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Abstract. This is a survey of the recent results by the author and Gunther
Uhlmann on the boundary rigidity problem and on the associated tensor
tomography problem.

1. Introduction. This survey is based on a series of joint papers [40,
41, 42, 43] by the author and Gunther Uhlmann. It is an extended version of the
mini-course given by the author on the Symposium of Inverse Problems in Honor
of Alberto Calderón in Rio de Janeiro, January 10–19, 2007.

We are not trying to give a full account on the progress in Tensor To-
mography and Boundary and Lens Rigidity. While we will certainly acknowledge
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the contribution of other authors on this subject, our main goal is to present a
microlocal point of view. Another powerful method, that we will not discuss,
is the energy estimates method, initiated by Mukhometov (see [22, 23, 24] and
the references there), and developed further by others; most recently by Pestov,
Sharafutdinov, and Dairbekov, see [27, 30, 31, 32, 12].

We try to explain the ideas behind the proofs and skip details often. Clear
references to where to find complete proofs are always given. We emphasize more
on the analysis of simple manifolds in sections 3, 4 to make the presentation more
accessible. The recent results on a more general class of manifolds, that we call
regular, that in fact include all simple ones, will be only formulated and briefly
discussed in section 5.

These notes target a graduate student audience. Basic knowledge of dif-
ferential and Riemannian geometry is assumed. Knowledge of pseudo-differential
operator (ΨDO) theory is also needed. In fact, we do not go beyond the construc-
tion of a parametrix of an elliptic ΨDO and the mapping properties of ΨDOs in
Sobolev spaces. In section 3.10, we use analytic ΨDOs.

2. Formulation of the main problems. In what follows, M is a
compact manifold of dimension n ≥ 2 with boundary. We fix a finite analytic atlas
on it. Thus the term real analytic function/metric on it makes sense. Moreover,
for any function f (or more generally, a tensor field f) on M , the norm ‖f‖Ck(M)

is well defined as the maximum of the localized norm over all coordinate charts.
In sections 3, 4, M will be diffeomorphic to a ball in Rn. We keep M fixed and
we will study different Riemannian metrics g on M . We freely use the Einstein
summation convention and when g is fixed, we will use the convention of raising
and lowering indices thus identifying covariant and contravariant tensor fields.

We will formulate below the three basic problems we are interested in:
the linear tensor tomography problem, and the non-linear boundary rigidity and
lens rigidity ones. We will show later that the tensor tomography problem is a
linearization of the boundary rigidity.

2.1. Tensor Tomography. Informally speaking, tensor tomography
tries to recover a tensor field from its integrals along geodesics connecting bound-
ary points. We will make this more precise below.

Let M be as above, and let g be a smooth Riemannian metric on it that
will be kept fixed in this section. We will parametrize the maximal geodesics in
M with (at least one) endpoint on ∂M by their incoming points and directions.



Tensor Tomography; Boundary and Lens Rigidity 69

Set

∂±SM := {(x, ω) ∈ TM ; x ∈ ∂M, |ω| = 1, ±〈ω, ν〉 > 0} ,

where ν(x) is the outer unit normal to ∂M (normal w.r.t. g, of course). Here
and in what follows, we denote by 〈ω, ν〉 the inner product of the vectors ω, ν,
and |ω| is meant w.r.t. g. Let γx,ω(t) be the (unit speed) geodesic through (x, ω),
defined on its maximal interval contained in [0,∞). It may happen that γx,ω(t)
is defined for all t > 0; then we call the latter trapping, and we call (M, g) a
trapping manifold. Otherwise, we call γx,ω non-trapping. In the latter case, the
endpoint of γx,ω must be on ∂M . If all geodesics are non-trapping, then (M, g)
is called a non-trapping manifold.

Let f be a covariant symmetric tensor field of order m, i.e., locally, f
is given by its components fi1i2...im(x). As we mentioned above, we will freely
raise indices if needed. Given a vector field v, introduce the notation 〈f, vm〉 by
writing in any local coordinates

(2.1) 〈f, vm〉 = fi1i2...imv
i1vi2 . . . vim .

The superscript m is there to reminds us that 〈f, vm〉 is non-linear w.r.t. v.
We define the geodesic ray transform of f by

(2.2) If(γ) =

∫

〈f(γ(t)), γ̇m(t)〉dt,

where γ is any maximal geodesic in M . Unless otherwise stated, we assume that
the geodesics are parametrized by an arc-length parameter. If is well defined at
least when M is non-trapping and f is continuous. To emphasize on the depen-
dence on the metric g, we sometimes denote I by Ig. Using the parametrization
above, with some abuse of notation, we write

(2.3) If(x, ω) =

∫

〈f(γx,ω(t)), γ̇mx,ω(t)〉dt, (x, ω) ∈ ∂−SM.

Our main interest is in symmetric 2-tensors. Then

(2.4) If(x, ω) =

∫

fij(γx,ω(t))γ̇ix,ω(t)γ̇jx,ω(t) dt, (x, ω) ∈ ∂−SM,

where the integrand is written in local coordinates (somewhat incorrectly since
this assumes existence of coordinates defined near the whole γxω; on the other
hand, one can easily define such coordinates in a neighborhood of any non-
trapping and non self-intersecting geodesic).
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The natural question that arises is the following: is f uniquely determined
by its ray transform If? Since I is a linear operator, this is equivalent to asking;
does If = 0 imply f = 0? For now, f is continuous, but we will be more specific
below. The answer is negative for any (M, g), if m ≥ 1. To understand this
better, start with the case m = 1. Let φ ∈ C1(M), and consider the 1-form
f = dφ given locally by f = dφ = φxidxi. Then

(2.5) 〈f(γ), γ̇〉 = φxi(γ(t))γ̇i(t) =
d

dt
φ(γ(t)).

Therefore, if φ = 0 on ∂M , the fundamental theorem of calculus implies that

(2.6) I(dφ) = 0.

On the other hand, dφ does not need to vanish. Note that γ does not need to be
a geodesic for (2.5) to hold, and therefore, (2.6) holds even if we integrate over
any curve(s) connecting boundary points!

This generalizes to tensors of any order m ≥ 1, but for geodesics only.
Consider first the case m = 2. Then for any geodesic γ, (see the proof in sec-
tion 3.2.2)

(2.7)
d

dt
〈v(γ(t)), γ̇m−1(t)〉 = 〈dv, γ̇m(t)〉,

(m = 2), where dv is the symmetric differential of f given in local coordinates by

(2.8) (dv)ij =
1

2
(vi,j + vj,i).

We use the notational convention vi,j = ∇jvi, where ∇ is the covariant derivative.
For tensors of arbitrary order m, the symmetric differential dv is defined as the
symmetrization of ∇v, i.e., as the mean of ∇v over all permutations of its indices.
Then (2.7) still holds. Note that γ in (2.7) really has to be a geodesic, and in the
proof, we use the geodesic equation. Then (2.7) implies that for any vector field
v with v = 0 on ∂M , one has

(2.9) I(dv) = 0.

It will become clear by the mapping properties of I that the regularity of v can
be reduced to v ∈ H1

0 (M).

Definition 2.1. We call the tensor field f of order m ≥ 1 potential, if
f = dv for some tensor field v ∈ H1

0 (M) of order m− 1.
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As we just saw, potential fields belong naturally to the kernel of I. We
expect that at least for simple manifolds introduced below, this is the whole
kernel of I.

Definition 2.2. We say that I is s-injective (m ≥ 1), if If = 0 for
f ∈ L2(M) implies that f is potential, i.e., f = dv with some v ∈ H 1

0 (M).

If m = 0, i.e., if we integrate functions, then we study the injectivity of I
in classical sense.

Solenoidal projections of tensor fields. Since I vanishes on potential
tensors, it is quite reasonable to study I restricted on the orthogonal complement
of all potential tensors. To this end, we have to define a certain scalar product of
tensor fields. We will work in the L2 space of symmetric tensor fields in M with
scalar product

(2.10) (f, h)L2(M) =

∫

M
fi1i2...im(x)h̄i1i2...im(x) dVol(x).

Here, dVol(x) is the volume measure given locally by (det g)1/2dx. We hope that
our choice of notation will not cause confusion with the L2 space of functions
(and tensor fields of different orders). It will be clear form the contest which
space we mean. We define similarly Sobolev spaces. We define the divergence δf
of a symmetric m-tensor field f (m ≥ 1) as the formal adjoint of −d. In other
words, δf is a symmetric (m− 1) tensor that in local coordinates is given by

(2.11) (δf)i1...im−1
= ∇mfi1...im−1m,

where ∇m = gmi∇i. In particular, if m = 2, then δf is a covector field, and
locally, (δf)i = ∇jfij.

Then we have the following (see [30, 40] and section 3.4).

Theorem 2.1. In the space L2(M) of symmetric m-tensors, there exist
a unique choice of orthogonal projections P and S, P + S = Id, so that any
f ∈ L2(M) admits the orthogonal decomposition

(2.12) f = f s + dv, f s = Sf, dv = Pf

with some v ∈ H1
0 (M), and δf s = 0.

We call f s = Sf the solenoidal projection of f , and any tensor f with
δf = 0 will be called solenoidal. The theorem above then states that any f admits
unique decomposition into a potential and a solenoidal part. The s-injectivity of
f can then be reformulated as follows.
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Definition 2.3. We say that I is s-injective (m ≥ 1), if If = 0 for
f ∈ L2(M) implies that f s = 0.

Clearly, Definitions 2.2 and 2.3 are equivalent.

We will briefly summarize some of the known results about the s-injecti-
vity of I. Let us start with m = 0, i.e., integrals of functions. There are simple
counter examples to injectivity in that case. Take the sphere S2, and any function
that is equal to 1, and respectively −1 in small neighborhoods of two symmetric
neighborhoods of the North and the South pole, respectively. Here, symmetry is
define by the antipodal map. Then f integrates to zero over any geodesic (grand
circle). Now, to make this a manifold with boundary, cut a small neighborhood U
of a point on the equator. Then If = 0 but f 6≡ 0. More generally, take any odd
f vanishing on U and remove U again. Therefore, some assumptions on (M, g)
are needed, if we want to get an injective ray transform I. One such assumption
is that (M, g) is simple.

Definition 2.4 (simple manifold). We say that (M, g) is a simple man-
ifold, if ∂M is strictly convex w.r.t. g, and for any x ∈ M , the exponential map
expx : exp−1

x (M) →M is a diffeomorphism.

Any metric g on M so that (M, g) is simple will be called a simple metric
onM . The boundary ∂M is called strictly convex, if the second fundamental form
on ∂M is strictly positive. The second condition above hides the requirement that
any two points x, y in M are connected by a unique geodesic in M that depends
smoothly on x, y. In particular, there are no conjugate points on any geodesic in
M . Any simple M (w.r.t. some g) is necessarily diffeomorphic to a ball in Rn,
see e.g., [30]. Therefore, in the analysis of simple manifolds, we can assume that
M is a domain Ω ⊂ Rn.

If (M,∂M) is simple, then the geodesic ray transform I of functions and
1-forms is injective, respectively s-injective, see [23, 24, 2, 1]. The proof of this
relies on energy estimates methods.

The case m ≥ 2 is tougher, and m = 2 already possesses most, if not all
of the difficulties. S-injectivity of Ig for m ≥ 2 was previously proved in [27] for
metrics with negative curvature, in [30] for metrics with small curvature. In the
2D case, it was proved in [33] for all simple Riemannian surfaces with boundary,
following the approach in [28]. A conditional and non-sharp stability estimate for
metrics with small curvature is also established in [30]. Our main results about
the Tensor Tomography problem are Theorems 3.1, 3.2 for simple manifolds, and
Theorems 5.1, 5.2 about a more general class that we call regular manifolds.
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2.2. Boundary Rigidity. LetM be as above. We equipM with different
Riemannian metrics g. For any two points in M , let ρg(x, y) be the distance
between x and y measured in the metric g. In other words, ρg(x, y) is the infimum
of the lengths of all piecewise C1 curves in M connecting x and y. We want to
recall that the length of a curve c : [0, 1] 7→M is given by

length(c) =

∫ 1

0
|ċ(t)|dt,

where, as always, |ċ(t)| is the length of the vector ċ in the metric, i.e., in local
coordinates, |ċ(t)| =

√

gij(c(t))ċi(t)ċi(t). Then we ask whether one can determine
g by knowledge of ρg(x, y) restricted to all x ∈ ∂M , y ∈ ∂M . There is a clear
obstruction to this. If ψ : M →M is any diffeomorphism so that ψ = Id on ∂M ,
one can easily show that ρg = ρψ∗g, on ∂M × ∂M , where ψ∗ is the pull-back of g
under ψ. We will call g and any such ψ∗g isometric. The natural question then
is the following:

The Boundary rigidity question. Given g and ĝ on M , does

ρg = ρĝ on ∂M × ∂M

imply that there is a diffeomorphism ψ : M →M so that ψ|∂M = Id, and

ĝ = ψ∗g?

