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For functions belonging to the classes C2[0, 1] and C3[0, 1], we establish the lower

estimate with an explicit constant in approximation by Bernstein polynomials in terms of the

second order Ditzian-Totik modulus of smoothness. Several applications to some concrete

examples of functions are presented.
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1 Introduction

For every function f ∈ C[0, 1] the Bernstein polynomial operator is given
by

Bn(f ;x) =
n∑
k=0

f(
k

n
) ·
(
n

k

)
xk(1− x)n−k, x ∈ [0, 1]. (1.1)

To handle this operator, it is useful to utilize the second order Ditzian-Totik
modulus of smoothness ω2

ϕ(f, t) which is equivalent to the K− functional given
by

K2
ϕ(f, t2) := inf

g∈W 2
∞(ϕ)

{
‖f − g‖+ t2‖ϕ2g′′‖L∞[0,1]

}
, (1.2)

where ‖·‖ denotes the uniform norm on C[0, 1], ϕ(x) =
√
x(1− x), t > 0, n ∈ N

and the weighted Sobolev space W 2
∞(ϕ), is given by

W 2
∞(ϕ) =

{
f ∈ AC[0, 1], f ′ ∈ ACloc, ϕ2f ′′ ∈ L∞[0, 1]

}
. (1.3)
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Remark 1. For definition, properties and many applications of ω2
ϕ(f, t)

and K2
ϕ(f, t2) see [3]. For example, it is known that if in the definition of

K2
ϕ(f, t2), instead of the space W 2

∞(ϕ) we consider the space

C2[0, 1] = {g : [0, 1]→ R; g is twice continuously diferentiable on [0, 1]},

where C2[0, 1] ⊂ W 2
∞(ϕ), this replacement does not have any effect on the

equivalence between ω2
ϕ(f, t) and K2

ϕ(f, t2).
In a pioneering work of Ditzian and Ivanov [2], a general theory was

developed to obtain strong converse inequalities for a broad class of operators.
For the Bernstein operator, in [2] it was proved a strong converse inequality of
type B. The first proof of strong converse inequality of type A for Bernstein
operator was given in 1994 by Knoop and Zhou in [15] and Totik in [19], which
we cite here as:

Theorem A. There exist two absolute constants C1, C2 > 0 such that

C1ω
2
ϕ(f,

1√
n

) ≤ ‖f −Bnf‖ ≤ C2ω
2
ϕ(f,

1√
n

) (1.4)

holds for all f ∈ C[0, 1] and all n ∈ N .

The proof of Theorem A is very complicated. Concerning the absolute
constants, very recently using different methods, in [17] among others it was
proved that C2 = 3 could be placed in the right-hand side of (1.4). But as far
as we know, nothing is known about the constant in the lower estimate in (1.4).
It is the aim of this paper to establish for the first time concrete value of the
constant in the left-hand side of (1.4), but only for the functions f ∈ C2[0, 1]
and f ∈ C3[0, 1].

Our main results can be stated as follows.

Theorem 1. For any f ∈ C2[0, 1] and any µ0 ∈ (0, 1), there exists
n1(f, µ0) ∈ N (depending on f and µ0), such that for all n ≥ n1, we have

µ0
32
· ω2

ϕ(f,
1√
n

) ≤ ‖f −Bnf‖ ≤ 3 · ω2
ϕ(f,

1√
n

). (1.5)

Corollary 1. For m > 0, let us define the class of functions

C3,2
M,m[0, 1] = {f : [0, 1]→ R; f ∈ C3[0, 1], ‖f ′′′‖ ≤M, |f ′′(x)| ≥ m,x ∈ [0, 1]}.

