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Abstract. We work over an algebraically closed field of characteristic
zero. The group PGL(4) acts naturally on P

N which parameterizes surfaces
of a given degree in P

3. The orbit of a surface under this action is the
image of a rational map PGL(4) ⊂ P

15
99K P

N . The closure of the orbit
is a natural and interesting object to study. Its predegree is defined as
the degree of the orbit closure multiplied by the degree of the above map
restricted to a general P

j , j being the dimension of the orbit. We find the
predegrees and other invariants for all surfaces supported on unions of planes.
The information is encoded in the so-called predegree polynomials , which
possess nice multiplicative properties allowing us to compute the predegree
(polynomials) of various special plane configurations.

The predegree has both combinatorial and geometric significance. The
results obtained in this paper would be a necessary step in the solution of
the problem of computing predegrees for all surfaces.
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1. Introduction. The group PGL(3) of projective linear transforma-
tions of P

2 acts naturally on the space P
d(d+3)/2 parameterizing plane curves of

degree d. Aluffi and Faber [1] have computed the degree of the closure in this
space of the orbit of an arbitrary plane curve. The orbit closure of a curve is
a natural object of study and its degree has a simple enumerative meaning: for
a reduced curve with finite stabilizer, it counts the translates of the curve that
contain eight given general points. The case of curves supported on unions of
lines is of special separate interest [2, 3]. The constructions in this case were
essential for the computations in the general case.

We have a similar situation for surfaces in P
3. We use a projective space

PN to parameterize degree d surfaces in P3. The group PGL(4) acts naturally
on P

N and we can ask the same question of computing the degree of the closure
in this space of the orbit of a surface. It still has a similar geometric meaning:
for a reduced surface with finite stabilizer, it counts the translates of the surface
that contain fifteen given general points. More generally, if j is the dimension
of the closure of the orbit of a reduced surface, then the degree of the orbit is
the number of translates containing j points in general position. In very special
cases (for example when the surface consists of 3 planes in general position) this
number can be computed by naive combinatorial considerations. In general this
is not possible.

We consider the case of surfaces supported on unions of planes, i.e. plane
configurations.

The main problem of finding the predegree polynomial of a plane config-
uration in P

3 evolves from the original one of finding the degree of the closure of
the linear orbit of the configuration in P

N .

The action of PGL(4) defines a regular map s : PGL(4) → P
N for a fixed

plane configuration S in P
N . The orbit of S is Im(s). This map extends to a

rational map s from the compactification P
15 of PGL(4) to P

N .

The predegree polynomial of S is
∑

i≥0(fidi)t
i/i!, where fi = degs|Pi =

the number of points in a general fiber of s|Pi and di is the intersection number

of s(Pi) and a codimension i linear subspace of P
N for a general P

i in P
15.

The leading coefficient fjdj is called the predegree of (the orbit of) S.
This information records the degree dj of the orbit closure of S, corrected by the
“size” of the stabilizer of the configuration. As such, the predegree retains an
enumerative interpretation similar to the one of the degree of the orbit closure of a
reduced S: it counts the ordered (as opposed to non-ordered) plane configurations
in the orbit of S which pass through j general points.

The main tool in our computation of the predegree polynomial of a plane
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configuration S is a series of blow-ups over P
15. We construct a regular map

s̃ : Ṽ → P
N which lifts the rational map s (to the non-singular variety Ṽ domi-

nating the orbit closure of S) and resolves its indeterminacies. An intersection-
theoretic analysis of this map allows us to compute the coefficients of the prede-
gree polynomial for S.

We are interested in the whole predegree polynomial rather than the indi-
vidual predegrees, the coefficients of the polynomial. As it carries more invariants
of the orbit closure, the predegree polynomial allows us to solve a more refined
degree problem and deal at once with all configurations of planes.

We find some non-obvious properties of the predegree polynomials. They
endow the whole theory with a non-trivial structure, which would be interesting
to study further. As an application, simple formulae will be found for specific
arrangements of planes.

Most of the facts we use can be found in [6, 7]. For a detailed exposition
of the material of this paper refer to [10].

2. Geometry.

2.1. Orbit. Let P
3 be the three dimensional projective space over a

fixed algebraically closed field K of characteristic zero with projective coordinates
(x : y : z : w). We use P

N = P
d(d2+6d+11)/6 to parameterize degree d surfaces in

P
3.

The group PGL(4) of 4× 4 matrices over K acts on P
N in a natural way.

Let φ =




φ0 φ1 φ2 φ3

φ4 φ5 φ6 φ7

φ8 φ9 φ10 φ11

φ12 φ13 φ14 φ15


∈ PGL(4) and a surface S (as an element of

P
N ) be defined by F (x : y : z : w) = 0. Then we define the action of φ on S,

denoted S ◦ φ, to be the surface with equation F (φ(x : y : z : w)) = 0.
Let us fix a surface S and define a regular map s from PGL(4) to P

N

which is induced by the PGL(4) action on S. More precisely,

s : PGL(4) −→ P
N , φ 7→ S ◦ φ

The image Im(s) of the map s is called the linear orbit of the surface S.
It is denoted by OS and consists of all translates of S.

We embed PGL(4) as an open set in P
15 with coordinates (φ0 : ... : φ15).

This embedding PGL(4) ⊂ P
15 extends the regular map s to a rational

map s : P
15

99K P
N . Then the orbit closure OS of S is the closure of the image

of this rational map s.
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Note that if StabS is the stabilizer of S under the PGL(4) action, then
dimOS + dimStabS = 15.

From now on the surface S will be supported on unions of planes, hence
F (x : y : z : w) =

∏n
i=1 Lri

i (x : y : z : w) where ri is the multiplicity of the
i-th plane Pi, the homogeneous polynomial Li is the equation of Pi and n is the
number of planes. Also, the degree of S will be

∑n
i=1 ri = d.

One of the most important characteristics of the closure of the linear orbit
of S is its degree degOS . It possesses the following clear enumerative geometric
interpretation:

Lemma 2.1.1. If the dimension of the orbit of a reduced plane configu-
ration is j, then the degree of the orbit closure equals the number of translates of
the plane configuration which pass through j general points.

As an application of this lemma, we see that in very special cases this
number can be computed by naive combinatorial considerations. These are the
cases in which the orbit consists of all configurations with the same “incidence
data” as the original configuration. In general this is not possible.

Example 2.1.2. Let S be a configuration consisting of two distinct
reduced planes. The orbit consists of all pairs of planes and hence its dimension
is 6 (3 “degrees of freedom” for each plane). Thus we need to count how many
pairs of planes contain 6 points in general position in P

3. If 3 of the points
determine a plane, then the other 3 points automatically determine the other
plane. Hence the number of pairs of planes going through 6 general points is(

6

3

)/
2 = 10, because

(
6

3

)
counts each pair twice. Therefore, the degree of the

orbit closure degOS is 10.