More generally, one can ask whether one can recover the topology of M
as well from the boundary distance function, if only the boundary is given. We
will assume however, that M is known.

Definition 2.5 (boundary rigidity). We say that (M, g) is boundary
rigid, if for any metric ĝ on M so that ρg = ρĝ on ∂M × ∂M , one has ĝ = ψ∗g
with some diffeomorphism ψ fixing ∂M pointwise.

It is not hard to find counter-examples to boundary rigidity. If there is
an open set in M where g is very large, then all the minimizing curves will avoid
that set. Therefore, ρg will not carry any information about g inside that set
and we can modify g there (by keeping it large), and ρg on ∂M × ∂M will be the
same. It is easy to see that those modifications do not need to be all isometric to
g. A more specific example of this kind is the following. Let M be the northern
closed hemisphere of S2 with its natural metric that we will denote by g0. Then
ρg0(x, y) for any two boundary points is realized as the length of the shortest arc
on ∂M connecting x and y. Let 0 ≤ φ be a smooth function supported in the
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interior of M , not identically zero. Then ρ(1+φ)g0 = ρg0 on ∂M × ∂M . On the
other hand, g0 and (1 + φ)g0 are not isometric because the volume of M in the
second metric is strictly greater than that in the first one, if φ 6≡ 0.

Therefore, the boundary rigidity problem has to be considered on a class
of manifolds in order to avoid counter-examples like those. One such class is the
class of simple manifolds introduced above. A more general class of manifolds
where one expects boundary rigidity is the class of SGM (strong geodesically
minimizing) manifolds, see [9].

Unique recovery of g (up to an action of a diffeomorphism) is known for
simple metrics conformal to each other [9, 4, 22, 23, 24, 2], for flat metrics [16], for
simple locally symmetric spaces of negative curvature [3]. In two dimensions it
was known for simple metrics with negative curvature [8] and [25], and recently it
was shown in [28] for simple metrics with no restrictions on the curvature. In [39],
the authors proved this for metrics in a small neighborhood of the Euclidean one.
This result was used in [19] to prove a semiglobal solvability result. Our main
results are local boundary rigidity near generic metrics, more precisely, near any
metric with an s-injective ray transform Ig, see Theorems 4.1; and Theorem 4.3
about a conditional Hölder type of stability estimate.

The boundary rigidity problem arose in geophysics in an attempt to de-
termine the inner structure of the Earth by measuring the travel times of seismic
waves. It goes back to Herglotz [17] and Wiechert and Zoeppritz [47]. Although
the emphasis has been in the case that the medium is isotropic, the anisotropic
case has been of interest in geophysics since it has been found that the inner
core of the Earth exhibits anisotropic behavior [7]. In differential geometry this
inverse problem has been studied because of rigidity questions and is known as
the boundary rigidity problem. In its present form, it was formulated by Michel
[20].

2.3. Lens Rigidity. Let now M be a compact manifold with boundary,
not necessarily diffeomorphic to a ball anymore. Let g be a Riemannian metric
on it. As we saw above, such manifolds may fail to be boundary rigid. Instead
of the boundary rigidity problem, we will study a closely related but a different
one: the lens rigidity problem.

Let Φt be the geodesic flow on SM . We define the scattering relation

(2.13) Σ : ∂−SM → ∂+SM,

Σ(x, ξ) = (y, η) = ΦL(x, ξ), where L > 0 is the first moment, at which the
unit speed geodesic through (x, ξ) hits ∂M again. Note that at that point, the
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geodesic may touch ∂M tangentially, and may have an extension beyond t = L;
and eventually it may hit ∂M again or to remain trapping. This defines also
L(x, ξ) as a function L : ∂−SM → [0,∞]. Note that Σ and L are not necessarily
continuous.

It is convenient to think of Σ and L as defined on the whole ∂SM with
Σ = Id and L = 0 on ∂+SM .

The lens rigidity question asks whether Σ, L determine g. Clearly, the way
we posed this problem, one needs to know g on ∂M . Moreover, a diffeomorphism
ψ fixing ∂M pointwise may not preserve (x, ξ) ∈ ∂±SM ; it only preserves the
orthogonal projection of ξ on ∂M . If it does, then we have the same obstruction
to uniqueness as in the boundary rigidity problem. So we have two options: either
to require that ψ = Id on ∂M and Dψ = Id on ∂M , or to redefine the scattering
relation in order to avoid the second condition. We will do the latter.

Since for (x, ξ) ∈ ∂−SM , ξ is unit, it is determined by its orthogonal
projection on the boundary. We will think of Σ as mapping x and the orthogonal
projection of ξ onto a point y ∈ ∂M and the orthogonal projection of the direction
at y. More formally, let κ± : ∂±SM → B(∂M) be the orthogonal projection onto
the (open) unit ball tangent bundle. It extends continuously to the closure of
∂±SM . Then κ± are homeomorphisms, and we set

(2.14) σ = κ+ ◦ Σ ◦ κ−1
− : B(∂M) −→ B(∂M), ` = L ◦ κ−1

− .

According to our convention, σ = Id, ` = 0 on ∂(B(∂M)) = S(∂M). We equip
B(∂M) with the relative topology induced by T (∂M), where neighborhoods of
boundary points (those in S(∂M)) are given by half-neighborhoods.

We still need to know g on ∂M but only acting on tangent vectors to ∂M .
The map σ however, that we still are going to call scattering relation, is invariant
under isometric changes of g by ψ∗g, if ψ fixes ∂M pointwise. This justifies the
following formulation.

The Lens Rigidity question. Given g and ĝ on M , so that g = ĝ on
T (∂M), does

(2.15) σg = σĝ, `g = `ĝ on B(∂M)

imply that there is a diffeomorphism ψ : M →M so that ψ|M = Id, and

ĝ = ψ∗g?

As before, one can ask whether one can recover the topology of M as well from
σg, `g, if only the boundary is given. We will assume again that M is known.
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Definition 2.6 (lens rigidity). We say that (M, g) is lens rigid, if for
any metric ĝ on M so that g = ĝ on T (∂M), and (2.15) is fulfilled, one has
ĝ = ψ∗g with some diffeomorphism ψ fixing ∂M pointwise.

The reason we call this lens rigidity is because of two manifolds are lens
rigid, they act in the same way as lenses when viewed from outside. The scattering
relation is encoded in the hyperbolic DN map for the wave equation (∂2

t −∆g)u =
0 or in the scattering operator.

There are very few results about this problem when the manifold is not
simple. Croke [8] has shown that if a manifold is lens rigid, a finite quotient of it
is also lens rigid. A counter-example to lens rigidity is given in [10].

2.4. The Boundary Rigidity and the Lens Rigidity problems are

equivalent on simple manifolds. Assume now thatM is simple. The following
observation is due to Michel [20].

Lemma 2.1. Let (M, g) be simple. Then, for any (x, y) ∈ ∂M × ∂M ,

Σ(x,−gradx ρ(x, y)) = (y, grady ρ(x, y)),

L(x,−gradx ρ(x, y)) = ρ(x, y);

and

σ(x,−grad′
x ρ(x, y)) = (y, grad′

y ρ(x, y)),

`(x,−grad′
x ρ(x, y)) = ρ(x, y),

where grad′φ stands for the tangential component of gradφ on T (∂M).

P r o o f. Recall that in Riemannian geometry, in local coordinates,
(grad f)i = gij∂jf . Fix (x, ξ) ∈ ∂−SM . Let (y, η) = Σ(x, ξ) ∈ ∂+SM .

We have grady ρ(x, y) = η. This follows from the Jacobi theory of solv-
ing the eikonal equation but perhaps the shortest way to see this here is the
following. By the Gauss lemma, η is orthogonal (in the metric) to the geodesic
sphere ρ(x, y) = const. On the other hand, grady ρ(x, y) has the same property.
Therefore, grady ρ(x, y) must be parallel to η. Since the directional derivative of
ρ(x, y) w.r.t. to y in the direction of η has length one (in the metric), and η has
the same property, then grady ρ(x, y) = η. Similarly, one gets gradx ρ(x, y) = −ξ.
This proves the lemma. �

Lemma 2.1 shows that the boundary rigidity and the lens rigidity prob-
lems are equivalent on simple manifolds. Actually, we get that a knowledge of
the first component of σ is enough to recover ρ. More precisely, we have the
following. The map π below is the natural projection, i.e., π(x, ξ) = x.
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Proposition 2.1. Let g, ĝ be simple metrics on M . Then
(a) If ρg = ρĝ on ∂M × ∂M , then g = ĝ on T (∂M) and σg = σĝ, and

`g = `ĝ.
(b) If g = ĝ on T (∂M) and π ◦ σg = π ◦ σĝ, then ρg = ρĝ on ∂M × ∂M .

P r o o f. To prove (a), notice fist that if ρ is given on ∂M × ∂M , one
can easily recover g on T (∂M) by taking the limit y → x. Then we can re-
cover grad′

x ρ(x, y) and grad′
y ρ(x, y) because we can differentiate in tangential

directions. Then by the lemma, we know σ(x, ξ ′), and therefore Σ(x, ξ), where
ξ = gradx ρ(x, y). We also know `(x, ξ ′) = ρ(x, y). This implies that, under the
conditions of the proposition, σg = σĝ, ` = `ĝ on that particular (x, ξ). Finally,
by the simplicity assumption, given x, the map y 7→ ξ is a bijection, so those
identities hold for all possible (x, ξ ′).

Next, we have ρ(x, y) = `(x, π ◦ σ(x, ξ)), where ξ is determined by the
equation π ◦ Σ(x, ξ) = y, i.e, ξ = exp−1

x y. This easily implies (b). �

3. Analysis of the linear Tensor Tomography problem for

simple metrics. The purpose of this rather long section is to present the central
ideas in [40, 41] on the analysis of the linear operator I on simple manifolds. Those
ideas also work on a class on non-simple manifolds with integrals over suitable
subsets of geodesics, as shown in [42]. This is discussed in sections 4 and 5. We
prefer however to emphasize on simple manifolds, and then to explain briefly how
one can extend this approach as in [42].

3.1. Main result: generic s-injectivity, and main ideas. The pur-
pose of this section is to sketch the proof of the following two theorems. We say
that a function f defined on M is (real) analytic, if it extends as a real ana-
lytic one in a neighborhood of M , and we write f ∈ A(M). Similarly we define
analytic functions on not necessarily open subsets of M .

Theorem 3.1. Let g be a simple analytic metric in M . Then Ig is
s-injective.

We will introduce the norm ‖ · ‖H̃2(Me)
later, see (3.43). Now, we will just

mention that Me ⊃ M and that H2 ⊂ H̃2 ⊂ H1. Here and below, Me ⊃ M is
another simple manifold so that its interior contains M , see section 3.2.3. Instead
of I, we will study the normal operator N = I∗I in Me, where the adjoint I∗

is defined through a choice of a natural measure on ∂−SM , see (3.11). We give
a formal definition later. Then s-injectivity of I is equivalent to s-injectivity of
N : L2(M) → L2(Me), see Lemma 3.2. One can also replace L2(M) in this
statement by C∞(M), see Theorem 3.3.
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Theorem 3.2. There exists k0 such that for each k ≥ k0, the set Gk(M)
of simple Ck(M) metrics in M for which Ig is s-injective is open and dense in
the Ck(M) topology. Moreover, for any g ∈ Gk,

(3.1) ‖f sM‖L2(M) ≤ C‖Ngf‖H̃2(Me)
, ∀f ∈ H1(M),

with a constant C > 0 that can be chosen locally uniform in Gk in the Ck(M)
topology.