Then for all f ∈ C3,2
M,m[0, 1] and n ≥ n1 with n1 =

[
1024M2

m2

]
+ 1, we have

1

64
· ω2

ϕ(f,
1√
n

) ≤ ‖f −Bnf‖ ≤ 3ω2
ϕ(f,

1√
n

).
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Remark 2. It is evident that Theorem 1 and Corollary 1 have the
disadvantage that the constants µ0

32 and 1
64 in the corresponding lower estimates

and the index n1 depend on the functions f , as being valid only for n ≥ n1 and
for functions in C2[0, 1] and in C3[0, 1], respectively. However, their advantage
is that it is for the first time when for a broad class of functions (including many
particular elementary functions, like exp(x), sin(x), cos(x), arctg(x), etc.) these
results allow to give concrete lower bounds in terms of the modulus ω2

ϕ(f, 1√
n

)

for the norm of ‖Bnf − f‖. Note that these constants are not possible to be
deduced from all other well known results, like those from Knoop and Zhou [15],
Totik [19], Ditzian and Ivanov [2], and many others.

In Section 2 we give some auxiliary results and establish in Theorems
3 and 4 norm estimates in Voronovskaja’s theorem for Bernstein operator. In
Section 3 we prove Theorem 1 and Corollary 1. Finally, in Section 4 several
applications to some concrete examples of functions are presented.

2 Auxiliary results

As already mentioned, the moduli ω2
ϕ(f, t) and K2

ϕ(f, t2) are equivalent.
For example, Theorem 6.2 in Chapter 6 in [1] (see also [3]) states that, there are
constants C1, C2 > 0, such that for all f ∈ L∞

C1ω
2
ϕ(f, t) ≤ K2

ϕ(f, t2) ≤ C2ω
2
ϕ(f, t), 0 < t ≤ 1

2
. (2.1)

For our goals it is important to determine explicitly the values of C1 and C2 in
(2.1). We recall the following result, established in [17] and in [9]:

Theorem B. For all f ∈W 2
∞(ϕ) and all n ≥ 1 the following holds true:

A1ω
2
ϕ(f,

1√
n

) ≤ K2
ϕ(f,

1

n
) ≤ A2ω

2
ϕ(f,

1√
n

), (2.2)

where the value of A1 = 1
16 was established in [17] and A2 = 10 follows from [9].

The next estimate was proved in Theorem 6.1 in [1]:
Theorem C. There is a constant C > 0, depending only on r, such that

for each f ∈W 2
p (ϕ), 1 ≤ p ≤ ∞ we have

ωrϕ(f, t)p ≤ Ctr‖ϕrf (r)‖p, 0 ≤ t ≤ 1

2r
. (2.3)

Note that from the proof of Theorem C, it is not possible to determine
the magnitude of C in (2.3). But using Theorem B, we may proceed as follows:
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For f ∈ C2[0, 1] we have

ω2
ϕ(f,

1√
n

) ≤ 1

A1
·K2

ϕ(f,
1

n
) ≤ 1

A1
· 1

n
‖ϕ2f ′′‖. (2.4)

For the value of A1 = 1
16 see Theorem 2 in [17] and for the value of A2 = 10 see

Corollary 9 in [9].

Even more, it is possible to establish a lower bound for ω2
ϕ(f, 1√

n
), f ∈

C2[0, 1], as follows.

Theorem 2. For any f ∈ C2[0, 1] and any λ0 ∈ (0, 1), there exists n0
(depending on f and λ0) such that for all n ≥ n0 the following

λ0 ·
1

n
‖ϕ2f ′′‖ ≤ ω2

ϕ(f,
1√
n

) (2.5)

holds true.

P r o o f. If f is a polynomial of degree ≤ 1 on [0, 1], then the inequality
one reduces to the equality 0 = 0.

Therefore, suppose that f is not a polynomial of degree ≤ 1. By the
definition of ω2

ϕ(f, δ), for all 0 ≤ δ < 1 we can write (see e.g. [1])

ω2
ϕ(f, δ) = sup{sup{|f(x+ hϕ(x))− 2f(x) + f(x− hϕ(x))|;

x ∈ [h2/(1 + h2), 1/(1 + h2)]}; 0 ≤ h ≤ δ}.

Because f is not a polynomial of degree ≤ 1, it follows that f ′′(x) is not iden-
tical equal to zero on [0, 1] and that there exists a point x0 ∈ [0, 1] such that
‖ϕ2f ′′‖∞ = |ϕ2(x0)f

′′(x0)| > 0 (contrariwise would easily follow that f is a
polynomial of degree ≤ 1, a contradiction).