Example 2.1.3. If S is a configuration consisting of three general (not
going through a line) reduced planes, then the orbit consists of all configurations
like the original one, i.e., of configurations of 3 general reduced planes. Then
the dimension of the orbit is 9 and like in the previous example we count the

number of all such configurations through 9 general points to be

(
9

3

)(
6

3

)/
6 =

degOS = 280.

Example 2.1.4. Our first non-combinatorial example is the configura-
tion of four planes going through a line. Indeed, the dimension of the set of
all such arrangements is clearly 8, whereas, as we will see in Theorem 5.4, the
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dimension of the orbit is 7. In other words, the orbit does not consist of all
configurations consisting of four planes with a common line.

2.2. Point Conditions. Base Locus. All surfaces in P
3 going through

a fixed point clearly form a hyperplane in P
N . Such hyperplanes are called point

conditions. Each point condition corresponds to a point in P̌
N , the dual space of

P
N .

If the set of point conditions were degenerate in P̌
N , then the point condi-

tions in P
N , which are hyperplanes, should all go through one point, which is not

true, as this point would correspond to a surface containing all points of P
3. So

the set of point conditions is non-degenerate. Since the span of a non-degenerate
set is a non-degenerate linear subspace of P̌

N , then it must be the whole space,
i.e., we proved

Lemma 2.2.1. The point conditions span P̌
N .

We define the point conditions in P
15 to be the pull-backs of the point

conditions from P
N . In these terms then, we state two more useful observations:

Remark 2.2.2. The linear system of s : P
15

99K P
N is spanned by the

point conditions in P
15.

Remark 2.2.3. The base locus of s is the intersection over all points in
P

3 of the point conditions in P
15.

Now we are ready to describe the base locus of s.

Proposition 2.2.4. The base locus of s is a union of P
11’s which are in a

one-to-one correspondence with the planes in the plane configuration S. Further-
more, all possible intersections of such P

11’s are P
7’s and P

3’s which are also in
one-to-one correspondences with the geometric intersections of the corresponding
planes: lines and points of intersection in S respectively.

P r o o f. Since a point condition corresponding to a point p has an equa-
tion F (φ(p)) = 0 in P

15, the base locus is {φ ∈ P
15/F (φ(x : y : z : w) ≡ 0}. More

explicitly, it is
⋃n

i=1{φ ∈ P
15/Li(φ(x : y : z : w) ≡ 0}.

Consider any component of this union. It consists of all φ = (φ0 : φ1 :

· · · : φ15) =




φ0 φ1 φ2 φ3

φ4 φ5 φ6 φ7

φ8 φ9 φ10 φ11

φ12 φ13 φ14 φ15


 for which φ(P3) is in Pi. In particular, it

depends on the plane Pi only (and not the rest of S). Without loss of generality
we may assume that the equation Li = 0 of Pi is w = 0. Then the corresponding
component of the base locus consists of all φ’s for which φ12x+φ13y+φ14z+φ15w
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is zero for all points (x : y : z : w) ∈ P
3, i.e., it is {φ ∈ P

15/φ12 = φ13 = φ14 =
φ15 = 0} which, as an intersection of four distinct hyperplanes, is a P

11 in P
15.

This P
11 is the set of all elements of P

15 which map P
3 into a linear subspace of

the component Pi.
Clearly, the intersection of any two P

11’s consists of matrices sending
P

3 into a linear subspace of the line which is the intersection of the two planes
corresponding to the two P

11’s. If we, again without loss of generality, assume that
these are the planes z = 0 and w = 0, we can show that any two P

11’s intersect in
a P

7. Indeed, the intersection set is characterized by φ8x + φ9y + φ10z + φ11w ≡
φ12x+φ13y+φ14z+φ15w ≡ 0, hence it is {φ ∈ P

15/φ8 = φ9 = φ10 = φ11 = φ12 =
φ13 = φ14 = φ15 = 0} ' P7.

Similarly, the intersection of three general distinguished P
11’s (i.e. the

intersection of any distinguished P
11 and a general distinguished P

7) is a P
3

which corresponds to the point of intersection of the three planes associated with
the three P

11’s. To check this we can safely assume again that these three planes
are the planes y = 0, z = 0, w = 0 and get that the P

3 is the intersection of the
hyperplanes φ4 = φ5 = φ6 = φ7 = φ8 = φ9 = φ10 = φ11 = φ12 = φ13 = φ14 =
φ15 = 0. Also, any such distinguished P

3 is the set of matrices in P
15 which map

P
3 to the point corresponding to the P

3. �

From the proof, we notice also that the incidence relations among all these
P

11’s, P
7’s and P

3’s precisely reflect those of the corresponding geometric objects:
planes, lines and points of intersection in S. In particular, any two P

7’s either
intersect along a P

3 or are disjoint; a P
3 is either completely inside or outside a

P
11 or a P

7; and all P
3’s are disjoint.

2.3. Blow-Ups. We resolve the indeterminacies of the rational map s.
We do this by the means of a sequence of blow-ups of P

15 along the distinguished
sets in the base locus of s. More precisely, there are three stages of blow-ups and
one theorem is devoted to each of them. After a coordinate change in P

3 the
point (1 : 0 : 0 : 0) will be a point of intersection of some of the planes in the
configuration S, i.e., we can assume that the equation of S is

F (x : y : z : w) =
∏

i

(βiy+γiz+δiw)ri

∏

j

(αjx+βjy+γjz+δjw)rj where αj 6= 0.

The point condition in P
15(φ0 : φ1 : · · · : φ15) corresponding to a point (x0 : y0 :

z0 : w0) is

∏

i

(βi(φ4x0 + φ5y0 + φ6z0 + φ7w0) + γi(φ8x0 + φ9y0 + φ10z0 + φ11w0)
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+δi(φ12x0 + φ13y0 + φ14z0 + φ15w0))
ri

∏

j

(αj(φ0x0 + φ1y0 + φ2z0 + φ3w0)

+βj(φ4x0 + φ5y0 + φ6z0 + φ7w0) + γj(φ8x0 + φ9y0 + φ10z0 + φ11w0)

+δj(φ12x0 + φ13y0 + φ14z0 + φ15w0))
rj = 0

where αj 6= 0.

We consider all blow-ups over the representative affine chart A
15(1 : p1 :

p2 : · · · : p15) in P
15.

Theorem 2.3.1. Let V ′ be the variety obtained from V = P
15 after all

blow-ups centered at the distinguished P
3’s (if any) in the base locus of s. Then

(i) The proper transforms of the distinguished P
7’s in V ′ are disjoint.

(ii) The multiplicity of a point condition along each P
3 corresponding to

the intersection of planes of the configuration S equals the sum of the multiplicities
of those planes.

(iii) The intersection of the proper transforms of the point conditions in
V ′ consists of the proper transforms of the distinguished P

11’s.

P r o o f. (i) is clear from the structure of the base locus discussed in
the previous section and the fact that transversal intersections are separated by
blow-ups.