We will sketch the main ideas below.
We will show that N is a ΨDO of order −1 in the interior M int of M . It

cannot be elliptic, since it has an infinite dimensional kernel, but we will show that
it is elliptic on solenoidal tensors. This will allow us to construct a parametrix
Q so that QNf recovers f s up to a smooth term in M int. Since we work in a
manifold M with boundary, we will do this in the slightly larger manifold Me,
and an additional step will be needed to reduce this to M .

The parametrix shows that solving Nf = h (that also can be written as
Nf s = h) for f s is reduced to a Fredholm equation (Id +K)f s = Qh. One can
also arrange that K is self-adjoint. Therefore, if I, and therefore N , is s-injective,
one gets that Id +K is injective on SL2(M) (this requires a careful choice of Q
so that QN is still injective there). On the other hand, if Id+K is injective, then
it is invertible, and one can get the estimate (3.1).

So this estimate follows from the ellipticity of N on solenoidal tensors,
and the assumption that I is s-injective.

So far g was fixed. Suppose now that Ig0 is s-injective. We want to
show that (3.1) can be perturbed and remains true for g close to g0. There is a
lost of one derivative in the norm ‖ · ‖H̃2(Me)

, however. We have ‖Nf‖H1(Me) ≤
C‖f‖L2(M) but this does not hold for the H̃2 norm of Nf . So (3.1) cannot be
perturbed directly. On the other hand, the Fredholm equation (Id +K)f s = Qh
can, where Q = Qg, K = Kg (and f s = Sf with S = Sg). If Id+Kg is injective, it
is also invertible (on the space of the solenoidal tensors) by the theory of compact
operators, then it remains invertible under small perturbation of g. It remains to
construct Q with more care to make sure that QN and N have the same kernel
(i.e., Q does not increase the kernel). Those arguments will allow us to prove
that the set of simple metrics G for which Ig is s-injective is open. Note that this
argument alone does not show that this set is even non-empty, and the latter
is guaranteed by Theorem 3.1. It was known previously that metric with small
enough curvature belong to G, see [30].

To show that G is dense, we will show that all real analytic simple metrics
belong to it, i.e., Ig is s-injective for any such g. We do that by using analytic
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microlocal ΨDOs. We show that N : L2(M) → L2(Me) is such a ΨDO. Elliptic
analytic ΨDOs have the nice property to recover the analytic singularities. Sup-
pose for a moment that f is a function. Then N is elliptic, and Nf = 0 implies
that f , extended as 0 outside M , is real analytic. Therefore, f = 0. Well, f is
a tensor, N is elliptic only on solenoidal tensors, and the boundary causes some
troubles. A modification of this argument still works, fortunately.

3.2. Preliminaries.

3.2.1. Covariant derivatives. We start with some preliminaries on tensor
analysis. We refer to [30, 31] for a more detailed exposition.

We want to recall first that a tensor field is defined invariantly as a mul-
tilinear map and that the component representation fi1...im changes under a co-
ordinate change according to the law

f ′i1...im = fi1...im
∂xi1

∂x′i1
. . .

∂xim

∂x′im
.

If we think of f as the form fi1...imdx
i1 . . . dxim , then the formula above becomes

self-evident. We will be interested mostly in symmetric tensor fields. Next, the
operator ∇ of covariant differentiation sends m-tensors to (m + 1)-tensors. If f
is a function, then (∇f)i = ∂xif locally, i.e., ∇f is just the usual gradient. For
tensor fields of order m ≥ 1, we want ∇ to satisfy the product rule, among other
properties, which leads to the coordinate representation:

(3.2) (∇fi1...im)k =: ∇kfi1...im = ∂xkfi1...im −
m

∑

α=1

Γpkiαfi1...iα−1piα+1im .

Here Γkij are the Christofell symbols

Γkij =
1

2
gkp

(

∂gjp
∂xi

+
∂gip
∂xj

− ∂gij
∂xp

)

.

There is a similar formula for ∇kf
j1...jp , and more generally, for ∇kf

j1...jp
i1...im

, see
[30]. The most interesting cases for us are

(3.3) ∇kfij = ∂xkfij − Γpkifpj − Γpkjfip,

and

(3.4) ∇kvi = ∂xkvi − Γpkivp, ∇kw
i = ∂xkwi + Γikpw

p.



80 Plamen Stefanov

Note that the operation of lowering or raising an index commutes with taking a
covariant derivative.

Given a vector field X, one denotes by ∇X the covariant derivative along
X given in local coordinates by ∇X = Xi∇i. The geodesic equation then reads

∇γ̇ γ̇ = 0,

i.e., in local coordinates,

γ̈k + Γkij γ̇
iγ̇j = 0.

3.2.2. Proof of (2.7). Using the rules of covariant differentiation, we write

d

dt
〈v(γ(t)), γ̇m−1(t)〉 = 〈∇γ̇v, γ̇

m(t)〉 = 〈dv, γ̇m〉,

where v = v(γ(t)).

3.2.3. Extension of M as a simple manifold. One can check that the sim-
plicity condition is an open one, i.e., it is preserved under a small C 2 perturbation
of g. Using this, one can construct another manifold Me ⊃ M of the same di-
mension, and extend g there so that (Me, g) is still simple, and M b Me. The
later means that there is an open U ⊂Me so that M ⊂ U ⊂Me.

3.2.4. Semigeodesic (boundary normal) coordinates. Given x ∈ Rn, we
write x′ = (x1, . . . , xn−1).

Let x′ = x′(p) be local coordinates on ∂M , and set xn = ρ(p, ∂M). Then
x = (x′, xn) are called semigeodesic, or boundary normal coordinates. In those
coordinates, gin = 0, ∀i. This is easy to see on the boundary xn = 0 because
∂/∂xn is orthogonal to ∂M . For xn > 0 (and xn � 1), it follows from the Gauss
Lemma that ∂/∂xα is orthogonal to ∂/∂xn for α 6= n, and this implies gαn = 0.
This yields Γinn = Γnin = 0, ∀i. Those coordinates cannot be extended to the
whole M , of course. In those coordinates, the lines x′ = const. are geodesics,
normal to the surfaces xn = const., and in particular to ∂M .

Let p0 ∈ Me \M . Consider all geodesics issued from p0: γp0,θ(t), where
θ ∈ Sp0Me. Then, one can consider (θ, t) as polar coordinates on Tx0

M . One can
easily see that θ runs over a closed subset of a hemisphere on Sp0Me. Therefore,
one can choose coordinates near p0 so that θ′ are coordinates on that subset. Con-
sidering (t, θ′) as Cartesian coordinates, see also [40, sec. 9], one gets coordinates
(x′, xn) = (θ′, t) near γx0,θ0 so that the latter is given by {(0, . . . , 0, t), 0 ≤ t ≤ l+}.
Moreover, those geodesics (lines in the x coordinates) are orthogonal to the geo-
desics spheres xn = const. by the Gauss lemma. Therefore, gin = δin, and
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Γinn = Γnin = 0, ∀i, as above. This should not be surprising — those coordinates
are actually boundary normal coordinates as in the paragraph above, normal to
(a part of) the geodesic sphere ρ(p, p0) = ε, 0 < ε� 1; and we parametrize that
sphere by θ′.

3.3. The linearization of the Boundary Rigidity problem is the

tensor Tomography problem. The boundary distance function ρg depends on
g in a non-linear way. We will show now that the linearization of the boundary
rigidity problem is reduced to the tensor tomography one.

Proposition 3.1. Let (M, g) be simple, and let ‖ĝ − g‖C2 ≤ ε, g = ĝ on
∂M . Then for 0 ≤ ε� 1, ĝ is still simple, and

(3.5) ρg(x, y) − ρĝ(x, y) =
1

2
(If)(x, exp−1

x y) +Rg,ĝ(f),

where f = ĝ − g, and

(3.6) ‖Rg,ĝ(f)‖L∞(∂M×∂M) ≤ C‖f‖2
C1(M).

The constant C > 0 depends on M and on an a priori bound on ‖g‖C2 .

P r o o f. See also [30, 31, 13], and [14]. Set gτ = g + τf , τ ∈ [0, 1]. Fix x,
y on ∂M . Set also

φ(s, τ) =

∫ 1

0
|γ̇s(t)|gτ dt,

where γs is the geodesic in the metric gs connecting x and y. Here t is not an
arc length parameter but is proportional to it. Note that φ(s, s) = ρgs . Then

dρgs

ds
=
∂φ

∂s
(s, s) +

∂φ

∂τ
(s, s).

Since γs minimizes the length functional related to gs, for τ fixed, (∂φ/∂s)(s, s) =
0, and we get

dρgs

ds
=

1

2

∫ 1

0

fijγ̇
i
sγ̇
j
s

|γ̇s|gs
dt =

1

2
(Igsf)(x, exp−1

x y).

In the last step, we used the fact that the integral in the middle is indepen-
dent of the parametrization, so we can pass from t to an arc length parameter.
Differentiate again to get

d2ρgs

ds2
=

∫

(

(∇γ′sfij)γ̇
i
sγ̇
j
s + 2fij γ̇

i
s(∇γ′s γ̇

j
s)

)

dt,
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where γ′s = dγs/ds, and t now is an arc length parameter. Therefore,

∣

∣

∣

∣

d2ρgs

ds2

∣

∣

∣

∣

≤ C‖f‖C1

(

‖γ′s‖C0 + ‖∇γ′s γ̇
j
s‖C0

)

.

Since γs solves the geodesic equation, it follows easily by differentiating w.r.t.
a parameter that the term in the parentheses in the r.h.s. above is bounded by
C‖f‖C1 . �

The proof implies that (3.6) can be strengthened a bit to |Rg,ĝ(f)(x, y)| ≤
C|x− y|‖f‖2

C1(M), see also [14].

3.4. Decomposition into a solenoidal and a potential part. We
will prove Theorem 2.1 here. In fact, we will do something more — we will
construct S,P explicitly. We follow [30, 31].

P r o o f o f Th e o r e m, 2.1. Assume that Theorem 2.1 is true and such
projections exist. Then for any f , f = f s + dv, with δf s = 0. Take divergence
of both sides to get δf = δdv, and v ∈ H1

0 (M), i.e., v ∈ H1(M), v = 0 on ∂M .
Therefore, v solves

(3.7)

{

δdv = δf in M,

v|∂M = 0.

It is not hard to see that −δd is an elliptic non-negative differential operator of
order 2. We can think of symmetric tensors as vector-valued functions (if m = 2,
the dimension is n(n + 1)/2). Then −δd can be thought of as a matrix-valued
differential operator (a system). Note first that −δd is formally self-adjoint, and
clearly non-negative because (−δdv, v) = ‖dv‖2 for any v ∈ H1

0 . Here (·, ·) is the
scalar product in the L2 space of (m−1)-tensors. One can do the same thing, but
without integrating to get the same for the principal symbols σp(δ), σp(d) w.r.t.
the scalar product as in (2.10) but without the integration. One could actually
write down σp(δ), σp(d) explicitly. In the case m = 2, we get

(3.8)
1

i

(

σp(δ)f
)

i
= ξjfij,

1

i

(

σp(d)v
)

ij
=

1

2

(

ξjvi + ξivj
)

.

Recall that ξi = gij(x)ξj , so in particular, those symbols depend on x in a
“hidden” way. The ellipticity is then easy to check directly. In fact, we get that
−δd is strongly elliptic, i.e., not only σp(x, ξ) vanishes for ξ = 0 only, but it in fact,
is a strictly positive tensor (matrix) for ξ 6= 0. The Dirichlet boundary conditions
for such a strongly elliptic system are automatically coercive [45]. Since the kernel
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and the cokernel of that system are trivial, we get that there is a unique solution
satisfying the usual Sobolev estimates. We will denote the solution u to the
system δdu = f , u = 0 on ∂M by u = (δd)−1

D u. Then (δd)−1
D : H−1 → H1

0 ,
see [45, p. 307]. Its norm depends continuously on g ∈ C 1, see [42, Lemma 1].
Also, (δd)−1

D : Hs → Hs+2
0 ∩H1

0 , s = 0, 1, . . . with a norm bounded by a constant
depending on an upper bound of ‖g‖Ck , k = k(m) � 1. So we get from (3.7)
that

(3.9) v = (δd)−1
D δf.

