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The classical notion of apolarity is defined for two algebraic polynomials of equal

degree. The main property of two apolar polynomials p and q is the classical Grace theorem:

Every circular domain containing all zeros of p contains at least one zero of q and vice versa.

In this paper, the definition of apolarity is extended to polynomials of different degree and

an extension of the Grace theorem is proved. This leads to simplification of the conditions of

several well-known results about apolarity.
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1. Preliminaries

Let C denote the complex plane and C∗ := C ∪ {∞} its one-point com-
pactification. The set of all polynomials

p(z) = anz
n + an−1z

n−1 + · · ·+ a0 = an(z − α1)(z − α2) · · · (z − αn), (1.1)

with an 6= 0 is denoted by Pn. The set of zeros of p ∈ Pn, each counted with
its multiplicity, is denoted by Z(p) = {α1, α2, . . . , αn}. The closure of Pn with
respect to taking limits of the coefficients is

P̄n = P0 ∪ P1 ∪ · · · ∪ Pn.
The (real) degree of p ∈ P̄n is the highest power of z with non-zero coefficient.
If p ∈ P̄n has degree n− s for some s ∈ {0, 1, . . . , n}, we say that p has a zero at
∞ with multiplicity s. Thus, the set Z(p) of the zeros of a polynomial p ∈ P̄n of
degree n− s contains the symbol ∞ repeated s times. Thus, every polynomial
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p ∈ P̄n has n zeros, counting their multiplicity. We formally write p(∞) = 0 if
p ∈ Pn−s for some s = 1, 2, . . . , n and p(∞) 6= 0 if p ∈ Pn.

A (non-degenerate) Möbius transformation

T (z) =
az + b

cz + d
; a, b, c, d ∈ C, ad− bc 6= 0

maps the extended complex plane C∗ one-to-one on itself, and

T (−d/c) =∞, T (∞) =
a

c
, T−1(z) =

dz − b
−cz + a

, T−1(a/c) =∞, T−1(∞) = −d
c
.

Every Möbius transformation defines an operator on P̄n in the following
way:

T [p](z) := (cz + d)np

(
az + b

cz + d

)
, p ∈ P̄n. (1.2)

The operator T [p] maps the set P̄n onto itself. More precisely, we have the
following lemma.

Lemma 1.1. Let p ∈ P̄n and {α1, α2, . . . , αn} be the zeros of p,
counting multiplicities and zeros at ∞. Then, the zeros of T [p] are

{T−1(α1), T
−1(α2), . . . , T

−1(αn)}.

P r o o f. Let p∈Pn−s, for some s ∈ {0, 1, ..., n−1} and let {α1, α2, ..., αn−s}
be the finite roots of p. We have the following cases:

1) If p(a/c) 6= 0, then T [p] ∈ Pn and

Z(T [p]) =
{
T−1(α1), T

−1(α2), . . . , T
−1(αn−s),−

d

c
,−d

c
, . . . ,−d

c

}
, (1.3)

where the zero −d/c has multiplicity s. Informally, for a polynomial of degree
n− s, with p(a/c) 6= 0, the operator T “brings” s zeros from ∞ to −d/c, which
conforms with the fact T−1(∞) = −d/c. In this case, if c = 0 then ∞ is not a
zero of p and we must have s = 0.

2a) Suppose a/c is a zero of p of multiplicity l and c 6= 0. Let α1, α2,
. . . , αn−s−l be the finite zeros of p different from a/c. Then T [p] ∈ Pn−l and

Z(T [p])=
{
T−1(α1), T

−1(α2), ..., T
−1(αn−s−l),−

d

c
,−d

c
, ...,−d

c
,∞,∞, ...,∞

}
,

(1.4)
where the zero −d/c has multiplicity s and the zero ∞ has multiplicity l. In-
formally, the operator T “brings” s zeros from ∞ to −d/c and “sends” a/c
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to ∞ with multiplicity l. This conforms with the fact T−1(∞) = −d/c and
T−1(a/c) =∞.

2b) If a/c is a zero of p of multiplicity l and c = 0, then we must have
l = s and

Z(T [p]) =
{
T−1(α1), T

−1(α2), . . . , T
−1(αn−s),∞,∞, . . . ,∞

}
, (1.5)

where the zero ∞ has multiplicity s. That is, T [p] ∈ Pn−s. Informally, the
operator T does not “bring” or “send” zeros to ∞.