In A
15(1 : p1 : p2 : · · · : p15) ⊂ P

15 the point condition corresponding to
(x0 : y0 : z0 : w0) has the equation

∏

i

(βi(p4x0 + p5y0 + p6z0 + p7w0) + γi(p8x0 + p9y0 + p10z0 + p11w0)

+δi(p12x0 + p13y0 + p14z0 + p15w0))
ri

∏

j

(αj(x0 + p1y0 + p2z0 + p3w0)

+βj(p4x0 + p5y0 + p6z0 + p7w0) + γj(p8x0 + p9y0 + p10z0 + p11w0)

+δj(p12x0 + p13y0 + p14z0 + p15w0))
rj = 0

where αj 6= 0.

The first time we blow-up V along a P
3 we can assume that this is the

P
3 which corresponds to the point (1 : 0 : 0 : 0), i.e., the P

3 with equations
p4 = p5 = · · · = p15 = 0.

The map from a representative chart A
15(q1, q2, . . . , q15) of the blow-up

to

A
15(p1, p2, . . . , p15) in V is given by the following equations:

p1 = q1, p2 = q2, . . . , p4 = q4, p5 = q4q5, p6 = q4q6, . . . , p15 = q4q15.
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In this A
15(q1, q2, . . . , q15) the exceptional divisor is q4 = 0.

The (full) transform of the above point condition then is

∏

i

qri

4 (βi(x0 + q5y0 + q6z0 + q7w0) + γi(q8x0 + q9y0 + q10z0 + q11w0)

+δi(q12x0 + q13y0 + q14z0 + q15w0))
ri

∏

j

(αj(x0 + q1y0 + q2z0 + q3w0)

+βjq4(x0 + q5y0 + q6z0 + q7w0) + γjq4(q8x0 + q9y0 + q10z0 + q11w0)

+δjq4(q12x0 + q13y0 + q14z0 + q15w0))
rj = 0.

Since αj 6= 0, this shows that the multiplicity of the exceptional divisor
in this transform is

∑
i ri, which proves (ii) for this particular P

3 whence for all
other disjoint P

3’s.

(iii) is true on the complement of the exceptional divisors, so we only
need to verify it along each exceptional divisor. We find the intersection of the
proper transform of the point condition with the exceptional divisor:

∏

i

(βi(x0 + q5y0 + q6z0 + q7w0) + γi(q8x0 + q9y0 + q10z0 + q11w0)

+δi(q12x0 + q13y0 + q14z0 + q15w0))
ri

∏

j

αj(x0 + q1y0 + q2z0 + q3w0)
rj = 0,

q4 = 0.

This is identically zero for all (x0 : y0 : z0 : w0) precisely in the intersec-
tion of the proper transforms of all point conditions and the exceptional divisor.
Clearly this happens when a factor of the first product is zero for each of the
points (1 : 0 : 0 : 0), (0 : 1 : 0 : 0), (0 : 0 : 1 : 0), (0 : 0 : 0 : 1). So we get that this
intersection is the union (over i) of the following sets





q4 = 0
βi + γiq8 + δiq12 = 0
βiq5 + γiq9 + δiq13 = 0
βiq6 + γiq10 + δiq14 = 0
βiq7 + γiq11 + δiq15 = 0

Each of these, however, we recognize as the intersection of the proper
transform of a distinguished P

11 containing the blow-up center P
3 with the ex-

ceptional divisor. Indeed, a P
11 containing the P

3 is the P
11 which corresponds

to a plane from the first product (
∏

i) in the equation of S. So it consists of all
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φ’s for which βi(φ4x0 + φ5y0 + φ6z0 + φ7w0) + γi(φ8x0 + φ9y0 + φ10z0 + φ11w0) +
δi(φ12x0 + φ13y0 + φ14z0 + φ15w0) ≡ 0, i.e., it is the set in A

15(p1, p2, . . . , p15)
given by 




βip4 + γip8 + δip12 = 0
βip5 + γip9 + δip13 = 0
βip6 + γip10 + δip14 = 0
βip7 + γip11 + δip15 = 0

Now we observe that the intersection of the proper transforms of these
four hyperplanes and the exceptional divisor is given precisely by the previous
set of equations. This is clearly an irreducible subset of dimension 10, so it must
be the intersection of the exceptional divisor and the proper transform of the P

11

defined by the latter set of equations.

Thus the intersection of the proper transforms of the point conditions in
each of the disjoint exceptional divisors in V ′ is the union of the proper transforms
of the distinguished P

11’s containing the blow-up center yielding this exceptional
divisor. This implies (iii). �

The proofs of the other two theorems use similar straightforward coordi-
nate computations and we leave them to the reader.

Theorem 2.3.2. Let V ′′ be the variety obtained from V ′ after all blow-
ups centered at the proper transforms of the distinguished P

7’s under the first set
of blow-ups from Theorem 2.3.1 Then

(i) The proper transforms of the distinguished P
11’s in V ′′ are disjoint.

(ii) The multiplicity of a point condition in V ′ along the proper transform
of each P

7 corresponding to a line of the configuration S equals the multiplicity
of S along this line.

(iii) The intersection of the proper transforms of the point conditions in
V ′′ is the disjoint union of the proper transforms of the distinguished P

11’s.

Theorem 2.3.3. Let V ′′′ = Ṽ be the variety obtained from V ′′ after all
blow-ups centered at the proper transforms of the distinguished P

11’s under the
first and second sets of blow-ups from Theorem 2.3.1 and Theorem 2.3.2. Then

(i) The intersection of the proper transforms of the point conditions in Ṽ
is empty.

(ii) The multiplicity of a point condition in V ′′ along the proper transform
of each P

11 corresponding to a plane of the configuration S equals the multiplicity
of S along this plane.

Let π be the composition of all blowing-ups from the theorems, i.e.,
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Ṽ → V ′′ → V ′ → V = P
15

Define the rational map s̃ := s ◦ π from Ṽ to P
N .

We saw that the linear system of s is spanned by the point conditions in
V and we also proved that the proper transforms of the latter have an empty
intersection in Ṽ . Hence the rational map s̃ is in fact regular because its linear
system is spanned by the proper transforms of the point conditions.

Theorem 2.3.4. The variety Ṽ resolves the indeterminacies of s, i.e.,
there is a commutative diagram:

Ṽ

π

��

s̃

  @
@

@

@

@

@

@

@

V s
//___

P
N

with s̃ a regular map and OS = Im(s̃).

2.4. Predegrees. For 0 ≤ i ≤ 15, consider a general P
i in P

15, and let
fi, di denote respectively the number of points in the general fiber of s|Pi (i.e. the

degree of s|Pi), and the intersection number of s(Pi) and a codimension i linear

subspace of P
N . The products fi · di are called the predegrees of S and we use

them to define the following (adjusted) predegree polynomial of S as a function
of t in the same fashion as done in [3] for line configurations.

∑

i≥0

(fi · di)
ti

i!

From this polynomial we could extract information about the degrees of
the closures of the images of general linear subspaces of P

15 of all dimensions.
These subsets of the orbit closure of S are determined by imposing linear condi-
tions on the transformations applied to S.

We distinguish the planes of S by labelling them. This induces a labelling
on each translate of S. We will refer to the differently labelled translates as to
ordered ones. Let, as before, j be the dimension of the orbit closure of S.