This motivates the following definition

(3.10) P = d(δd)−1
D δ, S = Id −P.

It is not hard now to see that those two operators indeed have the properties
required.

Notice that the 1-form v so that Pf = dv, v ∈ H1
0 (M), is uniquely

determined. �

Remark. If f = 0 on ∂M (and if f is smooth enough so that the trace
on ∂M makes sense), then we do not need to have the same for f s! Moreover,
even if f = 0 in a neighborhood of ∂M , we still may not have f s = 0 on ∂M !
The reason is that f s = Sf is obtained by applying the non-local operator S to
f . This innocent fact is responsible for much of the difficulties in the analysis of
I acting on tensors.

3.5. An integral representation of the normal operator N . Since
M is diffeomorphic to a ball, we can think that M = Ω̄, where Ω is a bounded
domain on Rn with smooth boundary. Therefore, we have global coordinates x
on M . We can therefore freely use coordinate notation whenever needed.

On ∂−SM , introduce the measure

(3.11) dµ(x, ω) = |ω · ν(x)|dSx dσx(ω),

where dSx and dσx(ω) are the surface measures on ∂M and SxM in the metric,
respectively. Similarly, dσ is the induced measure on SM . In boundary nor-
mal coordinates, dSx = (det g)1/2dx1 . . . dxn−1, and dσx(ω) = (det g)1/2dσ0(ω),
where dσ0(ω) is the measure on Sn−1 induced by the Euclidean one. Denote
by dσ the Liouville measure on SM . In the notation above, it is given by
dσ = dVol(x) dσx(ω) = (det g) dx′ dσ0(ω).

3.5.1. Santaló’s formula. The following result, known as Santaló’s formula,
is useful in this analysis.
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Lemma 3.1. For every continuous function φ : SM 7→ C, we have

∫

SM
φdσ =

∫

∂−SM

∫ `(z,ω)

0
φ
(

γz,ω(t), γ̇z,ω(t)
)

dtdµ(z, ω).

S k e t c h o f t h e p r o o f. The proof is based on Fubini’s theorem. Note
that (z, ω, t), where z ∈ ∂M , ω ∈ SzM , t > 0 are coordinates in SM , given
by x = γz,ω(t), ξ = γ̇z,ω(t). Passing to those variables, in the l.h.s. above, we
integrate first w.r.t. t, then w.r.t. (z, ω). The Jacobian of that change is 1 (w.r.t.
the measures as in the lemma) because the geodesic flow preserves the Liouville
measure. We refer to [31] for more details. �

Lemma 3.1 easily implies that the map I : L2(M) → L2(∂−SM, dµ) is
bounded, and therefore the normal operator N := I ∗I is a well defined bounded
operator in L2(M).

3.5.2. An expression for I∗. Let ψ(x, ξ) ∈ C(∂−SM), and assume for
simplicity that m = 2. Then

(If, ψ) =

∫

∂−SM
ψ̄(x, ξ)

∫ `(x,ξ)

0
fij(γx,ξ(t))γ̇

i
x,ξ(t)γ̇

j
x,ξ(t))γ̇

i
x,ξ(t) dtdµ(x, ξ).

By Lemma 3.1, we get

(If, ψ) =

∫

SM
fij(x)ξ

iξjψ̄](x, ξ) dσ(x, ξ),

where ψ](x, ξ) is defined as the function that is constant along the orbits of the
geodesic flow and that equals ψ(x, ξ) on ∂−SM . Then

(If, ψ) =

∫

M
fij(x)

∫

SxM
ξiξjψ̄](x, ξ) dσx(ξ) dVol(x).

Therefore,

(3.12) I∗ψ =

∫

SxM
ξiξjψ](x, ξ) dσx(ξ).

3.5.3. Two integral representations for N . Using (3.12), we arrive at the
following.

Proposition 3.2.

(3.13) (Nf)i
′j′(x) =

∫

SxM
ωi

′

ωj
′

∫

fij(γx,ω(t))γ̇ix,ω(t)γ̇jx,ω(t) dtdσx(ω).
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To simplify the notation, we assume that f is extended as zero outside
M , and we integrate for all t. The generalization of the proposition for tensors
of any order m is obvious.

Let us define N on L2(Me) again by Ñ = I∗I. A priori, this definition
gives us a different operator, even if restricted to tensors supported in M . The
reason is that the adjoint is in a different space. On the other hand, (3.13) shows
that for such f , Ñf |M = Nf . Those remarks justify the notation N both for
Ñ and N ; we just think of N as the operator given by (3.13). Note that the
Liouville theorem is the one responsible for this nice symmetry.

Lemma 3.2. The following statements are equivalent:
(a) I is s-injective on L2(M);

(b) N : L2(M) → L2(M) is s-injective;
(c) N : L2(M) → L2(Me) is s-injective;

P r o o f. Let I be s-injective, and assume that Nf = 0 in M for some
f ∈ L2(M). Then

0 = (Nf, f)L2(M) =
∑

‖If‖2
L2(∂−SM,dµ) =⇒ f s = 0.

This proves the implication (a) ⇒ (b). Next, (b) ⇒ (c) is immediate. Assume (c)
and let f ∈ L2(M) be such that If = 0. Then Nf = 0 in Me by Proposition 3.2,
therefore f s = 0. Therefore, (c) ⇒ (a). �

Remark 2. It follows from the proof above that if f is supported in
M , then the equality Nf = 0 in M implies that If = 0 (on ∂−SM), therefore
Nf = 0 in Me. This is not so clear from the integral representation below.

Split the integration in (3.13) w.r.t. t into two parts: for t ≥ 0, and for
t ≤ 0. In the second integral, use the time-reversibility of the geodesic flow, i.e.,
the property γx,ξ(t) = γx,−ξ(−t). Then we can write

(Nf)i
′j′(x) = 2

∫

SxM
ωi

′

ωj
′

∫ ∞

0
fij(γx,ω(t))γ̇ix,ω(t)γ̇jx,ω(t) dtdσx(ω).

Perform the change of variables ξ = tω first, and then y = expx(ξ). The Jaco-
bian of the first change is t−n+1 = |ξ|−n+1. Note that here |ξ| is considered in the
metric, as always. Then |ξ| = ρ(x, y). Moreover, ω = ξ/|ξ| = −gradxρ(x, y),
and ξ = − 1

2gradxρ
2(x, y). Therefore the Jacobian of the second change is

|det(dξ/dy)| = 1
2 |det(∂2ρ2/∂x∂y)|/det g(x) (the term det g(x) comes from the

definition of grad). Since dσx = (det g(x)1/2)dσ0, we see that the measure after
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the change of variables is transformed into |det(∂2(ρ2/2)/∂x∂y)|dy. Actually, by
(3.29), that determinant is negative on the diagonal, and since it never vanishes,
it is always negative; so the absolute value can be replaced by a negative sign.
We therefore obtained the following.

Proposition 3.3.

(3.14) (Nf)kl(x) =
2

√

det g(x)

∫

f ij(y)

ρ(x, y)n−1

∂ρ

∂yi
∂ρ

∂yj
∂ρ

∂xk
∂ρ

∂xl

∣

∣

∣
det

∂2(ρ2/2)

∂x∂y

∣

∣

∣
dy,

x ∈Me.

Let us recall that we always assume that g is extended as a simple metric
in Me. Also, we always extend functions or tensors defined in Ω, or similar
domains, as 0 outside the domain.

3.6. The Euclidean case. In this section we explicitly compute the nor-
mal operator in the Euclidean case. Moreover, we show that then I is s-injective.
We are going to prove much more general theorems below. The Euclidean case
however, gives a deeper insight that one may think. We will show later that N
is a ΨDO for any simple metric. It turns out, that the principal symbol of N
in the general case is the same as in the Euclidean case, with a proper invariant
interpretation of the formula! Moreover, the general procedure we are going to
follow next for generic g is inspired by the Euclidean case. In this section, we
use the notation Ω for the interior of M . Recall that Ω ⊂ Rn. We always extend
functions or tensors fields supported in Ω as 0 outside Ω.

3.6.1. The classical X-ray transform. Let us start with the classical X-ray
transform of functions

Xf(z, ω) =

∫

f(z + tω) dt, z ∈ Rn, ω ∈ Sn−1.

Note that this is a partial case of I. If we parametrize Xf in the way we did
before, we get

Nf(x) = X∗Xf(x) = 2

∫

f(y)

|x− y|n−1
dy.

We now consider this in the whole Rn but applied to functions supported in Ω
(or more generally, decaying fast enough). It is easy to see that

N = cnF−1|ξ|−1F ,
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with some cn > 0, where F stands for the Fourier transform. In other words,
N = cn|D|−1. The injectivity of N on C0(R

n) is now immediate, and in fact,
f = c−1

n |D|Nf .

3.6.2. Back to tensors, the Euclidean case. We now turn our attention
to I acting on symmetric 2-tensors. Instead of studying g = e, we will consider
the equivalent case of a constant metric. Several of the calculations below can
be found in [30] for g = e = {δij} and can be easily generalized to constant g
by transforming g into e, for example by the symplectic transform y = g1/2x,
η = g−1/2ξ, then ds2 =

∑

(dyi)2.
Let g be a constant coefficients metric. We will work in Rn first, assuming

that f is compactly supported. Then we parameterize the geodesics (lines) by
the direction ω and by the point z on the hyperplane z iωi = 0 where the line
crosses that hyperplane. Then

Igf(z, ω) =

∫

fij(z + tω)ωiωj dt.

Any f ∈ L2(Rn) can then be orthogonally decomposed uniquely into a solenoidal
and potential part (different from the decomposition above!)

f = f sRn + dvRn in Rn,

such that δf s
Rn = 0 in Rn and f s

Rn, dvRn are in L2(Rn). Similarly to (3.10), we
have

(3.15) vRn = (δd)−1 δf, f sRn = f − d (δd)−1 δf,

with δd acting in the whole Rn, and the notation vRn indicates that v is defined
in the whole Rn and does not necessarily satisfy boundary conditions if f is
supported in Ω̄. The inverse (δd)−1 is defined through the Fourier transform.
Actually, the latter provides a more detailed form of this decomposition. We
have

(3.16) (f̂ sRn)kl = λijkl(ξ)f̂ij(ξ),

where

(3.17) λijkl(ξ) =

(

δik −
ξkξ

i

|ξ|2
)(

δjl −
ξlξ

j

|ξ|2
)

.

It is important to note that in general, f s
Rn and dvRn are not compactly supported

even if f is. It follows from Proposition 3.3, that for f ∈ C0,

(3.18) (Nef)kl(x) = 2fij ∗
xixjxkxl

|x|n+3

√

det g.
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Taking into account that F|x|α = (cn/2)(det g)−1/2|ξ|−α−n with cn as below, and
Fourier transforming the latter, we get

(3.19) F(Nef)kl(ξ) = cnf̂ij(ξ)
∂4

∂ξi∂ξj∂ξk∂ξl
|ξ|3, cn =

π(n+1)/2

3Γ(n/2 + 3/2)
,

and

(3.20) ∂4|ξ|3/∂ξi∂ξj∂ξk∂ξl = 3|ξ|−1σ(εijεkl), εij(ξ) = δij − ξiξj/|ξ|2.

Here σ(εijεkl) is the symmetrization of εijεkl, i.e., the mean of all similar products
with all possible permutation of i, j, k, l, see [30]. It is easy to see that δNef = 0
and that f s

Rn can be recovered from Nef by the formula

(3.21) [f̂ sRn ]ij =
(

δklij − λklij

)

f̂kl = aijklF(Nef)kl = aklijF(Nef)kl,

where aijkl(ξ) is a rational function, homogeneous of order 1 singular only at
ξ = 0 with explicit form

(3.22) aijkl = |ξ|
(

c1δikδjl + c2(δij − |ξ|−2ξiξj)δkl
)

.

The coefficients c1 and c2 depend on n only [30]. So we get that given Nef , one
can recover f s

Rn by

(3.23) f sRn = ANef,

where A = A(D) has the symbol in (3.22). In particular, Ief = 0 =⇒ f s
Rn =

0 =⇒ f = dsvRn . We are halfway towards proving the following.