Since evidently that x0 ∈ (0, 1), this implies that there exists h0 ∈ (0, 1)
such that for all h ∈ [0, h0] we have x0 ∈ [h2/(1 + h2), 1/(1 + h2)], and

sup{|f(x+ hϕ(x))− 2f(x) + f(x− hϕ(x))|;x ∈ [h2/(1 + h2), 1/(1 + h2)]}

≥ |f(x0 + hϕ(x0)− 2f(x0) + f(x− hϕ(x0)| = h2ϕ2(x0) · |f ′′(ξh,x0)|,

for all h ∈ [0, h0], where from the mean value theorem

ξh,x0 ∈ [x0 − hϕ(x0), x+ hϕ(x0)].

For h→ 0, evidently that ξh,x0 → x0 and from the continuity of f ′′ on [0, 1], it
follows that limh→0 |f ′′(ξh,x0)| = |f ′′(x0| > 0. Therefore, for λ0 ∈ (0, 1), there
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exists 0 ≤ h1 < h0, such that for all 0 ≤ h < h1, we have |f ′′(ξh,x0)| ≥ λ0|f ′′(x0)|
and combined with the above lower estimate, implies

sup{|f(x+ hϕ(x))− 2f(x) + f(x− hϕ(x))|;x ∈ [h2/(1 + h2), 1/(1 + h2)]}

≥ λ0h2‖ϕ2f ′′‖.

Now, let n0 ∈ N be the smallest natural number such that 1√
n
≤ h1, for all

n ≥ n0.
Then, for fixed arbitrary n ≥ n0, passing above to supremum after h ∈

[0, 1/
√
n), we immediately get

ω2
ϕ(f ; 1/

√
n) ≥ λ0 ·

1

n
‖ϕ2f ′′‖,

which completes the proof.

The crucial step in the proof of Theorem 1 is to establish norm estimate
in the theorem of Voronovskaja. This theorem was first proved in [20] and is
given in the book of DeVore and Lorentz [1] as follows:

Theorem D. If f is bounded on [0, 1], differentiable in some neighbor-
hood of x and has second derivative f ′′(x) for some x ∈ [0, 1], then

lim
n→∞

n · [Bn(f, x)− f(x)] =
x(1− x)

2
· f ′′(x). (2.6)

If f ∈ C2[0, 1], the convergence is uniform.

This result has attracted the attention of many authors in the last 80
years. Very recently some quantitative estimates in pointwise variant of Voronov-
skaja’s theorem are obtained in [11,12,13,14,18] and for the complex-valued func-
tions of complex variable in [4,5,6]. Concerning norm estimates we cite Lemma
8.3 in [2] as:

Theorem E. For f ∈W 3
∞(ϕ) and n ≥ 12 we have

‖Bnf − f −
1

2n
· ϕ2f ′′‖L∞ ≤ n−

3
2 · ‖ϕ3f ′′′‖L∞ . (2.7)

Our next two statements extend this result to f ∈ C2[0, 1].

Theorem 3. For any f ∈ C2[0, 1], there exists n0 := n0(f), such that
for all n ≥ n0 we have∥∥∥∥Bnf − f − 1

2n
· ϕ2f ′′

∥∥∥∥ ≤ 4ω2
ϕ(f,

1√
n

). (2.8)
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P r o o f. Obviously,∥∥∥∥Bnf − f − 1

2n
· ϕ2f ′′

∥∥∥∥ ≤ ‖Bnf − f‖+
1

2n
‖ϕ2f ′′‖

≤ 3ω2
ϕ(f,

1√
n

) + ω2
ϕ(f,

1√
n

) = 4ω2
ϕ(f,

1√
n

),

where we have applied the upper estimate in [10] and (2.5), respectively. The
proof is completed.

Moreover, in terms of the usual moduli of continuity, we can obtain the
following better estimate.