Remarks 2.4.1.

• dj is the degree of the orbit closure, di is the degree of s(Pi) for i < j and
di = 0 for i > j;

• fj is the degree of the closure of StabS , fi = 1 for i < j and fi = ∞ for
i > j;
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• Since S consists of planes, every irreducible component of the closure of
StabS is a linear subspace of P

15, hence fj is the number of irreducible
components of StabS. These components clearly account for the different
automorphisms of S as a set of planes (not points) and fj = 1 if the planes
have all different multiplicities. Hence:

• For reduced configurations the predegrees count the ordered translates go-
ing through certain numbers of general points, while the degree is the num-
ber of the corresponding non-ordered configurations (see Example 2.4.2
below).

• Since di = 0 iff fi = ∞ iff i > j, we make the convention that fidi is zero in
this case, so that the (adjusted) predegree polynomial is really a polynomial.
We refer to the last nonzero predegree fjdj simply as to the predegree of S.
It can be recovered from the leading coefficient of the predegree polynomial
and in turn it recovers the degree of the orbit closure.

• The denominators are introduced in the definition of the adjusted predegree
polynomial because they endow certain multiplicative structure (Theorem
5.2) to the polynomial allowing for a convenient shortcut in computing pre-
degrees of special plane configurations (Theorem 5.4). Computing adjusted
predegree polynomials, rather than the individual predegrees allows us to
deal at once with all configurations, regardless of the dimension of their
stabilizer.

Example 2.4.2. The predegree polynomial of a pair of reduced planes
will be shown to be (1 + t+ t2/2 + t3/3!)2, so the predegree is 20. From Example
2.1.2 the degree is 10. Hence fj = f6 = 2, i.e., each pair produces two ordered
pairs of planes.

Remark 2.4.3. Note that in general the ordered translates are not all
possible orderings (permutations) of the (non-ordered) translates as it happens
to be the case in the example above. One nice example illustrating this fact is
Example 5.6.

Example 2.4.4. The geometric interpretations of degrees and predegrees
extend to the case of non-reduced plane configurations if we count translates “with
multiplicities”.

Let S consist of three general planes with distinct multiplicities, for ex-
ample 1, 2 and 3. The number of the reduced ordered triples of planes containing
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j = 9 general points is

(
9

3

)(
6

3

)
= 1680. Now thinking of a double plane as of

two copies of coinciding single planes and of a triple plane as of three coinciding
copies of single planes, we see that there are 33 ways in which a triple plane can
contain 3 points (and be determined by them) and 23 possibilities for a double
plane to go through 3 general points. So the number of (non-reduced) translates
of S (counted with multiplicities) is 1680 × 216 = 9! which is the degree of the
orbit closure of S.

On the other hand, the predegree polynomial of this non-reduced config-
uration is (1 + t + t2/2 + t3/6)(1 + 2t + 4t2/2 + 8t3/6)(1 + 3t + 9t2/2 + 27t3/6).
Therefore the predegree is 9!, the same as the degree, in accordance with f9 = 1:
differently labelled (by the plane multiplicities) translates in this example repre-
sent different actual configurations.

Tracing definitions, we prove

Theorem 2.4.5. The i-th predegree is the intersection degree
∫

�

V W̃ iH̃15−i,

i ≥ 0 where W̃ and H̃ are respectively the pull-backs to the blow-up Ṽ of the hy-
perplane classes W in P

N and H in P
15.

3. Intersection Theory. There is a convenient lemma, due to Aluffi,
controlling intersection numbers through blow-ups [4].

Lemma 3.1. Let B ↪→ V be nonsingular varieties; X, Y hypersurfaces
in V ; X̃, Ỹ their proper transforms in the blow-up Ṽ of V along B. Then

∫

�

V

X̃dim V −j ·Ỹ j =

∫

V

Xdim V −j ·Y j−

∫

B

(mB,X [B] + X · B)dimV −j(mB,Y [B] + Y · B)j

c(NBV )
,

where mB,X , mB,Y denote the multiplicities of X, Y along B and c(NBV ) is the
Chern class of the normal bundle to B in V .

We apply the lemma to the intersection numbers
∫

�

V W̃ iH̃15−i and the

blow-up sequence Ṽ = V ′′′ → V ′′ → V ′ → V = P
15.

Let us denote by Ḣ, Ḧ, H̃ the pull-backs of the hyperplane class H in P
15

to the blow-ups V ′, V ′′, Ṽ respectively. Similarly, Ẇ , Ẅ , W̃ will be the proper
transforms of a point condition W in P

15 to the same blow-ups respectively. We
use dot notation, in unison with the above, to denote also the proper transforms
of the distinguished P

11’s, P
7’s and P

3’s in P
15 at the corresponding stages of
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the blow-up sequence. In these notations, three iterations of the lemma yield the
following result.

∫
�

V
W̃ jH̃15−j =

∫

P15

W jH15−j

−
∑

i

∫

P3

i

(
m

P
3

i ,H [P3
i ] + H · [P3

i ]
)15−j (

m
P
3

i ,W [P3
i ] + W · [P3

i ]
)j

c
(
N

P
3

i
P15

i

)

−
∑

i

∫

Ṗ
7

i

(
m

Ṗ
7

i ,Ḣ [Ṗ7
i ] + Ḣ · [Ṗ7

i ]
)15−j (

m
Ṗ
7

i ,Ẇ [Ṗ7
i ] + Ẇ · [Ṗ7

i ]
)j

c
(
N

Ṗ
7

i
V ′
)

−
∑

i

∫

P̈
11

i

(
m

P̈
11

i ,Ḧ [P̈11
i ] + Ḧ · [P̈11

i ]
)15−j (

m
P̈
11

i ,Ẅ [P̈11
i ] + Ẅ · [P̈11

i ]
)j

c
(
N

P̈
11

i
V ′′
) ,

where the first summation is over all points of intersection, the second summa-
tion over all lines of intersection and the third one over all planes of the plane
configuration S.

Clearly,
∫

P15 W jH15−j = dj and to compute the other three intersection
numbers on the right hand side, which we call first, second and third contributions
(to the predegree) respectively, we need the following claims which can be checked
with standard intersection theory:

Claim 3.2. (i) c(N
P
3

i
P

15
i ) = (1 + H)12;

(ii) c(N
Ṗ
7

i
V ′) =

(
1 + Ḣ −

∑
k Ek

)8
, where Ek is the exceptional divisor

in V ′ corresponding to the k-th blow-up center P
3;

(iii) c(N
P̈
11

i
V ′′) =

(
1 + Ḧ −

∑
k Ėk −

∑
s es

)4
, where es is the excep-

tional divisor in V ′′ corresponding to the s-th blow-up center Ṗ
7 and Ėk is the

full transform of Ek in V ′′;

(iv) Ẇ = dḢ −
∑

k πkEk, where πk is the multiplicity of S along its
component corresponding to P

3
k (the k-th P

3) and the sum is over all points on a
line of intersection (corresponding to P

7
i );