Proposition 3.4. Let Ω ⊂ Rn be convex, and let g be a constant metric,
and let (Ω, g) be simple. Then I is s-injective.

P r o o f. We claim that if If = 0 and supp f ⊂ Ω̄, then supp vRn ⊂ Ω̄.
Indeed, we already showed that f = dvRn . Next, since v can be obtained from
f by applying a ΨDO of order −1 with homogeneous constant (w.r.t. x) symbol,
see (3.15), we easily get that |v| = O(|x|−1), as |x| → ∞. Now, dvRn = 0 outside
Ω. By (2.7), we get

(3.24) vRn(x) · ξ = vRn(x+ sξ) · ξ, ∀(x, ξ) ∈ ∂+SΩ, s > 0.

Take the limit s→ ∞ to conclude that vRn(x) · ξ = 0. Varying ξ, we get vRn = 0
on ∂Ω. This also holds if we extend ∂Ω, then we get that suppv ⊂ Ω̄. So we
get that vRn , restricted to Ω, coincides with v in the decomposition f = f s+ dv!
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Moreover, that restriction commutes with taking the symmetric differential d
because v = 0 on ∂Ω. So we get f = dv, i.e., f is potential field.

We want to emphasize that in general, given f and v, vRn related to f ,
we have vRn 6= v in Ω, and in particular, vRn 6= 0 on ∂Ω. We got an equality
only under the assumption If = 0! �

Remark. It is worth mentioning, that if our goal is not a proof of
s-injectivity of Ie but a recovery of f s from Nef , then we can proceed as above.
Namely, since f s

Rn = f − dvRn in Ω, d commutes with the extension as zero, and
f = 0 outside Ω, similarly to (3.24), we can write
(3.25)

vRn(x) · ξ − vRn(x+ sξ) · ξ =

∫ s

0
(ANef)(x+ tv) dt, ∀(x, ξ) ∈ ∂+SΩ, s > 0.

Take the limit s→ ∞, to get

(3.26) vRn(x) · ξ =

∫ ∞

0
(ANef)(x+ tv) dt, ∀(x, ξ) ∈ ∂+SΩ, s > 0.

Choose n − 1 linearly independent ξ’s above, and we have recovered
h := vRn(x)|∂Ω in terms of Nef . Now, let w be the solution w of the BVP

(3.27) δdw = 0 in Ω, wRn |∂Ω = h,

Then in Ω,

(3.28) f s = f sRn + dw = ANef + dw,

and w is expressible in terms of Nef .

We would like to explicitly emphasize again that the decomposition of f
in the whole Rn (in case g = const.) described in this section is different than the
one in Ω described in section 3.4. Even if g = e, formulas (3.9) and (3.15) differ
by the fact that the latter involves the resolvent (δd)−1 in the whole space while
(3.9) involves the solution of a boundary value problem δdv = δf in Ω, v = 0 on
∂Ω.

Explicit expressions of this kind for tensors of any order m can be found
in [30]. For our purposes however, it is important to know that N is a ΨDO
elliptic on solenoidal tensors, and this can be done with a different representation
of the principal symbol of N (different than (3.19)) that generalizes easily for any
m, see (3.36).

3.7. N is a pseudodifferential operator. We show next that N is a
ΨDO in the interior of Me. Next proposition says that N is elliptic on solenoidal
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tensors in Me. We want to warn the reader about hidden reefs here. Solenoidal
tensors in M satisfy δf = 0 in M . The extension of f as zero to Me, that we still
denote by f , may not be solenoidal in Me! Indeed, if f does not vanish on ∂M ,
then δf may produce non-zero delta type of terms and will then fail to be zero.
For this reason, given f ∈ L2(M), f sM (extended as zero) and f sMe

are different
in general. This is the reason we study N in Me first.

Proposition 3.5. N is a classical ΨDO of order −1 in M int
e

. The
principal symbol σp(N) vanishes on tensors of the kind fij = (ξivj + ξjvi)/2 and
is non-negative on tensors satisfying ξifij = 0.

P r o o f. To express N as a pseudo-differential operator, we proceed as in
[40, 41], with a starting point (3.14). It is easy to see that for x close to y we
have

ρ2(x, y) = G
(1)
ij (x, y)(x− y)i(x− y)j ,

∂ρ2(x, y)

∂xj
= 2G

(2)
ij (x, y)(x − y)i,

∂2ρ2(x, y)

∂xj∂yj
= −2G

(3)
ij (x, y),

(3.29)

where G
(1)
ij , G

(2)
ij G

(3)
ij are smooth and on the diagonal and

G
(1)
ij (x, x) = G

(2)
ij (x, x) = G

(3)
ij (x, x) = gij(x).

Then N is a formal pseudo-differential operator with amplitude

Mijkl(x, y, ξ) = 2

∫

e−iξ·z
(

G(1)z · z
)

−n+1

2
−2

×
[

G(2)z
]

i

[

G(2)z
]

j

[

G̃(2)z
]

k

[

G̃(2)z
]

l

detG(3)

√
det g

dz,

(3.30)

where G̃
(2)
ij (x, y) = G

(2)
ij (y, x). Note that Mijkl is the Fourier transform of a

positively homogeneous distribution in the z variable, of order n− 1. Therefore,
Mijkl itself is positively homogeneous of order −1 in ξ. Write

(3.31) M(x, y, ξ) = 2

∫

e−iξ·z|z|−n+1m(x, y, θ) dz, θ = z/|z|,

where, contrary to our convention, | · | stands for the Euclidean norm, and

mijkl(x, y, θ) =2
(

G(1)θ · θ
)

−n+1

2
−2

×
[

G(2)θ
]

i

[

G(2)θ
]

j

[

G̃(2)θ
]

k

[

G̃(2)θ
]

l

detG(3)

√

det g(x)
,

(3.32)
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and pass to polar coordinates z = rθ. Since m is an even function of θ, smooth
w.r.t. all variables, we get (see also [17, Theorem 7.1.24])

(3.33) M(x, y, ξ) = 2π

∫

|θ|=1
m(x, y, θ)δ(θ · ξ) dθ.

Again, |θ| is the Euclidean norm of θ. Now it is easy to see that M is an amplitude
of order −1. Indeed, it is positively homogeneous of order −1 in ξ, and this makes
it a classical amplitude.

To obtain the principal symbol, we set x = y above to get

(3.34) σp(N)(x, ξ) = M(x, x, ξ) = 2π

∫

|θ|=1
m(x, x, θ)δ(θ · ξ) dθ,

where

(3.35) mijkl(x, x, θ) = 2
√

det g(x)
(

gij(x)θ
iθj

)

−n+1

2
−2
θiθjθkθl,

One can show that (3.34), (3.35) can be written in a more elegant way as

(3.36) σp(N)ijkl(x, ξ) = 2π

∫

SxMe

ωiωjωkωlδ(ξ · ω) dσx(ω),

where ξ · ω = ξiω
i. Compare this with (3.19).

To prove ellipticity of M(x, ξ) on solenoidal tensors at (x0, ξ
0), notice that

for any symmetric real fij, we have

(3.37) mijkl(x0, x0, θ)fijfkl = 2
√

det g(x0)
(

gij(x0)θ
iθj

)
−n+1

2
−2(

fijθ
iθj

)2 ≥ 0.

This and (3.34) imply that M ijkl(x0, x0, ξ
0)fijfkl = 0 yields fijθ

iθj = 0 for θ
perpendicular to ξ0, and close enough to θ0. If in addition (ξ0)jfij = 0, then this
implies fijθ

iθj = 0 for θ ∈ neigh(θ0), and that easily implies that it vanishes for
all θ. Since f is symmetric, this means that f = 0.

The last statement of the lemma follows directly from (3.34), (3.35),
(3.37).

Finally, we note that (3.35), (3.37) and the proof above generalizes easily
for tensors of any order. �

3.8. Construction of a parametrix for N . Since N is not elliptic, we
cannot construct a parametrix in the classical sense. What we can do however is
to construct a parametrix Q, so that QN = S +K, where K is smoothing, and
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S is the solenoidal projection. In the interior of M , this can be done as follows.
Consider W := N + |D|−1P, where |D|−1 is any properly supported parametrix
of (−∆g)

1/2. Then that operator is elliptic of order −1, and has a parametrix L
of order 1 so that LW = Id + K, K smoothing. Now, apply S to the left and
right to get that PN = S +K1, where P = SLS and K1 is smoothing. Note that
S is a ΨDO inside M but not near the boundary.

There is an essential problem with that construction. It holds for tensors
supported in any compact inside M int but not for general tensors. This is related
to the following: when applied to such tensors, our operators are not ΨDOs near
∂M anymore (unless we want to use a specialized calculus), but the corresponding
terms, for example Sf , are smooth near ∂M , up tp ∂M , by standard elliptic
regularity for boundary value problems.

We will push ∂M a bit, in other words, we will work in Me. Then we work
with tensors f in M , extended as zero outside M . It seems that this resolves our
problems, but not quite. For any such f , we have

(3.38) PNf = f sMe
+K1f.

However, f sMe
there is the solenoidal projection of f (extended as zero to Me \M)

related to Me, which explains the notation), not the one we want! This is similar
to the need to work with two solenoidal projections of f in the Euclidean case:f s in
Ω and f s

Rn in Rn, see section 3.6.2. Let us denote the usual solenoidal projection
f s by f sM .

So, we have recovered f sMe
from Nf , up to a smoothing term but it

remains to recover f sM , given f sMe
.

Let us compare f sM and f sMe
for f ∈ L2(M). We have f sM = f − dvM ,

where vM = (δd)−1
D δf , similarly for f sMe

. Thus f sM = f sMe
+ dw in M , where the

vector field w = vMe
− vM ∈ H1(M) solves

(3.39) δdw = 0 in M , w|∂M = vMe
.

We need to express vMe
|∂M in terms of Nf . This can be done as follows. Our

inspiration comes from the Euclidean case, see the proof of Proposition 3.4 and
the remark after it. By (3.38), and the fact that f = 0 outside M , one has

(3.40) −dvMe
= P1Nf −K2f in Me \M.

For (x, ξ) in a one-sided neighborhood of (x0, ν(x0)) ∈ Γ+ in T (Me \M), where
ν(x0) is the outer unit normal to ∂M , integrate the above along γx,ξ until this
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geodesic hits ∂M1, where vMe
= 0; denote the corresponding time by τ(x, ξ). We

therefore get

(3.41) [vMe
(x)]i ξ

i =

∫ τ(x,ξ)

0
[P1Nf −K2f ]ij(γx,ξ(t))γ̇

i
x,ξ(t)γ̇

j
x,ξ(t) dt.

Compare this with (3.25), (3.26). Note that in the Euclidean case, K2 = 0
because the parametrix is an exact inverse (but in the whole Rn).

Clearly, for any fixed x, a set of n linearly independent ξ’s in any neigh-
borhood of ν(x0) is enough to determine vMe

(x). This is done by solving a linear
n × n system. We choose this set independent of x in a neighborhood of each
x0 ∈ ∂M , then by compactness argument we choose a finite covering and finite
number of such sets. This allows us to construct an operator P2, such that

(3.42) vMe
|∂M = P2(P1N −K2)f.

To understand the mapping properties of P2, consider first the case m = 1, i.e., f
is an 1-form, and then v is just a function. Then P2 is just antidifferentiation with
zero initial conditions on ∂M1. Let h be the r.h.s. of (3.40). Then one can express
v through h as in (3.41), and this and (3.40) allows us easily to conclude that
P2 : L2(Me \M) → H1(Me \M). Therefore, P2P1N : L2 → H1 (remember, P1N
is of order 0). Then we can take the trace on ∂M to get that vMe

∈ H1/2(∂M),
and this is exactly what we need below.

Let us go back to the case m = 2. If we try to do the same, there we
face an essential difficulty: the symmetric differential d mapping 1-tensors into
2-tensors is elliptic, indeed, but dv (the usual differential of v) can be expressed
through dv (the symmetric one) by a non-local operator, and we only have (3.40)
on the exterior side of M . This does not allow us to use the arguments above to
establish the same mapping properties of P2. Instead, we do the following.

