New Series Vol. 27, 2013, Fasc. 1-2

Another Generalization of Arhangel'skii's Theorem

Nurettin Ergun

Presented by Petăr Kenderov

A. Arhangel'skii has proved his famous inequality $|X| \leq 2^{\kappa}$ where $\kappa = \chi(X) \cdot L(X)$ for any T_2 space X in 1969. Afterwards the result and proving technique have been seriously improved. We give in this note another improvement of this inequality in the class of T_1 spaces. We utilize a proving technique, defined independently by R. Pol and B. Sapirovskii in 1974 (see [4] and [6]) which is frequently and efficiently used by R. Hodel [3] recently.

MSC 2010: 54A25, 54A35.

Key Words: tightness, local pseudo-character number, Lindelöf number, sequential space.

Introduction

It is well known that in 1922, P. S. Alexandroff has formulated one of the interesting question on cardinal invariants: Does every first countable compact T_2 space have cardinality at most $\mathbf{c} = 2^{\aleph_0}$? This problem has been solved by Alexander Arhangel'skii in 1969, see [1]. He has proved the famous Arhangel'skii inequality, which states that $|X| \leq 2^{\chi(X) \cdot L(X)}$ for any T_2 space X. This inequality and its proving technique have been improved and simplified afterwards, see for example two surveys of R. Hodel [2],[3]. Two well known generalizations for instance, is written in the sequel as Corollary 1 and Corollary 2. We give in this note another generalization of Arhangel'skii Theorem in T_1 spaces.

In this paper t(X) and L(X) denotes the tightness and Lindelöf number of the topological space X respectively . $\psi(x, X)$ on the other hand denotes the local pseudo-character number at the point $x \in X$. One must remember that the last number is meaningful in T_1 spaces; for its definition see [2] for instance. The pseudo-character $\psi(X)$ of any T_1 space X on the other hand is defined as $\psi(X) = \sup_{x \in X} \psi(x, X) + \omega_0$ and satisfy $\psi(X) \leq o(X) \leq 2^{|X|}$ whenever X is infinite. In 1974 it has been proved by V.Shapirovskii that $|X| \leq 2^{t(X) \cdot \psi(X) \cdot L(X)}$ holds for any T_2 space X. Note that this is an elegant generalization of the Arhangel'skii's inequality since it is known that $t(X) \cdot \psi(X) \leq \chi(X)$ and therefore $2^{t(X)\psi(X)L(X)} \leq 2^{L(X)\chi(X)}$ holds in any T_1 space.

As is well known, for any cardinal number κ we write κ^+ as the well defined cardinal number min $\{\lambda \in \mathbf{Card} : \kappa < \lambda\}$ which certainly exists and κ is nothing but the well ordered set $W(\kappa) = \{\alpha \in \mathbf{Ord} : \alpha < \kappa\}$. Finally for any set A we write $\mathcal{P}_{\leq\kappa}(A)$ instead of $[A]^{\leq\kappa}$ i.e. $\mathcal{P}_{\leq\kappa}(A) = \{E \subseteq A : |E| \leq \kappa\}$. κ satisfies $\kappa \geq \aleph_0$ in this paper. Y^X denotes as always the set of the whole functions $f : X \to Y$.

The main result

Theorem. Let X be a T_1 space having the following conditions

- 1) $t(X) \leq \kappa$ and $L(X) \leq \kappa$,
- 2) $\psi(x, X) \leq 2^{\kappa}$ for each $x \in X$,
- 3) $|\overline{A}| \leq 2^{\kappa}$ for any subset $A \subseteq X$ satisfying $|A| \leq \kappa$.

Then we necessarily have $|X| \leq 2^{\kappa}$.