(v) Ẅ = dḦ−
∑

k πkĖk−
∑

s λses, where λs is the multiplicity of S along
the s-th line of intersection, s runs over the lines and k over the points in the
(i-th) plane.
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Claim 3.3. If we write → to denote push-forwards under the appropriate
set of blow-ups, then

(i) EmEn = 0 for m 6= n; Ei → 0, E2
i → 0, E3

i → 0, E4
i → −H4,

E5
i → −4H5, E6

i → −10H6, E7
i → −20H7;

(ii) emen = 0, ĖmĖn = 0 for m 6= n; Ėk · es 6= 0 if and only if the
corresponding (k-th) P

3 is in the corresponding (s-th) P
7; En

k → 0, 1 ≤ n ≤ 7,
E8

k → −H8, E9
k → −8H9, E10

k → −36H10, E11
k → −120H11; en

s → 0, 1 ≤ n ≤ 3,
e4
s → −D4, e5

s → −4D5, e6
s → −10D6, e7

s → −20D7, e8
s → −35D8, e9

s → −56D9,
e10
s → −84D10, e11

s → −120D11, where D is Ḣ −
∑

k Ek, the sum being over the
points in the line corresponding to (the s-th) P

7.

S k e t c h o f P r o o f o f (i) EmEn = 0 since Em and En are disjoint
for m 6= n. We use the birational invariance of Segre classes [6], according to
which, the push-forward of the Segre class s(Ei, Ṗ

7
i ), under the first blow-up, is

the Segre class s(P3
k, P

7
i ), i.e. the push-forward of

1

c(NEi
Ṗ7

i )
=

1

1 + Ei

⋂
[Ei] is

1

c(N
P
3

k
P7

i )
=

1

(1 + H)4

⋂
[P3

k]. Since the nonzero push-forwards keep the same

dimensions, we find the different-dimension components of the above two and
match them.

Clearly
1

1 + Ei

⋂
[Ei] = Ei − E2

i + E3
i − . . . and

1

(1 + H)4

⋂
[P3

k] = (1 −

4H + 10H2 − 20H3 + . . . )[P3
k]. Thus:

Ei → 0, E2
i → 0, E3

i → 0; E4
i → −H4, E5

i → −4H5; E6
i → −10H6, E7

i →
−20H7, where by H we mean the restriction H[P3

k]. �

Using Claim 3.2, Theorem 2.3.1 (ii), Theorem 2.3.2 (ii) and Theorem 2.3.3
(ii), we write the j-th predegree as

dj −
∑

i

∫

P3

i

H15−j(πi + dH)j

(1 + H)12

−
∑

i

∫

Ṗ
7

i

Ḣ15−j(λi + y)j

(1 + Ḣ −
∑

k Ek)8

−
∑

i

∫

P̈
11

i

Ḧ15−j(ri + Ẅ )j

(1 + Ḧ −
∑

k Ėk −
∑

s es)4

and then using Claim 3.3, we push-forward the second and the third contributions
and finally compute all predegrees.

The expressions we get for the predegrees are quite lengthy. For example,
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for the coefficient of t12/12! we have

d12 −
∑

k

π12
k

−
∑

s

λ8
s

[
330λ4

s

(
1 −

∑

k

1

)
− 1440λ3

s

(
d −

∑

k

πk

)
+ 2376λ2

s

(
d2 −

∑

k

π2
k

)

− 1760λs

(
d3 −

∑

k

π3
k

)
+ 495

(
d4 −

∑

k

π4
k

)]

−
∑

i

[
17325 ri

4
∑

s

λ8
s

∑

k

π0
k − 79200 ri

4
∑

s

λ7
s

∑

k

π1
k − 1440 ri

11
∑

s

λ0
s

∑

k

π1
k

+79200 ri
7
∑

s

λ4
s

∑

k

π1
k − 221760 ri

6
∑

s

λ5
s

∑

k

π1
k + 221760 ri

5
∑

s

λ6
s

∑

k

π1
k

−495 ri
4
∑

k

π8
k + 12320 ri

9
∑

k

π3
k + 3168 ri

5
∑

k

π7
k − 17325 ri

8
∑

k

π4
k

−165 ri
12
∑

k

π0
k − 12320 ri

9
∑

s

λ0
s

∑

k

π3
k − 5544 ri

10
∑

k

π2
k

+15840 ri
7
∑

k

π5
k + 332640 ri

5
∑

s

λ4
s

∑

k

π3
k + 47520 ri

5
∑

s

λ7
s

−9240 ri
6
∑

k

π6
k − 110880 ri

4
∑

s

λ5
s

∑

k

π3
k + 495 ri

4d8 − 1440 ri
11d

−15840ri
7d5− 12320ri

9d3+ 17325ri
8d4− 3168ri

5d7+ 9240ri
6d6+ 5544ri

10d2

+1440 ri
11
∑

k

π1
k − 369600 ri

6
∑

s

λ3
s

∑

k

π3
k + 158400 ri

7
∑

s

λ2
s

∑

k

π3
k

+221760ri
6d
∑

s

λ5
s + 1440ri

11d
∑

s

λ0
s + 79200ri

4d
∑

s

λ7
s − 5544ri

10d2
∑

s

λ0
s

+369600 ri
6d3
∑

s

λ3
s − 34650 ri

4d4
∑

s

λ4
s + 158400 ri

7d2
∑

s

λ3
s

+110880 ri
5d4
∑

s

λ3
s + 79200 ri

7d4
∑

s

λ1
s − 158400 ri

7d3
∑

s

λ2
s

−138600 ri
6d4
∑

s

λ2
s − 17325 ri

8d4
∑

s

λ0
s + 12320 ri

9d3
∑

s

λ0
s
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−138600 ri
4d2
∑

s

λ6
s − 221760 ri

5d
∑

s

λ6
s − 79200 ri

7d
∑

s

λ4
s

−332640 ri
5d3
∑

s

λ4
s − 415800 ri

6d2
∑

s

λ4
s + 110880 ri

4d3
∑

s

λ5
s

+399168 ri
5d2
∑

s

λ5
s + 165 ri

12
∑

s

λ0
s

∑

k

π0
k − 47520 ri

5
∑

s

λ7
s

∑

k

π0
k

+46200 ri
6
∑

s

λ6
s

∑

k

π0
k − 79200 ri

7
∑

s

λ1
s

∑

k

π4
k − 15840 ri

7
∑

s

λ5
s

∑

k

π0
k

+34650 ri
4
∑

s

λ4
s

∑

k

π4
k + 17325 ri

8
∑

s

λ0
s

∑

k

π4
k + 138600 ri

6
∑

s

λ2
s

∑

k

π4
k

−110880 ri
5
∑

s

λ3
s

∑

k

π4
k − 158400 ri

7
∑

s

λ3
s

∑

k

π2
k + 5544 ri

10
∑

s

λ0
s

∑

k

π2
k

−399168 ri
5
∑

s

λ5
s

∑

k

π2
k + 415800 ri

6
∑

s

λ4
s

∑

k

π2
k + 138600 ri

4
∑

s

λ6
s

∑

k

π2
k

+165 ri
12 + 15840 ri

7
∑

s

λ5
s − 46200 ri

6
∑

s

λ6
s − 165 ri

12
∑

s

λ0
s

−17325 ri
4
∑

s

λ8
s

]
,

where all k-indexed summations inside s-summations are over the points on the
line having multiplicity λs and all s-summations inside i-summations range over
the lines in the plane with multiplicity ri. The outer-most summations are over
all points, lines and planes.