Theorem 4. If f ∈ C2[0, 1], then for all n ∈ N, n ≥ 2, it holds

‖Bnf − f −
1

2n
· ϕ2f ′′‖ ≤ 5

8n
ω1(f

′′,
1√
n

) +
13

64n
ω2(f

′′,
1√
n

). (2.9)

P r o o f. By Theorem 4 in Gonska-Raşa [13], for f ∈ C2[0, 1], n ≥ 2,
x ∈ [0, 1] and X = x(1− x), we have∣∣∣∣Bn(f, x)− f(x)− x(1− x)

2n
f ′′(x)

∣∣∣∣
≤ X

n

{
X ′√

3(n− 2)X + 1
· 5

6
ω1

(
f ′′,

√
3(n− 2)X + 1

n2

)

+
13

16
ω2

(
f ′′,

√
3(n− 2)X + 1

n2

)}
.

Passing to uniform norm and taking into account the inequalities 0 ≤ X ≤ 1/4,
|X ′| = |1− 2x| ≤ 3, for all x ∈ [0, 1] we immediately obtain

‖Bnf − f −
1

2n
· ϕ2f ′′‖ ≤ 1

4n

{
3 · 5

6
ω1

(
f ′′,

√
[3(n− 2)/4] + 1

n2

)

+
13

16
ω2

(
f ′′,

√
[3(n− 2)/4] + 1

n2

)}

≤ 5

8n
ω1(f

′′,
1√
n

) +
13

64n
ω2(f

′′,
1√
n

),

which proves the theorem.
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3 Proofs of Theorem 1 and Corollary 1

Proof of Theorem 1.
P r o o f. First, note that in the statement of Theorem 1, we may suppose

that f is not a polynomial of degree ≤ 1, because if f is a polynomial of degree
≤ 1 then Theorem 1 holds trivially. This supposition obviously implies that in
what follows we have ‖ϕ2f ′′‖ > 0.

We apply the ideas in the case of Bernstein polynomials of complex vari-
able in the proof of Theorem 2.1 in [8]. The following identity is valid for all f ,
which are not polynomials of degree ≤ 1

Bn(f, x)− f(x) = ω2
ϕ(f,

1√
n

)
{ϕ2(x)f ′′(x)

2
· 1

nω2
ϕ(f, 1√

n
)

+

[
1

ω2
ϕ(f, 1√

n
)

(
Bn(f, x)− f(x)− ϕ2(x)f ′′(x)

2n

)]}
.

(3.1)

This immediately implies

‖Bnf − f‖ ≥ ω2
ϕ(f,

1√
n

)
{‖ϕ2f ′′‖

2
· 1

nω2
ϕ(f, 1√

n
)

−

[
1

ω2
ϕ(f, 1√

n
)
· ‖Bnf − f −

ϕ2f ′′

2n
‖

]}
.

(3.2)

Now from (2.4) we obtain

1

nω2
ϕ(f, 1√

n
)
≥ A1

‖ϕ2f ′′‖
, for all n ∈ N, (3.3)

which implies

‖Bnf − f‖ ≥ ω2
ϕ(f,

1√
n

) ·
{
A1

2
−An

}
, (3.4)

where

An =
5
8nω1(f

′′, 1/
√
n) + 13

64nω2(f
′′, 1/
√
n)

ω2
ϕ(f, 1√

n
)

→ 0, asn→∞.

More precisely, using (2.4) and (2.5), we immediately obtain the double inequal-
ity

1

16‖ϕ2f ′′‖

[
5

8
ω1(f

′′; 1/
√
n) +

13

64
ω2(f

′′; 1/
√
n)

]
≤ An



46 S. G. Gal, G. T. Tachev

≤ 1

λ0‖ϕ2f ′′‖

[
5

8
ω1(f

′′; 1/
√
n) +

13

64
ω2(f

′′; 1/
√
n)

]
, (3.5)

where the right-hand side holds for all n ≥ n0(f, λ0) (that comes from (2.5)),
while the left-hand side holds for all n ≥ 2.

Therefore, from the right-hand side of (3.5) it follows: limn→∞An = 0.

From (3.4) and (3.5), it is evident that there exists n1(f, λ0, µ0) > n0(f, λ0),
such that for all n ≥ n1(f, λ0, µ0)

A1

2
−An ≥

µ0A1

2
=
µ0
32
. (3.6)

Therefore, from (3.4) we have

‖Bnf − f‖ ≥
µ0
32
· ω2

ϕ(f,
1√
n

), (3.7)

for all n ≥ n1, which proves Theorem 1.