For any a ∈ C and p ∈ Pn, n ≥ 1, define the polynomial Da(p; z) ∈ Pn−1
by

Da(p; z) = np(z)− (z − a)p′(z). (1.6)

The linear operator (1.6) is called polar derivative with pole a, see [1, p. 97]. It
is clear that

lim
a→∞

Da(p; z)
a

= p′(z),

and we define

D∞(p; z) := p′(z).

It is important to see how the operator T transforms the zeros of the derivative of
p (i.e. the critical points), when p ∈ Pn. Naturally, we consider the polynomials
Da(p; z) and D∞(p; z) to be members of P̄n−1.

Lemma 1.2. Let p ∈ P̄n. The critical points of T [p] are

{T−1(β1), T−1(β2), . . . , T−1(βn−1)},

where {β1, β2, . . . , βn−1} are the zeros of Da/c(p; z), counting multiplicities and
zeros at infinity.

P r o o f. Let p ∈ Pn−s, for some s ∈ {0, 1, . . . , n − 1}, implying that
Da/c(p; z) ∈ Pn−s−1. Let β1, β2, . . . , βn−s−1 be the finite roots of Da/c(p; z). We
consider two cases:

1) If c 6= 0, then from (1.2), we calculate

T [p]′(z) = nc(cz + d)n−1p(T (z)) + (cz + d)np′(T (z))T ′(z)

= c(cz + d)n−1
(
np(T (z)) + 1

c
ad−bc
cz+d p

′(T (z))
)

= (cz + d)n−1
(
np(T (z))− (T (z)− a/c)p′(T (z))

)
= (cz + d)n−1Da/c(p;T (z))

= (cz + d)s
∏n−s−1
k=1 (z − T−1(βk)).

Thus, the critical points of T [p] are
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Z(T [p]′) =
{
T−1(β1), T

−1(β2), . . . , T
−1(βn−s−1),−

d

c
,−d

c
, . . . ,−d

c

}
,

where the zero −d/c has multiplicity s. Since T−1(∞) = −d/c, we are done.

2) If c = 0, then both a and d are non-zero and observing that

T [p]′(z) = adn−1p′(T (z)) = adn−1D∞(p;T (z)),

we are done.

We may consider the ordinary derivative as a polar derivative with pole
∞. When we are interested in the critical points of the polynomial T [p], we
have to get the polar derivative of p with pole T (∞) = a/c.

2. Apolarity

The notion of apolarity, see [1, p. 102], is defined as a symmetric relation
between two polynomials of the same degree.

Definition 2.1. The polynomials

p(z) =
n∑
k=0

akz
k ∈ Pn and q(z) =

n∑
k=0

bkz
k ∈ Pn

are called apolar, if
n∑
k=0

(−1)k(
n
k

) an−kbk =
1

n!

n∑
k=0

(−1)kp(n−k)(0)q(k)(0) = 0. (2.1)

The basic relation between the zeros of two apolar polynomials is the
classical theorem of Grace, see [1, p. 107]. A circular domain, open or closed,
is a proper subset of C, bounded by a circle, or a line.

Theorem 2.2. (Grace) Let p and q be apolar. Then every circular
domain containing all the zeros of one of them contains at least one zero of the
other.

It is natural to extend the notion apolarity to polynomials of arbitrary
degree.

Definition 2.3. We say that p, q ∈ P̄n are n-apolar, or just apolar, if

n∑
k=0

(−1)kp(n−k)(0)q(k)(0) = 0. (2.2)

Such a definition of apolarity does not require the degree of the polyno-
mials to be fixed or the same.
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For example, let p(z) = a1z + a0 and q(z) = b1z + b0. If we consider p
and q to be in P1, then they are 1-apolar if a1b0 − a0b1 = 0. If we consider p
and q to be in P2, then they are 2-apolar if a1b1 = 0. Finally, they are n-apolar
for every n ≥ 3.

As another example, consider p(z) = a2z
2 +a1z+a0 and q(z) = b1z+ b0.

If we consider p and q to be in P2, then they are 2-apolar if a2b0 − a1b1/2 = 0.
If we consider p and q to be in P3, then they are 3-apolar if a2b1 = 0. Finally,
they are n-apolar for every n ≥ 4.