The rest of the contributions and the computations leading to them may
be found in [10].

4. Predegree polynomial.

4.1. First compact form. We express the original raw forms of the
coefficients of the predegree polynomial (like the one above) in terms of the
coefficients of the lower degree terms (see [10] for the computational techniques
used). This allows us to write the whole polynomial in a much more compact
and convenient form revealing certain useful multiplicative properties of predegree
polynomials of specific plane configurations:
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The predegree polynomial of a plane configuration S with the usual no-
tations is the truncation to the fifteenth degree of

n∏

i=1

(
1 + rit +

r2
i t

2

2
+

r3
i t

3

3!

)
+

n∑

i=1




7∑

j=0

(d − ri)
jtj

j!



(

15∑

k=8

Ck,i
tk

k!

)

+

n∑

i=1




3∑

j=0

(d − ri)
jtj

j!



(

15∑

k=12

Kk,i
tk

k!

)
,

where the C’s are polynomials of the multiplicities of (S along) the planes in the
configuration and their lines of intersection while, in addition to these, the K’s
also depend on the multiplicities of the points of intersection of the planes.

As in the previous section, it would be difficult to include all computations
(done with the help of Maple) proving the results in this section. However, we
list the final formulae we find for the C-, K- functions in the appendix.

4.2. Transversal configurations. We notice that Cn,i and Kn,i vanish
if S is transversal (every plane intersects the rest of S transversally) and that
Cn,i and Kn,i keep their values (under “small perturbations”) as long as the
incidence data of S do not change. If we denote by C tr

n,i and Ktr
n,i those values

for transversal configurations, we next claim that we can use Sn,i := Cn,i − Ctr
n,i

and Qn,i := Kn,i − Ktr
n,i for Cn,i and Kn,i respectively. In fact, since Cn,i do not

depend on the points of intersection in S, then Cn,i = Ctr
n,i is constant whenever

the plane Pi does not contain lines of intersection of the remaining planes. So we
have the following:

Theorem 4.2.1. The predegree polynomial of a plane configuration S is
the truncation to the fifteenth degree of

n∏

i=1




3∑

j=0

rj
i t

j

j!


+

∑

i




7∑

j=0

(d − ri)
jtj

j!



(

15∑

k=8

Sk,i
tk

k!

)

+
∑

i




3∑

j=0

(d − ri)
jtj

j!



(

15∑

k=12

Qk,i
tk

k!

)
,

where Qm,i, 12 ≤ m ≤ 15 are zero if the i-th plane Pi intersects the rest of
S transversally and Sn,i = 0, 8 ≤ n ≤ 15 when Pi does not contain a line of
intersection of the rest of the planes in S.
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We illustrate the idea of constructing C tr
n,i and Ktr

n,i (hence also Sn,i and
Qn,i) from Cn,i and Kn,i by giving

Ctr
8,i =

∑

k 6=i

rk(35r
8
i − 160r7

i (ri + rk) + 280r6
i (ri + rk)

2 − 224r5
i (ri + rk)

3

+ 70r4
i (ri + rk)

4 − ri(ri + rk)
7 − 35r4

i r
4
k)

and

Ktr
13,i =

∑

j 6=i

∑

k 6=i,k 6=j

[
−1925r13

i /2 + 18720r12
i (ri + rj + rk)/2

− 81432r11
i (ri + rj + rk)

2/2 + 208208r10
i (ri + rj + rk)

3/2

− 345345r9
i (ri + rj + rk)

4/2 − r8
i (2059200(ri + rj)

2(ri + rj + rk)
3

− 2059200(ri + rj)
3(ri + rj + rk)

2 + 205920(ri + rj + rk)
5/2

− 205920(ri + rj)
5 + 1029600(ri + rj)

4(ri + rj + rk)

− 1029600(ri + rj)(ri + rj + rk)
4 − 180180(ri + rj + rk)

5/2

− r7
i (−3432000(ri + rj)

3(ri + rj + rk)
3 − 291720(ri + rj + rk)

6/2

+ 257400(ri + rj)
2(ri + rj + rk)

4 + 634920(ri + rj)
6

+ 4890600(ri + rj)
4(ri + rj + rk)

2 + 823680(ri + rj)(ri + rj + rk)
5

− 2882880(ri + rj)
5(ri + rj + rk)) − r6

i (−3747744(ri + rj)
5(ri + rj + rk)

2

+ 2162160(ri + rj)
3(ri + rj + rk)

4 + 720720(ri + rj)
4(ri + rj + rk)

3

− 720720(ri + rj)
7 − 1441440(ri + rj)

2(ri + rj + rk)
5

+ 2882880(ri + rj)
6(ri + rj + rk) + 144144(ri + rj + rk)

7/2)

− r5
i (−42471(ri + rj + rk)

8/2 − 2792790(ri + rj)
4(ri + rj + rk)

4

+ 360360(ri + rj)
6(ri + rj + rk)

2 + 333333(ri + rj)
8

+ 2018016(ri + rj)
5(ri + rj + rk)

3 + 1153152(ri + rj)
3(ri + rj + rk)

5

− 1029600(ri + rj)
7(ri + rj + rk) + 105105r4

j r4
k)

− r4
i (−1201200(ri + rj)

6(ri + rj + rk)
3 − 360360(ri + rj)

4(ri + rj + rk)
5

+ 1081080(ri + rj)
5(ri + rj + rk)

4 + 5720(ri + rj + rk)
9/2

− 40040(ri + rj)
9 + 514800(ri + rj)

7(ri + rj + rk)
2)

− r2
i (−6435(ri + rj)

7(ri + rj + rk)
4 + 22880(ri + rj)

8(ri + rj + rk)
3

− 30888(ri + rj)
9(ri + rj + rk)

2 + 18720(ri + rj)
10(ri + rj + rk)
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− 4290(ri + rj)
11 + 13(ri + rj + rk)

11/2) − ri(5148(ri + rj)
7(ri + rj + rk)

5

− 17160(ri + rj)
8(ri + rj + rk)

4 + 20592(ri + rj)
9(ri + rj + rk)

3

− 9360(ri + rj)
10(ri + rj + rk)

2 + 792(ri + rj)
12 − 12(ri + rj + rk)

12/2)
]
.

5. Conclusions. The following theorem is a corollary of Theorem 4.2.1.

Theorem 5.1. Let S be a configuration of planes Pi respectively with
multiplicities ri, 1 ≤ i ≤ n and

∑
i ri = d.

(i) The predegree polynomial of S is the truncation to the fifteenth degree
of

n∏

i=1

(
1 + rit +

r2
i t

2

2
+

r3
i t

3

3!