Proof of Corollary 1.

P r o o f. We have to prove just the left-hand side inequality. Following
the lines in the proof of Theorem 2, since 1

2 ∈ [h2/(1 + h2), 1/(1 + h2)] for all
0 ≤ h < 1, we easily get

sup{|f(x+ hϕ(x))− 2f(x) + f(x− hϕ(x))|;x ∈ [h2/(1 + h2), 1/(1 + h2)]}

≥ |f(1/2 + hϕ(1/2)− 2f(1/2) + f(1/2− hϕ(1/2)| = h2ϕ2(1/2) · |f ′′(ξh,1/2)|

≥ mh2

4
, for all 0 ≤ h < 1,

where passing to supremum with 0 ≤ h ≤ δ implies ω2
ϕ(f, δ) ≥ m

4 · δ
2.

Therefore, by taking δ = 1√
n

, it follows ω2
ϕ(f, 1/

√
n) ≥ m

4 ·
1
n .

Now, following the lines in the proof of Theorem 1, where instead of
Theorem 4 we use Theorem E, we get the same relationship (3.4), where because
of the hypothesis, the estimate in Theorem E becomes

‖Bnf − f −
1

2n
· ϕ2f ′′‖ ≤ M

8n3/2
,

with An upper bounded as follows :

An ≤
Mn−3/2

8ω2
ϕ(f, 1/

√
n)
≤ M

8n3/2
· 4n

m
=

M

2m
√
n
.
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Therefore, from the lines in the proof of Theorem 1 we obtain

‖Bnf − f‖ ≥ ω2
ϕ(f,

1√
n

) ·
{
A1

2
− M

2m
√
n

}
,

which by (3.6) is valid for all n satisfying

M

2m
√
n
≤ 1

64
,

that is for all n ≥ n1 with n1 =
[
1024M2

m2

]
+ 1, which proves the corollary.

Remark 3. If we suppose, in addition, that for example f ∈ C4[0, 1],
then from the above proof of Theorem 1, relationship (3.6), it easily follows that
An ≤ 1−µ0

32 , and therefore that the index n1 in the statement, necessarily must
be chosen greater than the smallest number n2 ∈ N that satisfies the inequality

1

λ0‖ϕ2f ′′‖

[
5

8
√
n
· ‖f ′′′‖+

13

64n
· ‖f (4)‖

]
≤ 1− µ0

32
.

Indeed, this immediately follows from the inequality

1

λ0‖ϕ2f ′′‖

[
5

8
ω1(f

′′; 1/
√
n) +

13

64
ω2(f

′′; 1/
√
n)

]
≤ 1

λ0‖ϕ2f ′′‖

[
5

8
√
n
· ‖f ′′′‖+

13

64n
· ‖f (4)‖

]
.

If instead of f ∈ C4[0, 1], we suppose that f ∈ W 3
∞(ϕ) and in the proof

of Theorem 1, instead of Theorem 4 we use Theorem E, then we easily get

An =
n−3/2‖ϕ3f ′′′‖

[λ0‖ϕ2f ′′‖/(n)]
=

1√
n
· ‖ϕ

3f ′′′‖
λ0‖ϕ2f ′′‖

,

for all n ≥ n0(f, λ0) and that the index n1(f, µ0, λ0) in the statement of Theorem
1, necessarily must be greater than the smallest n2 that satisfies the inequality
An ≤ 1−µ0

32 . Simple calculation shows that we may take

n2 =

[(
32‖ϕ3f ′′′‖

λ0(1− µ0)‖ϕ2f ′′‖

)2
]

+ 1,

where [a] means the integer part of a.
Remark 4. Note that for the limit case of Bernstein operator, Un(f, x),

it was proved by Parvanov and Popov the following strong converse inequality
in [16]:

1

2
‖Unf − f‖ ≤ K2

ϕ(f,
1

n
) ≤ (6 +

√
8)‖Unf − f‖. (3.8)

The proof relies on the commutativity of Un-a property, which is not available
for Bn.
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4 Particular Examples

For some particular classes of functions, the index n1 in Theorem 1 and
Corollary 1 can be explicitly obtained, as follows.