Statement 2.1. Let s ∈ {0, 1, . . . , n − 1}. If p ∈ Pn and q ∈ Pn−s are
n-apolar, then p(l) and q are (n− l)-apolar for l = 0, 1, . . . , s.

P r o o f. As p and q are n-apolar and q ∈ Pn−s, we have

0 =

n∑
k=0

(−1)kp(n−k)(0)q(k)(0) =

n−l∑
k=0

(−1)k
dn−l−k

dzn−l−k
p(l)(z)

∣∣∣
z=0

q(k)(0)

for any l = 1, 2, . . . , s.

Lemma 2.4. If p, q ∈ P̄n are apolar, then so are T [p] and T [q].

The statement of Lemma 2.4 is analogous to the one given in [1, Re-
mark 3.3.4, p. 103]. Only there, it is required that both p and q be of degree n,
as well as that both T [p] and T [p] be of degree n. The justification of Lemma 2.4
is similar: Every Möbius transformation T , with ad − bc 6= 0, is a composition
of transformations of the type 1/z and az+ b for a 6= 0. It is not difficult to see
that Lemma 2.4 holds for these two types of transformations.

We formulate an extension of the Grace theorem for two arbitrary poly-
nomials.

Theorem 2.5. Let p and q in P̄n be apolar. Then every circular
domain containing all the zeros of one of them contains at least one zero of the
other.

P r o o f I. If p and q are both of degree n, then the theorem coincides
with the classical theorem of Grace. If p and q are both of degree strictly less
than n, then both polynomials have ∞ as a zero. Hence, the theorem is true.
The more interesting case is when the degree of p is m < n, while the degree of
q is n. Let p(z) =

∑m
k=0 akz

k and consider the polynomial

pε(z) = εzn +

m∑
k=0

ak(ε)z
k = ε(z − ζ1(ε))(z − ζ2(ε)) · · · (z − ζn(ε)).

It is possible to choose the coefficients {ak(ε) : k = 0, . . . ,m} so that ak(ε)
approaches ak as ε approaches 0 and so that pε is apolar to q. Then, ε approaches
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0, m of the zeros {ζ1(ε), ζ2(ε), . . . , ζn(ε)} approach the finite zeros of p, and the
rest n−m escape to ∞. The classical Grace theorem is valid for the pair pε, q
and by continuity it remains valid for the pair p, q.

P r o o f II. Similarly to the first proof, the interesting case is when the
degree of p is m < n, while the degree of q is n. The rest follows immediately
from the original Grace theorem and Lemma 2.4 after choosing the Möbius
transformation T to be such that T−1 sends the roots of p and ∞ into C and
referring to Lemma 1.1.

Observe that if the degree of q is less than n, then every circular domain,
containing all the zeros of q is a half plane or the exterior of a open disk. A
simple corollary, which is a priori obvious from the Gauss-Lucas theorem, is the
following. Let p(z) = (z−z1)(z−z2) · · · (z−zn) = zn−(z1+z2+ · · ·+zn)zn−1+
· · ·+ a0; n ≥ 2 and q(z) = z− b be apolar to p. According to Definition 2.3, we
have b = (z1 + z2 + · · · + zn)/n. The extended Grace theorem says that every
half plane having b on its boundary contains at least one of the zeros of p. This
is a priori trivial, as b is the center of gravity of the zeros of p.

2.1. Properties of extended apolarity. The apolarity relation, see
[1, p. 102-104], has several important properties. In some of them, it is necessary
to state that the two polynomials are of the same degree. We will rephrase
these properties for the extended definition of apolarity and see that in some
instanced the underlying conditions are simplified. Definition 2.3 immediately
implies that: (i) Every polynomial of odd degree is apolar to it self. (ii) If two
polynomials q1 and q2 are both apolar to p and λ1, λ2 ∈ C, then the polynomial
q = λ1q1 + λ2q2 is also apolar to p.

For polynomials p, q∈P̄n given by p(z)=
∑n

k=0 akz
k and q(z)=

∑n
k=0 bkz

k,
introduce the functional

Λp[q] := n!
n∑
k=0

(−1)k(
n
k

) an−kbk =
n∑
k=0

(−1)kp(n−k)(0)q(k)(0)

defined in P̄n for every fixed p ∈ P̄n. The following lemma is proved in [1, p.
103] for p, q ∈ Pn.