)
+ O(t8),

where O(t8) = 0 if S is transversal (consisting of general planes).
(ii) If no three planes of S contain a common line, then the predegree

polynomial of S is the truncation to the fifteenth degree of

n∏

i=1

(
1 + rit +

r2
i t

2

2
+

r3
i t

3

3!

)

+
n∑

i=1

(
1 + (d − ri)t +

(d − ri)
2t2

2!
+

(d − ri)
3t3

3!

)(
Q12,i

t12

12!
+ · · · + Q15,i

t15

15!

)
,

where Qk,i, 12 ≤ k ≤ 15 vanish if Pi intersects the rest of S is transversally.

We consider some special configurations.
An n-plane configuration consisting of planes with a common line will be

called an n-book .
An n-plane configuration whose planes have a common point and no three

share a line will be named an n-star .
A union of two plane configurations will be called transversal if each plane

of each configuration intersects the other configuration transversally. We also say
that the two configurations meet transversally .

A transversal union of a star and a plane will be referred to as a fan.

We will write {G(t)}n to denote the truncation of any polynomial G(t)
to degree n. Our main result is

Theorem 5.2. If S and S ′ are plane configurations in which no three
planes pass through a common line and the two configurations meet transversally,
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then the predegree polynomial P(t) of the union S of S and S ′ is the truncation
to degree fifteen of the product of the predegree polynomials P (t) and P ′(t) of S
and S′ respectively.

P r o o f. Let S consist of planes with multiplicities ri and r′j be the mul-
tiplicities of the planes in S ′. Let also

∑
i ri = d and

∑
j r′j = d′. According to

Theorem 5.1(ii),

P (t) =
∏

i

(
1 + rit +

r2
i t

2

2
+

r3
i t

3

3!

)

+
∑

i

(
1 + (d − ri)t +

(d − ri)
2t2

2!
+

(d − ri)
3t3

3!

)(
Q12,i

t12

12!
+ · · · + Q15,i

t15

15!

)
,

truncated to degree fifteen, and

P ′(t) =
∏

j

(
1 + r′jt +

(r′j)
2t2

2
+

(r′j)
3t3

3!

)

+
∑

j

(
1 + (d′ − r′j)t +

(d′ − r′j)
2t2

2!
+

(d′ − r′j)
3t3

3!

)(
Q′

12,j

t12

12!
+ · · · + Q′

15,j

t15

15!

)
,

truncated to degree fifteen.

Notice that

{
∏

i

(
1 + rit +

r2
i t

2

2
+

r3
i t

3

3!

)(
1 + (d′ − r′j)t +

(d′ − r′j)
2t2

2!
+

(d′ − r′j)
3t3

3!

)}

3

=

{(
1 + (d + d′ − r′j)t +

(d + d′ − r′j)
2t2

2!
+

(d + d′ − r′j)
3t3

3!

)}

3

and



∏

j

(
1 + r′jt +

(r′j)
2t2

2
+

(r′j)
3t3

3!

)(
1 + (d − ri)t +

(d − ri)
2t2

2!
+

(d − ri)
3t3

3!

)


3

=

{(
1 + (d + d′ − ri)t +

(d + d′ − ri)
2t2

2!
+

(d + d′ − ri)
3t3

3!

)}

3

.
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Thus for PP ′ we now have the truncation up to the fifteenth degree of

=
∏

i

(
1 + rit +

r2
i t

2

2
+

r3
i t

3

3!

)∏

j

(
1 + r′jt +

(r′j)
2t2

2
+

(r′j)
3t3

3!

)
+

+
∑

j

(
1 + (d + d′ − r′j)t +

(d + d′ − r′j)
2t2

2!
+

(d + d′ − r′j)
3t3

3!

)

×

(
Q′

12,j

t12

12!
+ · · · + Q′

15,j

t15

15!

)

+
∑

i

(
1 + (d + d′ − ri)t +

(d + d′ − ri)
2t2

2!
+

(d + d′ − ri)
3t3

3!

)

×

(
Q12,i

t12

12!
+ · · · + Q15,i

t15

15!

)
.

To see that this is in fact P, we use the fact that clearly S is a configuration
of degree d + d′ which falls in the same case (ii) of Theorem 5.1 and also observe
that the “Q-functions” of S agree with Qk,i and Q′

k,i, 12 ≤ k ≤ 15 on S and S ′

respectively because of the transversal union and the properties of Qk,i and Q′
k,i

from Theorem 5.1(ii). �

Remark 5.3. We compute that the adjusted predegree polynomial
of the transversal union of two reduced 4-books is not the (truncation of the)
product of the predegree polynomials of the 4-books. So the requirement of no
three planes containing a common line is essential and the statement of Theorem
5.2 cannot be improved in this sense.

Next we notice that the dimension of the stabilizer of any book is at least
eight and that the dimension of the stabilizer of any star is at least four.

Everything so far in this section can be used to summarize the adjusted
predegree polynomials of the special plane configurations.

Theorem 5.4. If a plane configuration S consists of n planes with mul-
tiplicities ri, 1 ≤ i ≤ n, then the predegree polynomial of S is

(1)

{
n∏

i=1

(
1 + rit +

r2
i t

2

2
+

r3
i t

3

3!

)}

15

, if S is transversal;
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(2)

{
n∏

i=1

(
1 + rit +

r2
i t

2

2
+

r3
i t

3

3!

)}

7

, if S is a book;

(3)

{
n∏

i=1

(
1 + rit +

r2
i t

2

2
+

r3
i t

3

3!

)}

11

, if S is a star;

(4)

{
n∏

i=2

(
1 + rit +

r2
i t

2

2
+

r3
i t

3

3!

)}

11

(
1 + r1t +

r2
1t

2

2
+

r3
1t

3

3!

)
, if S is a fan;

(5)

{
n∏

i=1

(
1 + rit +

r2
i t

2

2
+

r3
i t

3

3!

)
+ O(t12)

}

15

, if no three planes of S have a

common line. This could also be written as



∏

j

[{
∏

i

(
1 + rit +

r2
i t

2

2
+

r3
i t

3

3!

)}

11

]


15

, where the product over i has nj

factors and
∑

j nj = n.

Example 5.5. Consider a reduced 3-book. Its orbit consists of all 3-
books in P

3 and has dimension 7 (3 degrees of freedom for each of 2 planes,
1 degree of freedom for the plane that completes the 3-book and contains the
intersection of the first two planes). There are two ways in which such a config-
uration can contain 7 general points. First, if each of two of the planes contains
3 points, then the third plane (hence the whole configuration) is determined by
the remaining point.

The number of such configurations is

(
7

3

)(
4

3

)/
2 = 70. We divide by 2

because otherwise the pair of the first two planes would be counted twice.

The other possibility occurs when one plane is determined by 3 of the
points and of the remaining 4 points we choose 2 pairs of points. Each pair
determines a line intersecting the plane in a point. The line in the plane which
connects these two points is the line (spine) of the 3-book, i.e., the other two
planes are uniquely determined if we require that each of them contain a pair of
points and that all three planes form a 3-book.

