0.

On the other hand, the inequality F (Zᾱ + tZγ̄ , Zα + tZγ , Zβ + tZδ 6= 0),
which is valid for sufficiently small real t, implies that Qγδ = 0.

Thus we obtained Qλµ = 0 for all λ, µ = 1, . . . , n, which proves the
assertion. �

Finally, we shall prove that the tensor Q is proportional to the metric
tensor g in U .

For that purpose it is sufficient to prove that

(3.9) Qλµ̄ = 0,

for all different indices λ and µ.
We consider two cases for the tensor F 6= 0:
1) There exist three different indices α, β, γ, such that Fγ̄αβ 6= 0;
2) Fγ̄αβ = 0 for all different indices α, β, γ with respect to any orthogonal

complex basis.

The case 1). Applying the second Bianchi identity in the form

∇αRβγ̄βγ̄ + ∇βRγ̄αβγ̄ + ∇γ̄Rαββγ̄ = 0,

we get the equality Fγ̄αβQβγ̄ = 0, which implies that Qβγ̄ = 0.
Now, arguments similar to those in Lemma 3.3 show (3.9).

The case 2). According to Lemma 2.1 there exist two different indices α

and β such that Fᾱαβ 6= 0. Applying the second Bianchi identity in the form

∇αRγ̄ββᾱ + ∇γ̄Rβαβᾱ + ∇βRαγ̄βᾱ = 0,

and taking into account the equalities Qαβ = 0, Fγ̄αβ = 0, we find

−∇γ̄Qββ + iQ(Zβ , (∇γ̄J)Zβ) + ∇βQγ̄β = 0.

The last equality in view of (3.6) implies

(3.10) ∇βQγ̄β = 0.
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Applying the second Bianchi identity in the form

∇ᾱRαββγ̄ + ∇αRβᾱβγ̄ + ∇βRᾱαβγ̄ = 0,

we find
3iFᾱαβQβγ̄ + 2∇βQβγ̄ + 2iQ(Zβ , (∇βJ)Zγ̄) = 0,

which together with (3.4) gives

3iFᾱαβQβγ̄ + 2∇βQγ̄β = 0.

The last equality and (3.10) imply that

FᾱαβQβγ̄ = 0.

Hence, Qβγ̄ = 0. Applying again the scheme of the proof of Lemma 3.3,
we obtain the conditions (3.9).

Thus, in both cases 1) and 2), we obtained the conditions (3.9), which
are equivalent to the identity

(3.11) Q(X,Y ) = 0, whenever X,Y ∈ TpM, g(X,Y ) = 0.

Applying standard arguments for the symmetric tensor Q(X,Y ), we obtain that
the tensor Q is proportional to the metric tensor g, i.e.

Q =
trQ

2n
g, trQ =

τ∗ − 2nν

2(2n + 1)
.

Hence

R = ν π1 +
trQ

n
π2.

Further we use the following statement

Theorem [9]. Let M be a connected almost Hermitian manifold with real
dimension 2n ≥ 6 and Riemannian curvature tensor of the following form:

R = f π1 + hπ2,

where f and h are C∞ functions on M such that h is not identical zero. Then
M is a complex space form (i.e. a Kähler manifold with constant holomorphic
sectional curvature).

Applying the above mentioned theorem, we obtain that the function
trQ = 0, i.e. τ ∗ − 2nν = 0. Hence M is of constant sectional curvature ν

in U . �
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Remark 3.4. If the curvature tensor of an almost Hermitian manifold
has the form R = ν π1, then

ν =
τ

2n(2n − 1)
=

τ∗

2n

and τ = (2n − 1)τ ∗.

To complete the proof of Theorem A, denote by H the set of points in
M , in which R = ν π1. Then H is closed and the set M \ H is open.

If M \ H is empty, then M is of constant sectional curvatures ν.
Let M \ H be nonempty. According to Proposition 3.1 ∇J = 0 in M \

H and consequently R =
ν

4
(π1 + π2). Since the set of points in which R =

ν

4
(π1 + π2) is closed and M is connected, then there exists a point p ∈ H such

that R =
ν

4
(π1 + π2) at p. Therefore, ν = 0 and (M, g, J) is flat, thus proving

Theorem A. �

Finally, Theorem A implies the following statement.

Corollary 3.5. Let M be a compact non-Kählerian Hermitian manifold
with dimM ≥ 6. If M is of constant antiholomorphic sectional curvatures, then
it is a flat balanced Hermitian manifold.

P r o o f. Let (M, g, J) be of constant antiholomorphic sectional curvatu-
res ν.

Applying Theorem A and the result of Le Brun [7]: S6 has no integrable
complex structure we obtain that there are no compact non-Kählerian Hermitian
manifolds of constant antiholomorphic sectional curvature ν > 0.

Further, denote by δθ the co-differential of the Lee form θ. Applying
Theorem A and the formula [3]

τ − τ∗ = 2 δθ + ‖θ‖2

we obtain

(3.12)

∫

M

{‖θ‖2 − 4n(n − 1)ν} dv = 0,

which implies that there are no compact non-Kählerian Hermitian manifolds of
constant antiholomorphic sectional curvature ν < 0. For the non-existence of
compact non-Kählerian Hermitian real space forms of hyperbolic type see also [4].

Finally, if ν = 0, then the formula (3.12) implies that θ = 0, i.e. M is a
flat balanced Hermitian manifold, which completes the proof. �
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