Lemma 2.6. Let p, q ∈ P̄n and let deg(p) = λ, deg(q) = µ. Define

P (z) = p(az + b), G(z) = g(az + b), a 6= 0.

Then, Λp[q] = a−mΛP [Q], where m := max{λ, µ}.
P r o o f. It is easy to see that

ΛP [Q] = am
n∑
k=0

(−1)kp(n−k)(b)q(k)(b) (2.3)



Extention of Apolarity and Grace Theorem 83

and

∂ΛP [Q]

∂b
= am

(
p(n+1)(b)q(b) + (−1)np(b)q(n+1)(b)

)
= 0.

The last equality implies that the sum on the right-hand side of (2.3) does not
depend on b. Letting b = 0 completes the proof.

The proof of Lemma 2.6 shows that for any b ∈ C we have

Λp[q] =
n∑
k=0

(−1)kp(n−k)(b)q(k)(b) (2.4)

The following lemma, see [1, p. 104], suggests that apolarity is connected with
common zeros.

Lemma 2.7. Let p, q ∈ P̄n have a common zero z1. Suppose the sum
of the multiplicities of z1 as a zero of p and q, respectively, is larger than n.
Then, Λp[q] = 0 and so q is apolar to p.

P r o o f. Let l and m be the multiplicities of z1 as a zero of p and q,
respectively. By assumption, we have l +m > n.

If z1 =∞, then p(k)(0) = 0 for all k = n− l+ 1, . . . , n and q(n−k)(0) = 0
for all k = 0, . . . ,m− 1. Since n− l + 1 ≤ (m− 1) + 1, we get Λp[q] = 0.

If z1 ∈ C, then using (2.4), we get

Λp[q] =
n∑
k=0

(−1)kp(k)(z1)q
(n−k)(z1),

and the proof concludes as in the first case.

The following theorem describes the set of all polynomials q(z) ∈ P̄n
which are apolar to a given polynomial p(z) ∈ Pn in terms of its zeros. The
proof follows the proof of the analogous theorem in [1, p. 104], keeping in
mind that q(z) ∈ P̄n. Note that while the result in [1, p. 104] requires that the
constants cj,l be non-zero, this restriction is now relaxed, thanks to the extended
notion of apolarity.

Theorem 2.8. Let p(z) = an
∏k
j=1(z− zj)mj ∈ Pn, where z1, z2, . . . , zk

be distinct, and {mj}kj=1 be natural numbers with
∑k

j=1mj = n. Then, the
polynomials

q(z) =

k∑
j=1

ml−1∑
l=0

cj,l(z − zj)n−l, (2.5)

where cj,l ∈ C for j = 1, 2, . . . , k, l = 0, 1, . . . ,mj − 1, constitute the set of all
polynomials q ∈ P̄n apolar to p.



84 Bl. Sendov, Hr. Sendov

P r o o f. Each polynomial

qj(z) =

ml−1∑
l=0

cj,l(z − zj)n−l, j = 1, 2, . . . , k, (2.6)

has zj as a zero of multiplicity at least n −mj + 1. Hence, Lemma 2.7 implies

that Λp[qj ] = 0. Thus, Λp[q] =
∑k

j=1 Λp[qj ] = 0 showing that every polynomial
of the form (2.5) is apolar to p. It remains to show that there are no other
polynomials apolar to p.

The functional Λp[q] is not identically zero, since for the polynomial

h(z) :=
n∑
k=0

(−1)k

k!
p(n−k)(0)zk,

we have

h(k)(0) = (−1)kp(n−k)(0) and Λp[h] =

n∑
k=0

|p(n−k)(0)|2 > 0.

By a standard result from linear algebra, the kernel of Λp[q], that is, the set of all
polynomials q ∈ P̄n satisfying Λp[q] = 0, is a linear subspace Vn of dimension n.
A polynomial q, apolar to p, must belong to Vn. By Lemma 2.7, the polynomials

qj,l(z) := (z − zj)n−l, j = 1, 2, . . . , k, l = 0, 1, . . . ,mj − 1

do all belong to Vn. Since there is total of n polynomials qj,l(z), it is enough to
show that they are linearly independent. Assume the contrary that

k∑
j=1

mj−1∑
l=0

cj,lqj,l(z) ≡ 0

with some of the coefficients cj,l being non-zero. Writing the left-hand side as∑n
ν=0 Lνz