Let us denote again the r.h.s. of (3.40) by h ∈ L2. Then express the r.h.s.
of (3.41) as P̃2h. To estimate ‖P2h‖H1 in M int

e \ M , differentiate P̃2h. If we
differentiate in the direction of ξ, this kills the integral and the result is in L2. If
we differentiate in any other direction, then the smoothing effect of the integral
does not help and we need to differentiate h that is only in L2. Let us assume now
that actually, h ∈ H1(M). Then everything will be OK, but this would require
that f , extended as zero is in H1. In other words, f needs to be in H1(M), and
in addition, we need to know that f = 0 on ∂M . This is a requirement that we
do not want to impose because we really want to work eventually with f s instead
of f and there are no reasonable assumptions on f that would guarantee that
f s = 0 on ∂M .
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By inspecting our argument carefully, we see that the derivative in any
direction can be whiten as a tangential derivative plus a derivative in the direction
of ξ. The latter one just kills the integral, as above. So we only need to worry
about tangential derivatives. If x is not on ∂M , we work in local coordinates
x = (x′, xn), and “tangential” means tangent to xn = const, i.e., ∂x′ . Any
f ∈ H1(M), extended as zero outside M has such derivatives (in L2). Moreover,
if we apply any zero order ΨDO A to f , then the same applies to Af , because A
and ∂x′ commute up to an operator of order −1. Therefore, tangential derivatives
of h exist. �

Those arguments motivate the need to introduce the Hilbert space H̃2(Me)
below. Let x = (x′, xn) be local coordinates in a neighborhood U of a point on
∂M such that xn = 0 defines ∂M . Then we set

‖f‖2
H̃1(U)

=

∫

U

(

n−1
∑

j=1

|∂xjf |2 + |xn∂xnf |2 + |f |2
)

dx.

This can be extended to a small enough neighborhood V of ∂M contained in Me.
Then we set

(3.43) ‖f‖H̃2(Me)
=

n
∑

j=1

‖∂xjf‖H̃1(V ) + ‖f‖H̃1(Me)
.

This norm defines a Hilbert space and H2(Me) ⊂ H̃2(Me) ⊂ H1(Me). We also
define the H̃2(Me) space of symmetric 2-tensors and 1-forms. Note that it is
“almost” H2 but near ∂M , we take only tangential derivatives of ∇f to define
the second order terms in the norm.

The space H̃2(Me) has the property that for each f ∈ H1(M) (extended
as zero outside M), we have Nf ∈ H̃2(Me). This is not true if we replace H̃2(Me)
by H2(Me).

We can return now to our parametrix construction. The arguments above
show that

‖P2P1h‖H1/2(∂M) ≤ C‖h‖H̃2(Me)
, ∀h ∈ H̃2(Me),

and one can see that P2K2 depends continuously on g ∈ Ck, k � 1.

Let R : H t− 1

2 (∂M) → H t(M), be the solution operator u = Rh of the
boundary value problem

(3.44) δdu = 0 in M , u|∂M = h.
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Then R depends continuously on g ∈ C2, see [41]. Then (3.39) and (3.42) show
that w|M = RP2(P1N −K2)f . Therefore,

f sM = f sMe
+ dw = (P1N −K2)f + dRP2(P1N −K2)f

= (Id + dRP2)P1Nf +Kf,

where K is smoothing. Apply SM to the identity above and set Q = SM (Id +
dRP2)P1 = (SM + dRP2)P1. This completes the sketch of the proof of the fol-
lowing.

Proposition 3.6. Let g ∈ Ck(M) be simple. Then for any t = 1, 2, . . . ,
there exists k > 0 and a bounded linear operator

(3.45) Q : H̃2(Me) −→ SL2(M),

such that

(3.46) QNf = f sM +Kf, ∀f ∈ H1(M),

where K : H1(M) → SH1+t(M) extends to K : L2(M) → SH t(M). If t = ∞,
then k = ∞. Moreover, Q can be constructed so that K depends continuously on
g in a small neighborhood of a fixed g0 ∈ Ck(M).

This proposition shows, that If , and therefore Nf , determine the singu-
larities of f s uniquely. In other words, we can recover f s up to a term that is as
smooth as we want. Moreover, it allows us to prove the first important result:
finiteness and smoothness of Ker I. This follows immediately from the fact that
if If = 0, then f s solves the Fredholm equation (Id +K)f = 0.

Theorem 3.3. Assume that g is simple metric in M and extend g as a
simple metric in Me.

(a) The following estimate holds for each symmetric 2-tensor f in H 1(M):

‖f sM‖L2(M) ≤ C‖Ngf‖H̃2(Me)
+ Cs‖f‖H−s(Me), ∀s > 0.

(b) Ker Ig ∩ SL2(M) is finite dimensional and included in C∞(M).

(c) Assume that Ig is s-injective in M , i.e., that Ker Ig ∩SL2(M) = {0}.
Then for any symmetric 2-tensor f in H1(M) we have

(3.47) ‖f s‖L2(M) ≤ C‖Ngf‖H̃2(Me)
.
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Part (b) follows from (a), [44, Proposition V.3.1], and also can be deduced
from the following argument: if K is compact and Id +K is injective, then it is
invertible.

Remark 3. If g ∈ Ck(M), then C∞(M) in (b) should be replaced by
C l(M) with l = l(k) → ∞, as k → ∞, by the arguments in section 3.9 below.

3.9. Openness of the set of s-injective simple metrics. Proof of

the a priori linear estimate. We will now use the results of the previous
section to show that the set of metrics with s-injective ray transform Ig is open
in Ck(M) for k � 1, and moreover, we have (3.1). In other words, we will prove
Theorem 3.2 without the statement that Gk(M) is dense. As explained in the
beginning of this long section, we start with the observation that K in (3.46)
is a compact operator in SgL2(M). Therefore, if Id + Kg is injective for some
g = g0, then it is invertible, and remains so for g close to g. The later has to be
understood in a topology that makes the maps g 7→ Kg, Sg continuous. There
is a small inconvenience here that the space SgL2(M) depends on g as well but
this can be fixed by adding Pg to Id+Kg. We claim that the Ck(M) with k � 1
is one such topology. This can be justified as follows. Instead of working with
ΨDOs with C∞ symbols, we work with Ck symbols. ΨDOs of non-positive order
are still bounded in any bounded domain, if the symbol is in C 2n+1, see [17,
Theorem 18.1.11′] and [37]. In all basic operations with ΨDOs like composition,
constructing a parametrix, etc., we work with finite symbol expansions, instead
of infinite ones. Then the parametrix will invert the elliptic operator modulo an
operator with a kernel that is C l only, where l = l(k) → ∞, as k → ∞.

To make the argument above work, we have to resolve one more problem.
Namely, we have to make sure that in (3.46), if Ng0 is s-injective, then so is
Qg0Ng0 . Notice that any perturbation of Q by a finite rank operator Q0 will
contribute a finite rank term to Kg0 , so Kg0 will stay compact. So, if Id +Kg0

is not s-injective but Ng0 is, then Ker(Id + Kg0) is finite. Then we construct
Q0 so that (Qg0 + Q0)Ng0 has a trivial kernel. Roughly speaking, Q0 maps
Ng0 Ker(Id+Kg0) into Ker(Id+Kg0). We refer to [41, section 5] for more details.

3.10. S-injectivity for analytic metrics. We will sketch the proof of
Theorem 3.1 here. Let g be real analytic in M . We can assume that ∂M is
analytic, and that g ∈ A(Me).

We will show first that then N is an analytic ΨDO in M int. Our reference
for analytic ΨDOs is [46]. Roughly speaking, those are ΨDOs with amplitudes
a(x, y, ξ), (x, y, ξ) ∈ X × X × Rn analytic in all variables and satisfying the
usual symbol estimates (actually, only the one about the zero order derivatives
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is enough) in a complex neighborhood of X ×X ×Rn. The negligible operators
then are the ones that are analytic-regularizing, i.e., they send any distribution
of compact support into a real analytic function. One can change the amplitude
and therefore, destroy the analyticity in any compact in the ξ variable, and this
will result in an analytically regularizing error. Next, one can ask that only (x, y)
stay complex but ξ is real. Then the symbol estimates look like this:

∣

∣Dα
ξ a(x, y, ξ)

∣

∣ ≤ C |α|+1α!|ξ|m−|α|, |ξ| ≥ R0 sup(|α|, 1).

Then the (x, y)-derivatives can be estimated by the Cauchy integral formula.
Such an amplitude is called in [46] a pseudoanalytic amplitude, see [46, Defini-
tion V.2.1]. The corresponding ΨDO is called an analytic ΨDO.

An elliptic analytic ΨDO has the useful property that it has a parametrix
that is a left inverse up to an analytic-regularizing operator. Now, suppose that
N : L2(M) → L2(Me) acts on functions, and we have already proved that N is an
order −1 elliptic ΨDO. Then there is a parametrix Q so that QN = Id+K when
acting of functions of compact support in Me, and K is analytic-regularizing in
M int. If Nf = 0, then f = −Kf , where, as always, we extend f as zero outside
M . Therefore, f is real analytic in M int\M , and vanishes in M int\M . Therefore,
f = 0. So, N has a trivial kernel.

In case of tensors, N is an analytic ΨDO in M int as follows from the
representation (3.33), (3.32) of its amplitude. We have to choose the coordinates
in (3.29) carefully however to make sure that (3.29) hold globally in M (other
arguments can be applied here as well, see [41]). We work in a neighborhood of
a fixed x0, and then we choose x to be normal coordinates centered at x0. Note
that M in (3.33) has a singularity of the type |ξ|−1 at ξ = 0 but it can be easily
resolved.

Proposition 3.7. Let g ∈ A(Me) and assume that If = 0 with some
f ∈ L2(M). Then f sMe

∈ A(Me)

P r o o f. Let us first work in M instead of working in Me in order to see
why Me is needed. Let If = 0. Replace f by f s, then we still have If s = 0. We
have δf s = 0 in M . Since N is elliptic on solenoidal tensors, the pair (|D|N, δ) is
an elliptic analytic ΨDO inside M so we get that f s is analytic inside M . That
does not tell us however what happens near ∂M , i.e., we do not know from those
arguments that f s extends as a real analytic tensor up to ∂M . The later means
that f s extends analytically to some neighborhood of ∂M .

We apply the same arguments to the extension of f to Me as zero, in
Me. Then we get that its solenoidal projection, that we denote by f sMe

is analytic
inside Me but perhaps not up to ∂Me. We can always assume that the latter is
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analytic. Then f sMe
= f − dvMe

, and in Me \M , we have f sMe
= −dvMe

. On the
other hand, vMe

satisfies

δdvMe
= 0 in Me \M, v|∂Me

= 0.

Any solution to this equation is analytic up to the boundary ∂Me [21]. So we get
the same for f sMe

. �

Remark 4. We can quickly conclude that f s ∈ A(M) as well, as in
(3.39)–(3.42). This is not needed however because now we can simply replace M
by Me. Eventually, we will show that f s = 0, and f sMe

= 0.

The next lemma is a boundary recovery result. We expect that If = 0
implies f = dv with some v ∈ H1

0 (M). We still cannot prove that for all simple
metrics but the lemma below says that we can show that this is true at ∂M of
infinite order.

Lemma 3.3. Let g ∈ Ck(M) be a simple metric. Then if If = 0 with
f ∈ L2(M), then there exists a vector field v ∈ C l(M), with v|∂M = 0 and
l = l(k) → ∞, as k → ∞, such that for h := f − dv we have

(3.48) ∂αh|∂M = 0, |α| ≤ l,

and in boundary normal coordinates near any point on ∂M we have

(3.49) hni = 0, ∀i.

P r o o f. Without loss of generality, we may assume that ∂Me is at distance
ε > 0 with ε > 0 small enough, i.e., ∂Me = {x ∈ Me \M, ρ(x,M) = ε}. By
Theorem 3.3, applied to Me,

(3.50) f sMe
∈ C l(Me),

where l � 1, if k � 1.