Proof. We may suppose that $\kappa < |X|$, since otherwise there is nothing to prove. Notice first that, there is a family of open subsets $\mathcal{G}_x = \{G_{x,\gamma} : \gamma < 2^{\kappa}\}$ for each $x \in X$ such that $\{x\} = \bigcap \mathcal{G}_x = \bigcap_{\gamma < 2^{\kappa}} G_{x,\gamma}$ by the condition 2). Let us construct via transfinite induction the family $\{A_{\alpha} : \alpha < \kappa^+\}$ of subsets of X with the following properties:

 $i) A_{\beta} \subseteq A_{\alpha} \text{ if } \beta < \alpha < \kappa^{+},$ $ii) 1 \leq |A_{\alpha}| \leq 2^{\kappa} \text{ for any } \alpha < \kappa^{+},$ $iii) \overline{A} \subseteq A_{\alpha} \text{ for any } A \in \mathcal{P}_{\leq \kappa}(\bigcup_{\beta < \alpha} A_{\beta}),$ $iv) \text{ Let } A \in \mathcal{P}_{\leq \kappa}(\bigcup_{\beta < \alpha} A_{\beta}). \text{ If } \gamma_{x} < 2^{\kappa} \text{ is determined for each } x \in A$ and if furthermore $X \neq \bigcup_{x \in A} G_{x,\gamma_{x}} \text{ then } A_{\alpha} - \bigcup_{x \in A} G_{x,\gamma_{x}} \neq \emptyset.$

In fact let us take as A_0 any non empty subset of X with $|A_0| \leq 2^{\kappa}$. Take any $\alpha < \kappa^+$. If all the $A_{\beta} \subseteq X$ sets, $\beta < \alpha$, satisfying all the required conditions have already been defined at the earlier steps than define $A_{\alpha} \subseteq X$ as in the following:

$$A_{\alpha} = \bigcup \{ \overline{A} : A \in \mathcal{P}_{\leq \kappa}(\bigcup_{\beta < \alpha} A_{\beta}) \} \cup \{ c(X - \bigcup_{x \in A} G_{x,\gamma_x}) : A \in \mathcal{P}_{\leq \kappa}(\bigcup_{\beta < \alpha} A_{\beta})$$

and $X \neq \bigcup_{x \in A} G_{x,\gamma_x} \}.$

In here c denotes the choice function defined for all nonempty subsets of X, i.e. if $A \neq \emptyset$ then the uniquely determined point c(A) satisfy $c(A) \in A$. Since $\operatorname{card}(\mathcal{P}_{\leq\kappa}(\bigcup_{\beta<\alpha}A_{\beta})) \leq 2^{\kappa}$ and $\operatorname{card}((W(\kappa^+))^A) \leq 2^{\kappa}$ we easily have $1 \leq |A_{\alpha}| \leq 2^{\kappa}$. A_{α} evidently satisfy conditions *iii*) and *iv*). Notice furthermore we have for any $x \in \bigcup_{\beta<\alpha} A_{\beta}$

$$\{x\} \subseteq \overline{\{x\}} \subseteq \bigcup \{\overline{A} : A \in \mathcal{P}_{\leq \aleph_0}(\bigcup_{\beta < \alpha} A_\beta)\} \subseteq \bigcup \{\overline{A} : A \in \mathcal{P}_{\leq \kappa}(\bigcup_{\beta < \alpha} A_\beta)\} \subseteq A_\alpha .$$

Hence we get $\bigcup_{\beta < \alpha} A_{\beta} \subseteq A_{\alpha}$, i.e. the condition *i*) is obtained. Therefore the transfinite induction process has been achieved. Define now the closed subset