ν , we must have Ln = Ln−1 = · · · = L0 = 0. Since

Lν =
k∑
j=1

mj−1∑
l=0

(
n− l
ν

)
(−zj)n−l−νcj,l, ν = 0, 1, . . . , n,

where
(
n−l
ν

)
= 0 when ν > n− l, it follows that the system

k∑
j=1

mj−1∑
l=0

(
n− l
ν

)
(−zj)n−l−νuj,l = 0, ν = n, n− 1, . . . , 1, 0
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of n equation in the n unknowns uj,l has a non-trivial solution. Hence, the
determinant ∆ of this system must vanish. Its entries are

1 0 . . . 0

−
(
n
1

)
zj 1 . . . 0(

n
2

)
z2j −

(
n−1
1

)
zj . . . 0

...
...

. . .
...

(−1)n−1
(
n
n−1
)
zn−1j (−1)n−2

(
n−1
n−2
)
zn−2j . . . (−1)n−mj

(
n−mj+1
n−mj

)
z
n−mj

j ,

where j = 1, 2, . . . , k. From ∆ = 0 follows that a non-trivial linear combination
of the rows is zero. Hence, there exists a polynomial

f(z) =
n−1∑
ν=0

(−1)ν
(
n

ν

)
λνz

ν ,

which is not identically zero and such that

(−1)l
n!

(n− l)!
f (l)(zj) = 0, j = 1, 2, . . . , k, l = 0, 1, . . . ,ml − 1.

Thus, f(z) would have a total of at least
∑k

j=1mj = n zeros, which is impossible
since the degree of f(z) is at most n− 1.

The next lemma gives a connection between apolarity and polar deriva-
tives.

Lemma 2.9. Let p ∈ Pn, q ∈ P̄n, and let z∗ be a zero of p(z) =∑n
k=0 akz

k. If p and q are apolar, then

p1(z) =

{
p(z)/(z − z∗) if z∗ ∈ C,∑n−1

k=0 akz
k if z∗ =∞,

is apolar to the polar derivative Dz∗(q; z).
P r o o f. We have p1 ∈ Pn−1 and Dz∗(q; z) ∈ P̄n−1. If z∗ = ∞, then we

have bn = 0 and

0 =

n∑
k=0

(−1)k(
n
k

) an−kbk =
1

n

n∑
k=1

(−1)k(
n−1
k−1
) an−k(kbk).

This shows that Λq′ [p1] = 0, or that p1 and D∞(q; z) are apolar.

Suppose now, that z∗ ∈ C. Let

p(z) = an

k∏
j=1

(z − zj)mj ,
k∑
j=1

mj = n, an 6= 0,
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where z1, z2, . . . , zk are distinct numbers. Then, by Theorem 2.8, q(z) must be
of the form q(z) =

∑k
j=1 qj(z), where

qj(z) :=

mj−1∑
l=0

cj,l(z − zj)n−l, j = 1, 2, . . . , k.

Hence, we may write

Dz∗(q; z) = n
k∑
j=1

qj(z)− (z − z∗)
k∑
j=1

q′j(z) =
k∑
j=1

Dz∗(qj ; z).

Clearly, Dz∗(qj ; z) is a polynomial of degree at most n − 1 in z, with zero zj
having multiplicity at least n−mj + 1 when zj = z∗ and at least n−mj when
zj 6= z∗. Therefore, Dz∗(qj ; z) is of the form

Dz∗(qj ; z) =

nj−1∑
ν=0

γj,ν(z − zj)n−1−ν , where nj :=

{
mj if zj 6= z∗,
mj − 1 if zj = z∗.

This means, by Theorem 2.8, that Dz∗(q; z) =
∑k

j=1Dz∗(qj ; z) is amongst the
polynomials apolar to

an

k∏
j=1

(z − zj)nj = p1(z),

completing the proof.

Combining Lemma 2.9 and Statement 2.1, we obtain the following corol-
lary.

Corollary 2.1. Let s ∈ {0, 1, . . . , n− 1}. Let p ∈ Pn, q ∈ Pn−s, and z∗

be a zero of p =
∑n

k=0 akz
k. If p and q are apolar, then

p1(z) =

{
p(z)/(z − z∗) if z∗ ∈ C,∑n−1

k=0 akz
k if z∗ =∞,

is apolar to the polar derivative Dz∗(q(s); z).
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