Clearly the computation in this case is

(
7

2

)(
5

2

)/
2 = 105 (the division

by 2 is because of the same reason as above).

So the total number of configurations is 70 + 105 = 175 = degOS .
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According to Theorem 5.4, the predegree polynomial is the truncation of
(1 + t + t2/2 + t3/6)3 to degree 7 and this gives us the predegree of 1050. Since
the degree is 175, this implies that fj = f7 is the expected 3!.

Example 5.6. Similarly, we compute combinatorially the degree of a fan
consisting of a 3-star and a general plane to be 21000. From Theorem 5.4 (4) we
find that the predegree is 126000, so fj = f10 = 6. Our intuition behind this fact
is that, although all planes are reduced, the general plane cannot be exchanged
with any of the others under an automorphism of the configuration.

6. Future work. A natural component of an enumerative analysis of
orbit closures of more general surfaces would be the computation of the predegree
polynomial for a larger class of surfaces than the one considered here: for example
cones over smooth plane curves (where the result is likely to relate to the formulae
by Aluffi and Faber for predegree polynomials of smooth plane curves). The
strategy for such a computation would be a natural generalization of the one
employed in this paper: i.e. a sequence of blow-ups over P

15 modelled after the
geometry of the cone. The natural expectation is that one blow-up would be
needed to account for the vertex of the cone and two additional ones accounting
for the curve, one of which due to features of the curve, such as inflection points
(cf. Example 1.1 in [1]).

The most obvious and naturally arising problem, however, is the one
about predegree polynomials of arrangements of hyperplanes in a projective space
of any dimension. The techniques used in this article should in principle be
applicable to this more general case. The aim would be to resolve indeterminacies
of a basic rational map analogous to the one considered here; in dimension n,
it is natural to expect that n blow-ups over a projective space of dimension
n2 + 2n should achieve this resolution. These blow-ups are possibly related to
those leading to “matroid varieties”, considered by Aluffi [5] and D. Jones [8].
However, the higher dimensional case is bound to be very challenging from the
computational point of view.

The predegree polynomial of an r-fold hyperplane in P
M could be shown

to be PM (t) =

M∑

k=0

rktk

k!
(which approaches exp(rt) as M → ∞) using the fact that

the orbit of the corresponding rational map from the projective space, which is
the compactification of PGL(M +1), to the projective space P

N , parameterizing
degree r hypersurfaces, is the r-fold Veronese embedding of P

M in P
N .
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Concerning predegree polynomials for hyperplane arrangements in higher
dimension, the multiplicativity properties observed in the case of lines and planes
suggest a rather precise conjecture for the predegree polynomial of the union of
two arrangements, provided that they meet transversally and satisfy certain inci-
dence requirements – one for each dimension between points and hyperplanes. It
may be possible to attack this conjecture independently of the general solution to
the problem for hyperplane arrangements; this would suffice for the computation
of many classes of examples.

Another natural, possibly more ambitious, general class of problems
amounts to establishing a clear connection between the invariants encoded in
the predegree polynomial of a plane arrangement in space (or of a hyperplane
arrangement in higher dimension) and the invariants arising in the well-developed
field of hyperplane arrangements (see e.g. [9]. Previous work of P. Aluffi suggests
a connection between Segre classes such as the ones used in the computations of
the contributions to the predegrees in this paper and the geometry of the hyper-
plane arrangement. It is therefore natural to expect that formulae such as the
ones obtained in this work may relate rather directly to (for example) Poincare
polynomials of hyperplane arrangements.

7. Appendix

C8,i = 35r8
i

∑

s

1 − 160r7
i

∑

s

λs + 280r6
i

∑

s

λ2
s − 224r5

i

∑

s

λ3
s

+ 70r4
i

∑

s

λ4
s − ri

∑

s

λ7
s − 35r4

i

∑

k 6=i

r4
k;

C9,i = 259r9
i

∑

s

1−1440r8
i

∑

s

λs+3240r7
i

∑

s

λ2
s−3696r6

i

∑

s

λ3
s +2142r5

i

∑

s

λ4
s

− 504r4
i

∑

s

λ5
s − 9r2

i

∑

s

λ7
s + 8ri

∑

s

λ8
s + 189r4

i

∑

k 6=i

r5
k;

C10,i = 1099r10
i

∑

s

λ0
s − 7200r9

i

∑

s

λs + 19800r8
i

∑

s

λ2
s − 29280r7

i

∑

s

λ3
s

+ 24570r6
i

∑

s

λ4
s −11088r5

i

∑
s λ5

s + 2100r4
i

∑
s λ6

s − 45r3
i

∑
s λ7

s

+ 80r2
i

∑

s

λ8
s − 36ri

∑

s

λ9
s − 525r4

i

∑

k 6=i

r6
k − 126r5

i

∑

k 6=i

r5
k;
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C11,i = 3499r11
i

∑

s

λ0
s − 26400r10

i

∑

s

λs + 85800r9
i

∑

s

λ2
s − 155760r8

i

∑

s

λ3
s

+ 170610r7
i

∑

s

λ4
s − 112728r6

i

∑

s

λ5
s + 41580r5

i

∑

s

λ6
s − 6765r4

i

∑

s

λ7
s

+ 440r3
i

∑

s

λ8
s − 396r2

i

∑

s

λ9
s + 120ri

∑

s

λ10
s + 825r4

i

∑

k 6=i

r7
k + 924r5

i

∑

k 6=i

r6
k;

C12,i = 9274r12
i

∑

s

λ0
s − 79200r11

i

∑

s

λs + 297000r10
i

∑

s

λ2
s − 638880r9

i

∑

s

λ3
s

+862290r8
i

∑

s

λ4
s − 747648r7

i

∑

s

λ5
s + 406560r6

i

∑

s

λ6
s

−127215r5
i

∑

s

λ7
s + 19085r4

i

∑

s

λ8
s − 2376r3

i

∑

s

λ9
s

+1440r2
i

∑

s

λ10
s − 330ri

∑

s

λ11
s

−3564r5
i

∑

k 6=i

r7
k − 462r6

i

∑

k 6=i

r6
k;

C13,i = 21594r13
i

∑

s

λ0
s − 205920r12

i

∑

s

λs + 875160r11
i

∑

s

λ2
s − 2175888r10

i

∑

s

λ3
s

+3487770r9
i

∑

s

λ4
s − 3737448r8

i

∑

s

λ5
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i

∑

s

λ6
s
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i

∑

s

λ7
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i

∑

s

λ8
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i

∑

s

λ9
s

+9360r3
i

∑

s

λ10
s − 4290r2

i

∑

s

λ11
s + 792ri
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s

λ12
s
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i

∑

k 6=i

r8
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i
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C14,i = 45618r14
i

∑

s

λ0
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i
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i
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i

∑

s

λ11
s + 11088r2

i
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s
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s
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s
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i

∑
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i
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k
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i
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i

∑
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r7
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C15,i = 89298r15
i

∑
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i
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i
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i
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i
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i
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i
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s

∑
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k
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∑
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k
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