$$K = \bigcup_{\alpha < \kappa^+} A_\alpha \quad \subseteq X$$

Since $t(X) \leq \kappa$ it is indeed easy to see that $\overline{K} \subseteq K$ and $|K| \leq 2^{\kappa}$. Suppose that for a moment $K \neq X$. Then there exists a point $x_0 \in X - K$. Notice that for any covering \mathcal{U} of K where each $U \in \mathcal{U}$ is an open set in X we have a subcovering $\mathcal{U}^* \subseteq \mathcal{U}$ satisfying $K \subseteq \bigcup \mathcal{U}^*$ and $|\mathcal{U}^*| \leq \kappa$. Furthermore for any $\alpha < \kappa^+$ and any $x \in A_{\alpha}(\subseteq K)$ one can define an ordinal $\gamma_x < 2^{\kappa}$ such that $x_0 \notin G_{x,\gamma_x}$, hence as we have just observed there is a subfamily $\mathcal{G}^* \subseteq \{G_{x,\gamma_x} : x \in K\}$ such that $|\mathcal{G}^*| \leq \kappa$ and $K \subseteq \bigcup \mathcal{G}^*$. Define now $E_0 = \{x \in K : G_{x,\gamma_x} \in \mathcal{G}^*\} \subseteq K$ and notice that $|E_0| \leq \kappa$. Thus there exists an ordinal $\alpha_0 < \kappa^+$ such that $E_0 \subseteq \bigcup_{\beta < \alpha_0} A_{\beta}$. Since $x_0 \in X - \bigcup \mathcal{G}^* = X - \bigcup_{x \in E_0} G_{x,\gamma_x} \neq \emptyset$, we necessarily would have the following contradiction:

$$c(X - \bigcup_{x \in E_0} G_{x,\gamma_x}) \in A_{\alpha_0} - \bigcup_{x \in E_0} G_{x,\gamma_x} \subseteq K - \bigcup_{x \in E_0} G_{x,\gamma_x} = K - \bigcup \mathcal{G}^* = \emptyset$$

Hence, we should necessarily have X = K and therefore $|X| = |K| \leq 2^{\kappa}$.

Corollary 1 (Arhangel'skii [1]). Let X be a sequential Lindelöf T_2 space with $\psi(X) \leq 2^{\aleph_0}$. Then $|X| \leq 2^{\aleph_0}$.

Proof: Every sequential space have countable tightness and in any sequential T_2 space we have $|\overline{A}| \leq 2^{\aleph_0}$ for any countable subset $A \subseteq X$.

Corollary 2 (Sapirovskii [5]). Every Lindelöf T_2 space X having countable tightness and countable pseudo-character, satisfy $|X| \leq 2^{\aleph_0}$.

Proof. Let X be a Lindelöf T_2 space having all the properties mentioned in the statement. For any closed $K \subseteq X$ we have $t(K) \leq \aleph_0$ because of $cl_K E = \overline{E} \cap K = \overline{E}$ for any $E \subseteq K$ and $t(X) \leq \aleph_0$. Thus we get $|K| \leq 2^{t(K)\psi(K)L(K)} \leq 2^{\aleph_0}$ by the well known Sapirovskii's inequality hence $|\overline{A}| \leq 2^{\aleph_0}$ for any $A \subseteq X$, so the main theorem is used for $\kappa = \aleph_0$.

Acknowledgement

We sincerely grateful to Prof. R. Hodel from Duke University for his intimate interest and approval of the paper.

References

- [1] A. Arhangel'skii. On the cardinality of bicompacta satisfying the first axiom of countability. // Soviet Math. Dokl., 10, 1969, 951–955.
- [2] R. Hodel. Cardinal Functions I. // K. Kunen& J.E. Vaughan, (Eds.), The Handbook of Set-Theoretical Topology, North Holland, 1984, 1–61.
- [3] R. Hodel. Arhangel'skii's solution to Alexandrooff's problem: a survey. // Topology and its Applications, **153**, 2006, 2199–2217.
- [4] R. Pol. Short proofs of two theorems on cardinality of topological spaces.
 // Bull. Acad. Pol. Sci., 22, 1974, 1245–1249.
- [5] B. Sapirovskii. On discrete subspaces of topological spaces; weight, tightness and Suslin number. // Soviet Math. Dokl., 13, 1972, 215–219.
- [6] B. Sapirovskii. Canonical sets and character. Density and weight in compact spaces. // Soviet Math. Dokl., 15, 1974, 1282–1287.

Received: Juni 6, 2013

Department of Mathematics Faculty of Science and Letters Marmara University Üst Göztepe, Kadıköy Istanbul, TURKEY e-mail: nergun@marmara.edu.tr