Let x = (x′, xn) be boundary normal coordinates in a neighborhood of
some boundary point. We recall how to construct v defined in M so that (3.49)
holds, see [39] for a similar argument for the non-linear boundary rigidity problem,
and [14, 32, 40, 41] for the present one. The condition (f−dv)in = 0 is equivalent
to

(3.51) ∇nvi + ∇ivn = 2fin, v|xn=0 = 0, i = 1, . . . , n.
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Recall that ∇ivj = ∂ivj − Γkijvk, and that in those coordinates, Γknn = Γnkn = 0.
If i = n, then (3.51) reduces to ∇nvn = ∂nvn = fnn, vn = 0 for xn = 0; we solve
this by integration over 0 ≤ xn ≤ ε � 1; this gives us vn. Next, we solve the
remaining linear system of n− 1 equations for i = 1, . . . , n− 1 that is of the form
∇nvi = 2fin −∇ivn, or, equivalently,

(3.52) ∂nvi − 2Γαnivα = 2fin − ∂ivn, vi|xn=0 = 0, i = 1, . . . , n− 1,

(here α = 1, . . . , n− 1). Clearly, if g and f are smooth enough near ∂M , then so
is v. If we set f = f s above (they both belong to Ker I), then by (a) we get the
statement about the smoothness of v. Since the condition (3.49) has an invariant
meaning, this in fact defines a construction in some one-sided neighborhood of
∂M in M . One can cut v outside that neighborhood in a smooth way to define
v globally in M . We also note that this can be done for tensors of any order m,
see [32], then we have to solve consecutively m ODEs.

Let h = f − dv, where v is as above. Then h satisfies (3.49), and let

(3.53) hsMe
= h− dwMe

be the solenoidal projection of h in Me. Recall that h, according to our conven-
tion, is extended as zero in Me \M that in principle, could create jumps across
∂M . Clearly, hsMe

= f sMe
because f − h = dv in M with v as in the previous

paragraph, and this is also true in Me with h, f and v extended as zero (and then
v = 0 on ∂Me). In (3.53), the l.h.s. is smooth in Me by (3.50), and h satisfies
(3.49) even outside M , where it is zero. Then one can get wMe

by solving (3.51)
with M replaced by Me, and f there replaced by hsMe

∈ C l(Me). Therefore, one

gets that wMe
, and therefore h, is smooth enough across ∂M , if g ∈ Ck, k � 1,

which proves (3.48).
One can give the following alternative proof of (3.48). One can easily

check that N , restricted to tensors satisfying (3.49), is elliptic for ξn 6= 0. Since
Nh = 0 near M , with h extended as 0 outside M , as above, we get that this
extension cannot have conormal singularities across ∂M . This implies (3.48), at
least when g ∈ C∞. The case of g of finite smoothness can be treated by using
parametrices of finite order in the conormal singularities calculus. �

P r o o f o f Th e o r em 3.1. To simplify the notation, we will replace M
by Me. If we show that f sMe

= 0, we are done, because then we would get f = dv
with some v vanishing on ∂Me, and f = 0 in Me \M . This easily implies that
v = 0 in Me \M , see (3.40), (3.41).

So, denote Me by M . By Lemma 3.3 applied to f s, there exists a smooth
v0 vanishing on ∂M , so that f s−dv0 has zero jet on ∂M . The proof of the lemma
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also implies that v0 is real analytic near ∂M . On the other hand, f s is analytic
by Proposition 3.7. Therefore, f s = dv0 in a neighborhood of ∂M .

We need to show now that v0 has an analytic extension everywhere in M .
Consider

u±(x, ξ) =

∫ τ±(x,ξ)

0
f sij(γx,ξ(t))γ̇x,ξ(t)

iγ̇jx,ξ(t) dt,

where τ±(x, ξ) is the time needed to reach ∂M from (x,±ξ). We have

(3.54) u− + u+ = 0

because If = 0. Next, u± is real analytic inside SM . For x close to ∂M , and
ξ close to normal direction to the boundary (in other words, if ∂M = {xn = 0}
locally, we want 0 < xn � 1, |ξ′| � 1), we have u±(x, ξ) = (v0(x))jξ

j, thus
∂αξ u± = 0 for such (x, ξ) and |α| = 2. This extends analytically to the whole
SM . Therefore, u+ is a linear function of ξ. Relation (3.54) shows that u+ must
be odd in ξ. Therefore, u+ = vj(x)ξ

j with v real analytic inside M , and near
∂M , v = v0. So we showed that v0 extends analytically. Since f s = dv near ∂M ,
by analytic extension, we get the same everywhere in M . That however implies
f s = 0. �

3.11. End of the Proof of Theorem 3.2. In section 3.9, we sketched
the proof of Theorem 3.2 without the statement that Gk(M) is dense. Theo-
rem 3.1 provides the missing part.

4. Generic Boundary Rigidity for simple metrics. We will
formulate here a generic boundary rigidity result for simple manifolds, and will
sketch its proof. We linearize near a metric with an s-injective Ig using the results
in the previous section. For complete details, we refer to [41].

Theorem 4.1 ([41]). Let k0 and Gk(M) be as in Theorem 3.2. There
exists k ≥ k0, such that for any g0 ∈ Gk, there is ε > 0, such that for any two
metrics g1, g2 with ‖gm − g0‖Ck(M) ≤ ε, m = 1, 2, we have the following:

(4.1) ρg1 = ρg2 on (∂M)2 implies g2 = ψ∗g1

with some Ck+1(M)-diffeomorphism ψ : M →M fixing the boundary pointwise.

We would like to note that if two metrics are isometric, i.e., g2 = ψ∗g1
with ψ ∈ C3, and if g1,2 ∈ Ck(M), k ≥ 2, then ψ must be in Ck+1, and moreover,
if ‖g1‖Ck + ‖g2‖Ck ≤ A, then ‖ψ‖Ck+1 ≤ C(A), see [41, Lemma 6].
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4.1. Recovery of the get of g in boundary normal coordinates.

We start with a boundary recover result. The next theorem can be considered as
a non-linear version of Lemma 3.3.

Theorem 4.2. Let g1 and g2 be two simple smooth metrics on M with
the same boundary distance function. Then there exists a smooth diffeomorphism
ψ : M →M fixing the boundary pointwise so that

(4.2) ∂αg1 = ∂α(ψ∗g2) on ∂M

in any coordinate system, for any multiindex α.

P r o o f. We will prove something more specific. Choose boundary normal
coordinates related to gi, i = 1, 2. In principle, they depend on gi. Identify them
now. In other words, we consider a diffeomorphism ψ that maps the g1 boundary
normal coordinates to the g2 boundary normal coordinates near ∂M , and then
we extend it inside M . Then we set ĝ2 = ψ∗g2. Now g1 and ĝ2 have the same
boundary normal coordinates. let us call them x. We will denote ĝ2 again by g2
and will show that g1 and g2 have the same jet at ∂M . It is enough to show that

(4.3) ∂kxnf = 0 for xn = 0, ∀k, where f = g1 − g2.

We will sketch the proof in [19]. The equality (4.3) for k = 0 is immediate
by studying the lengths of geodesics connecting x, y on ∂M and letting y → x.
Assume that (4.3) is wrong. Then there is an integer l so that ∂ lxnf 6≡ 0 for
xn = 0 and let l be the least integer with that property. Then ∂ lxnf(x0) 6= 0 for
some x0 ∈ ∂M . By studying the Taylor expansion of f w.r.t. xn near xn = 0,
and with x′ = x′0 fixed, we see that there exists a unit vector ξ0 tangent to ∂M
so that either fij(x)ξ

iξj > 0 or fij(x)ξ
iξj < 0 for (x, ξ) near (x0, ξ0) and x 6∈ ∂M .

We can assume the first inequality. Then we get Igjf(x, ξ) > 0, j = 1, 2 for
all (x, ξ) close enough to (x0, ξ0), and ξ0 not tangent to ∂M (we use the strict
convexity here). Now, Ig1g1 = ρg1(x, y), where y ∈ ∂M is the exit point of γg1x,ξ
(the superscript g1 indicates that this is the geodesic in the metric g1). So we
get ρg1(x, y) > Ig2f(x, ξ). On the other hand, Ig2f(x, ξ) ≥ ρg2(x, y) because the
energy form for all smooth curves connecting x and y is minimized by γ g2x,ξ. Those
two inequalities contradict the given equality ρg1 = ρg2 on ∂M × ∂M . �

If g1,2 in Theorem 4.2 are of finite smoothness Ck, then (4.2) remains true
for |α| ≤ k − 2.

A more general boundary recovery results was recently proved by the
author and G. Uhlmann in [43], see Theorem 5.3.
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4.2. Proof of the generic boundary rigidity.

S k e t c h o f t h e P r o o f o f Th e o r em 4.1. Let g0 ∈ Gk with k large
enough. Let g1 and g2 be two metrics such that ρg1 = ρg2 on ∂M × ∂M , and

(4.4) g1, g2 ∈ B =
{

g ∈ Ck(M); ‖g − g0‖Ck(M) ≤ ε
}

We will show that for 0 < ε� 1, g2 is isometric to g1.
First, by Theorem 4.2, we may assume that g1 and g2 have the same

boundary normal coordinates, and that (4.2) holds for |α| as large as needed, if
k � 1. One can see that we still may assume that (4.4) holds. Using (4.2), we
extend g1 and g2 in the same way to Me by keeping those extensions Ck. Then
we pass to semigeodesic coordinates as in the second paragraph of Section ??,
related to each metric. Each such coordinate system gives as a diffeomorphism
φj from M to a domain Ωj ⊂ Rn, j = 1, 2. A priori, Ω1 may be different from
Ω2 but since g1 and g2 have the same scattering relation, we get that actually,
φ1 = φ2 in Me \M , and in particular, Ω1 = Ω2, that we will call just Ω. Denote
also Ωe = φ1(Me) = φ2(Me). Then we consider the push forwards φ1∗g1, φ2∗g2.
It is important to note that the new metrics still agree at ∂Ω at any fixed order,
if k � 1 because φ1 = φ2 in Me \M . As above, we can still assume that the new
metrics are in B. This gives us that for f := φ1∗g1 − φ2∗g2 we have

(4.5) f ∈ Ck(Ωe), suppf ⊂ Ω, fin = 0, i = 1, . . . , n.

We now use the fact that the linearization of ρ2
g1(x, y) for (x, y) ∈ (∂Ω)2 is

Ig1f(x, ξ), see Proposition 3.1, with ξ = exp−1
x y/| exp−1

x y|, to get

(4.6) ‖Ng1f‖L∞(Ωe) ≤ C‖f‖2
C1 ,

with C uniform, if k ≥ 2. Let ε > 0 be such that B ⊂ Gk, and the constant C
in (3.1) is uniform in B. Then using (3.1), (4.6), and interpolation estimates, we
get that for any 0 < µ < 1,

‖f s‖L2 ≤ C‖f‖1+µ
L2

with C > 0 uniform in B, if k = k(µ) � 1. The final step is to estimate f by f s.
There is no such estimate for generals f ’s, but we have the advantage here that
f satisfies (4.5). Now, fni = 0 allows us to prove that ‖f‖L2 ≤ C‖f s‖H2 . Here
is a brief sketch of that. Write f = f s + dv. Then (dv)in = −f sin. We can solve
this equations for v, wee (3.51), and therefore estimate v and dv in terms of f s.
Therefore, we can estimate f in terms of f s. For more details, see [14] and [41,
Sec. 7.2]
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Using interpolation estimates again, we get

‖f‖L2 ≤ C‖f‖1+µ
L2

with a new µ > 0. This implies f = 0, if ‖f‖L2 � 1, and the latter condition is
fulfilled, if ε� 1. This concludes the sketch of the proof of Theorem 4.1.

This sketch leaves hidden the need to know that f has zero derivatives
across ∂M up to any fixed order, i.e., that the first condition in (4.5) holds. That
is used in the interpolation estimates, to make sure that Ng1f is bounded in
Hk+1(Ωe) with some k � 1, if f ∈ Ck. �

4.3. Stability. The linear stability estimate (3.1) in Theorem 3.2 and the
“stable” proof of Theorem 4.1 above allow us to prove a Hölder type of conditional
stability estimate.