Example 1. First, consider f(x) = exp(x), x ∈ [0, 1]. Since we have
‖f ′′′‖ ≤ e and |f ′′(x)| ≥ 1, for all x ∈ [0, 1], it follows that we can apply Corollary
1, obtaining that we have

‖Bn(exp, ·)− exp ‖ ≥ 1

64
ω2
ϕ(exp, 1/

√
n), for all n > 1024e2.

Example 2. Secondly, consider f(x) = cos(x), x ∈ [0, 1]. Since have
‖f ′′′‖ ≤ 1 and |f ′′(x)| ≥ cos(1) ≈ 0.540302306, for all x ∈ [0, 1], it follows that
again we can apply Corollary 1, obtaining that we have

‖Bn(cos, ·)− cos ‖ ≥ 1

64
ω2
ϕ(cos, 1/

√
n), for all n ≥

[
1024

cos(1)

]
+ 1.

Example 3. For third example, by taking f(x) = sin(x), x ∈ [0, 1], it is
clear that we cannot apply Corollary 1, but we can apply Theorem 1, or more
exactly its variant expressed by Remark 3, first part.

First, let us find the index n0 in the Theorem 2 (as Theorem 2 is used in
the proof of Theorem 1). For this purpose, note that simple calculation leads
us to

|f(x+ hϕ(x))− 2f(x) + f(x− hϕ(x))| = 2| sin(x)[1− cos(hϕ(x))]|

= 4 sin(x) · sin2(hϕ(x)/2) ≥ 4 · 2

π
x · 4

π2
· h

2ϕ2(x)

4
=

8

π3
xh2ϕ2(x),

for all x ∈
[

h2

1+h2
, 1
1+h2

]
. Here we used the inequality sin(x) ≥ 2

πx, for all

x ∈ [0, π/2].
Suppose in what follows that 0 ≤ h ≤ δ ≤ 1√

2
. It follows that 2

3 ∈[
h2

1+h2
, 1
1+h2

]
. Also, it is clear that xϕ2(x) attains its maximum value 4

27 on

[0, 1] at x = 2/3.
Therefore, passing above to supremum firstly with respect to x, and then

with respect to h ∈ [0, δ], with δ ≤ 1√
2
, it is immediate that

ω2
ϕ(sin, δ) ≥ 8

π3
· 4

27
· δ2 =

32

27π3
δ2,

that is for δ = 1/
√
n with n ≥ 2, we obtain

ω2
ϕ(sin, 1/

√
n) ≥ 32

27π3
· 1

n
≥ 32

27π3
· ‖ϕ

2f ′′‖
n

, for all n ≥ 2.



The Lower Estimate for Bernstein Operator 49

It follows that Theorem 2 holds with λ0 = 32
27π3 and n0 = 2.

Now, because

‖ϕ2f ′′‖ ≥ ϕ2(1/2) sin(1/2) =
1

4
sin(1/2) ≈ 0.25× 0.4794 = 0.11985,

by the first part of Remark 3 we obtain that n2 there, can be chosen as the
smallest index n satisfying the last inequality below

1

λ0‖ϕ2f ′′‖

[
5

8
√
n
· ‖f ′′′‖+

13

64n
· ‖f (4)‖

]
≤ 4

λ0 sin(1/2)

[
5

8
√
n

+
13

64n

]

≤ 1− µ0
32

, (4.1)

with λ0, µ0 ∈ (0, 1), arbitrary fixed.
From here, it is immediate that n2 can be chosen the smallest index n

satisfying
4

λ0 sin(1/2)

[
5

8
+

13

64

]
· 1√

n
≤ 1− µ0

32
,

which by simple calculation leads to n2 =

[(
106

λ0(1−µ0)sin(1/2)

)2]
+ 1 (here [a]

means the integer part of a), with λ0 = 32
27π3 . Choosing above µ0 = 1/2, we

obtain

‖Bn(sin, ·)− sin ‖ ≥ 1

64
ω2
ϕ(sin,

1√
n

), for all n ≥ max{2, n2} = n2.
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