Theorem 4.3 ([41]). Let k0 and Gk(M) be as in Theorem 3.2. Then for
any µ < 1, there exits k ≥ k0 such that for any g0 ∈ Gk, there are ε0 > 0 and C >
0 with the property that that for any two metrics g1, g2 with ‖gm− g0‖C(M) ≤ ε0,
and ‖gm‖Ck(M) ≤ A, m = 1, 2, with some A > 0, we have the following stability
estimate

‖g2 − ψ∗g1‖C2(M) ≤ C(A)‖ρg1 − ρg2‖µC(∂M×∂M)

with some diffeomorphism ψ : M →M fixing the boundary pointwise.

We will not present the proof here, see [41]. We basically follow the
uniqueness proof above, and any time we use the fact that ρg1 = ρg2 on (∂M)2,
we replace it with the condition that ρg1 −ρg2 = O(δ), on (∂M)2 with 0 ≤ δ � 1,
and we want to get eventually that f = O(δµ). The proof is rather long and
technical, although not really surprising. One of the important ingredients is the
following stability at the boundary result, that is also of independent interest.

Theorem 4.4. Let g1 and g2 be two simple metrics in M , and Γ ⊂⊂
Γ′ ⊂ ∂M be two sufficiently small open subsets of the boundary. Let ψ be as
above. Then

∥

∥∂kxn(ψ∗g2 − g1)
∥

∥

Cm(M)
≤ Ck,m

∥

∥ρ2
g2 − ρ2

g1

∥

∥

Cm+2k+2

(

Γ′×Γ′

),

where Ck,m depends only on M and on a upper bound of g1, g2 in Cm+2k+5(M).

The proof of Theorem 4.4 is actually the most difficult step in proving
Theorem 4.3. It generalizes Theorem 4.2, but since the proof of the latter is not
constructive, we could not just go over its steps and prove stability that way. On
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the other hand, one would expect that all derivatives of ρg(x, y) at y = x ∈ ∂M
would recover recursively all derivatives of g in boundary normal coordinates at
x. This is actually true, and done in [43], where the data is the scattering relation
(determined uniquely by the boundary distance function). Having a constructive
way to recover ∂αg1,2, one could prove stability, too. We refer to [41] for the
proof of Theorem 4.4, done before [43] that is still not constructive.

5. Generic Lens Rigidity for regular manifolds. We will describe
here the results in [42, 43] and we will be very sketchy about the proofs, even
more than in the previous sections.

We study the lens rigidity question on M . Now, M is not necessarily
diffeomorphic to a ball, and we may not have a global coordinate system any-
more. The topology of M can be more complicated but we will still impose some
topological condition. Next, we do not assume that ∂M is convex. We work with
a subset of geodesics, i.e., we study the problem with incomplete data (under
some conditions, of course). Finally, we do not assume lack of conjugate points
anymore. We allow geodesics with conjugate points, but we need “enough” geo-
desics without conjugate points, and we use them only. Finally, (M, g) does not
need to be non-trapping. The main results are of generic type, similarly to the
ones above for simple metrics.

We start describing our assumptions.

Let D be an open subset of B(∂M). Given (x, ξ) ∈ D, let γκ−1

−
(x,ξ) denote

the geodesic issued from κ−1
− (x, ξ) with endpoint π(σ(x, ξ)), where π is the natural

projection onto the base point. With some abuse of notation, we define

ID(x, ξ) = I(γκ−1

−
(x,ξ)), (x, ξ) ∈ D.

It is clear that one cannot hope to recover g from the scattering relation σ and
the travel time ` restricted to D, if (the closure of) the geodesics issued from D
do not cover the whole M . The next condition is similar to that but it is in the
phase space: we want the conormal bundle of those geodesics to cover T ∗M so
that we can recover the singularities. Moreover, we want those geodesics to be
simple ones, since otherwise, one has examples where the singularities cannot be
recovered.

Definition 5.1. We say that D is complete for the metric g, if for
any (z, ζ) ∈ T ∗M there exists a maximal in M , finite length unit speed geodesic
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γ : [0, l] →M through z, normal to ζ, such that

{(γ(t), γ̇(t)); 0 ≤ t ≤ l} ∩ S(∂M) ⊂ D,(4.7)

there are no conjugate points on γ.(4.8)

We call the Ck metric g regular, if a complete set D exists, i.e., if B(∂M) is
complete.

If z ∈ ∂M and ζ is conormal to ∂M , then γ may reduce to one point.
Since (4.7) includes points where γ is tangent to ∂M , and σ = Id, ` = 0 there,
knowing σ and ` on them provides no information about the metric g. On the
other hand, we require below that D is open, so the purpose of (4.7) is to make
sure that we know σ, ` near such tangent points.

Definition 5.2. We say that (M, g) satisfies the Topological Condi-
tion (T) if any path in M connecting two boundary points is homotopic to a
polygon c1 ∪ γ1 ∪ c2 ∪ γ2 ∪ · · · ∪ γk ∪ ck+1 with the properties that for any j,

(i) cj is a path on ∂M ;

(ii) γj : [0, lj ] → M is a geodesic lying in M int with the exception of its
endpoints and is transversal to ∂M at both ends; moreover, κ−(γj(0), γ̇j(0)) ∈ D;

Notice that (T) is an open condition w.r.t. g, i.e., it is preserved under
small C2 perturbations of g.

5.1. The Linear Problem for regular manifolds. We will describe
the results in [42] about the ray transform with incomplete data on regular man-
ifolds.

To define the CK(M) norm in a unique way, and to make sense of real
analytic g’s, we choose and fix a finite real analytic atlas on M .

Theorem 5.1. ([42, 43]). Let G ⊂ Ck(M), with k � 2 depending on
dim(M) only, be an open set of regular Riemannian metrics on M such that (T)
is satisfied for each one of them. Let the set D ⊂ B(∂M) be open and complete
for each g ∈ G. Then there exists an open and dense subset Gs of G such that
Ig,D is s-injective for any g ∈ Gs.

Moreover, there is a stability estimate similar to (3.1). The density in the
theorem above is provided by the following result (compare with Theorem 3.1).

Theorem 5.2 ([42]). Let g be an analytic, regular metric on M . Let D
be complete. Then ID is s-injective.
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The proof of Theorem 5.2 that we give in [42] is quite different from that
of Theorem 3.1. The critical step is to show that ID recovers the analytic wave
front set of f s inside T ∗M . If one wants to recover the usual C∞ wave front
set of f s inside T ∗M , then this can be done by localizing near simple geodesics
by standard cut-offs in the x and ξ variables. In the analytic case, however,
such cut-offs would destroy the analyticity of the symbols. In the theory of the
analytic ΨDOs, one works with special cut-offs χN (x) and gR(ξ) depending on
large parameters with “good” control of the derivatives. We refer to [46] for
details. Another approach based on complex deformation of the contour of the
integration can be found in [36]. In our case, however, ID is an FIO, and we need
a cut-off before composing it with I∗D. This cannot be done, at least directly,
with the pseudodifferential cut-offs χN and gR. Instead, we apply the complex
stationary phase method of [36]. As a result, we get that IDf = 0 implies that
the FBI transform of f s inside T ∗M , with analytic phase, and an analytic elliptic
symbol, decays exponentially fast. This is one of the characterizations of absence
of analytic wave front set. See [42] for details. We still have the same problems
near the boundary, as before.

A new moment in the proof is the following. Using the microlocal analytic
arguments above, we show that f s = dvp locally, in a neighborhood Up of any
point on p ∈M with vp that can depend on p. If Up∩∂M 6= ∅, then we also have
vp = 0 on ∂M . To complete the proof, we need to show that vp can be chosen
independently of p on the whole M . This is done by starting from a neighborhood
of ∂M where one can uniquely define v = v0, and showing that v0 admits analytic
continuation in the whole M . To show that this continuation is independent of
the path, we need (T).

Having proved Theorem 5.2, we prove Theorem 5.1 by choosing an open
subset of D, still complete, so that the corresponding set of geodesics is a manifold.
Using suitable smooth cot-off α on that manifold, we study Iα := αI (another
notation abuse), instead of ID, where the cut-off is a characteristic function. Then
we follow the analysis of simple manifolds.

5.2. The non-linear Lens Rigidity problem. Here we sketch the
results in [43]. We start with a boundary determination result that generalizes
Theorem 4.2.

Theorem 5.3. Let (M, g) be a compact Riemannian manifold with
boundary and assume that we know g|∂M . Let (x0, ξ0) ∈ S(∂M) be such that
the maximal geodesic γ0 through it is of finite length, and assume that x0 is not
conjugate to any point in γ0 ∩ ∂M . If σ and ` are known on some neighborhood
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of (x0, ξ0), then the jet of g at x0 in boundary normal coordinates is determined
uniquely.

Note that regularity of g is not needed here, nor (T) is needed. Also the
boundary does not need to be convex, as in Theorem 4.2. The proof is based on
analysis of the eikonal equation.

Theorem 5.4 below says, loosely speaking, that for the classes of manifolds
and metrics we study, the uniqueness question for the non-linear lens rigidity
problem can be answered locally by linearization. This is a non-trivial implicit
function type of theorem however because our success heavily depends on the a
priori stability estimate that the s-injectivity of ID implies, see Theorem 5.1 and
the remark after it. We work with two metrics g and ĝ; and will denote objects
related to ĝ by σ̂, ˆ̀, etc. Note that (T) is not assumed in the first theorem.

Theorem 5.4. Let g0 ∈ Ck(M) be a regular Riemannian metric on M
with k � 2 depending on dim(M) only. Let D be open and complete for g0, and
assume that there exists D′ b D so that Ig0,D′ is s-injective. Then there exists
ε > 0, such that for any two metrics g, ĝ satisfying

(4.9) ‖g − g0‖Ck(M) + ‖ĝ − g0‖Ck(M) ≤ ε,

the relations

σ = σ̂, ` = ˆ̀ on D
imply that there is a Ck+1 diffeomorphism ψ : M →M fixing the boundary such
that

ĝ = ψ∗g.

Next theorem is a version of [42, Theorem 3]. It states that the require-
ment that Ig0,D′ is s-injective is a generic one for g0.

Theorem 5.5. Let G ⊂ Ck(M), k � 2 depending on dim(M) only, be
an open set of regular Riemannian metrics on M such that (T) is satisfied for
each one of them. Let the set D′ ⊂ B(∂M) be open and complete for each g ∈ G.
Then there exists an open and dense subset Gs of G such that Ig,D′ is s-injective
for any g ∈ Gs.

Theorems 5.4 and 5.5 combined imply that there is local uniqueness, up
to isometry, near a generic set of regular metrics.

Corollary 5.1. Let D′ b D, G, Gs be as in Theorem 5.5. Then the
conclusion of Theorem 5.4 holds for any g0 ∈ Gs.
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Remark 5. Condition (T) in Theorem 5.5, and Corollary 5.1 in some
cases can be replaced by the assumption that (M, g) can be extended to (M̃ , g̃)
that satisfies (T). One such case is if (M̃, g̃) is a simple manifold, and we study
σ, ` on its maximal domain, i.e., D = B(∂M). In particular, we get local generic
lens rigidity for subdomains of simple manifolds when D is maximal.

6. Further results. The methods developed so far apply to other
problems. In [15], B. Frigyik, G. Uhlmann and the author study the integral
geometry problem of integrating functions over general family of curves, with a
variable weight. We show that one has injectivity and stability for generic curves
and weights.

In a joint work [13] with N. Dairbekov, G. Paternain, and G. Uhlmann, we
study boundary rigidity for magnetic systems. The dynamics there is described
by the magnetic Hamiltonian (D + α)2

g, where g is a Riemannian metric, and α
is an one-form. The corresponding Hamiltonian curves γ (in the base) are called
magnetic geodesics. The linearized problem then is to integrate functions of the
type

φ(x, ξ) = hij(x)ξ
iξj + βi(x)ξ

i

over the magnetic flow in the phase space, i.e., when (x, ξ) = (γ(t), γ̇(t)). The
reason we have functions that are quadratic polynomials of ξ is that the Hamil-
tonian is of the same type. The non-linear problem is to recover g, α up to a
gauge transformation, given either the scattering relation, or the magnetic action
on the boundary that replaced the distance. Gauge transformations are given by
g 7→ ψ∗g, α 7→ ψ∗α+dφ, where ψ is a diffeomorphism fixing ∂M as above, and φ
is a function vanishing on ∂M . We prove generic uniqueness results of the type
above.
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