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ABSTRACT. Tsybakov [31] introduced the method of stochastic approxima-
tion to construct a recursive estimator of the location 6 of the mode of a
probability density. The aim of this paper is to provide a companion algo-
rithm to Tsybakov’s algorithm, which allows to simultaneously recursively
approximate the size p of the mode. We provide a precise study of the
joint weak convergence rate of both estimators. Moreover, we introduce
the averaging principle of stochastic approximation algorithms to construct
asymptotically efficient algorithms approximating the couple (6, u).

1. Introduction. The most famous use of stochastic approximation
algorithms in the framework of nonparametric statistics is the work of Kiefer and
Wolfowitz [14], who built up an algorithm which allows the approximation of the
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maximizer of a regression function, which is observable at any level. Their well-
known algorithm was widely discussed and extended in many directions (see,
among many others, [1], [10], [15], [12], [27], [3], [29], [24], [6], [30], [4], [7])-
In particular, Mokkadem and Pelletier [20] provided a companion algorithm to
Kiefer-Wolfowitz’s algorithm in order to simultaneously approximate the location
and the size of the mode of the regression function. Stochastic approximation
algorithms were also introduced by Révész [25, 26] to estimate a regression func-
tion from a sample of random variables, and by Tsybakov [31] to approximate the
mode of a probability density. The aim of this paper is to provide a companion
algorithm to Tsybakov’s algorithm in order to simultaneously approximate the
location and the size of the mode of a probability density.

Let us recall Robbins-Monro’s scheme to construct approximation algo-
rithms searching the zero z* of an unknown function A : R — R¢, which is
observable at any level. First, Zy € R is arbitrarily chosen, and then the se-
quence (Z,,) is recursively defined by setting

Ly =Zp_1+ ’Yana

where W, is an observation of the function h at the point Z,,_1, and where the
stepsize (7y,) is a sequence of positive real numbers going to zero.

Let X1,...,X, be independent, identically distributed R%valued random
vectors, let f denote the probability density of X1, and assume that f has a unique
maximizer . To construct a stochastic algorithm approximating the maximizer
0 of f, Tsybakov [31] defines an algorithm searching the zero of V f, the gradient
of £, in the following way. First y € R is arbitrarily chosen, and then, for n > 1,
0,, is recursively defined by setting

Op = On_1 4+ 1 WD,

where, following Robbins-Monro’s procedure, W,ge) must be an “observation” of

the function V f at the point 6,,_1. Now, contrary to Robbins-Monro’s framework,
the function V f is not observable at any level, the only available observations
being the random vectors X;. In order to build up the “observation” W,ﬁ"),
Tsybakov [31] follows the method used by Révész [25], and introduces a kernel K

(that is, a function satisfying /K(x)dx = 1), and a bandwidth (h,) (that is, a

R4
sequence of positive real numbers going to zero); noting that h,, @y (hy Yz —
X,]) can be regarded as an “observation” of the function Vf at the point z,
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Tsybakov [31] sets W\ = b,V K (hy6n—1 — X3]), so that his algorithm
approximating 6 is defined by the recursive relation

1 97171 - Xn
(1) 9n20n1+7nh#1VK( T ) :

Tsybakov [31] proves the srong consistency of 6,,, and establishes an upper bound
of its mean squared error, as well as a minimax result.

In order to construct a companion algorithm to Tsybakov’s algorithm (1),
which approximates the size p of the mode 6 of the probability density f (in other
words, which approximates = f(0)), we define an algorithm searching the zero
of the function g : y — f(0) —y. Following Robbins-Monro’s scheme, we set
o € R, and, for n > 1,

fn = -1 + YW,

where W,g“ ) is an “observation” of the function g at the point p,, 1. Let (hy,) be
a bandwidth (which may be different from (h,,)); noting that h,, 2K (h,, [z — X,])
can be regarded as an “observation” of the function f at the point x, we set
Wr(L“ ) — ﬁ; di <ﬁ; 0,1 — Xn]> —tin—1- The stochastic approximation algorithm
we introduce to estimate p is thus defined by the recursive relation

On_1— Xn)

1
(2) /M:MA—%M4+%ﬁK< "

n

We prove that pu, is strongly consistent, and we establish the weak con-
vergence rate of (0, uy,) defined by the algorithms (1) and (2). We prove in
particular that, for (6,,) and (i) to converge simultaneously at the optimal rate,
the stepsize (7,) must be chosen such that lim,, . ny, = 70 € (0,00), and the
bandwidths (h,) and (h,) must converge to zero at different rates. Now, as it is
often the case in the framework of stochastic approximation algorithms, the choice
of a stepsize satisfying lim,, ., ny, = 7o induces conditions on 7y, which are dif-
ficult to handle because depending on an unknown parameter (in the present
framework, vp must be larger than a quantity involving the Hessian D2 f(0) of f
at 0). The famous approach to obtain optimal convergence rates for stochastic
approximation algorithms without tedious condition on the stepsize is to use the
averaging principle independently introduced by Ruppert [28] and Polyak [22].
Their averaging procedure, which was widely discussed and extended (see, among
many others, [32], [5], [23], [16], and [6]) allows to obtain asymptotically efficient
algorithms, that is, algorithms which not only converge at the optimal rate, but
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which also have a minimal asymptotic covariance matrix. This procedure con-
sists in: (i) running the approximation algorithm by using slower stepsizes; (ii)
computing a suitable average of the approximations obtained in (i).

To apply the averaging principle to the approximating algorithms (1) and
(2), we proceed as follows. First, we run the algorithms (1) and (2) with a slower
stepsize satisfying lim, .o 7y, = co. Then, we define the average 0,, of the 6,
and the average Ii,, of the g by setting

(3) 0, = hi+2gy,,
Zk lhd-‘r? ;

Zk 1 hfcl k=1
We establish the weak convergence rate of (9n~, Ii,). We prove in particular that
adequate choices of the bandwidths (h,,) and (h;,) allow to obtain simultaneously
the asymptotic efficiency of both sequences (6,,) and (z,,).

To conclude this introduction, let us underline that the proof of the as-
ymptotic behaviour of the sequences (6,,), (ttn), (f), and (f,) deeply relies on
the application of asymptotic properties of a general stochastic approximation al-
gorithm. Our paper is thus organized as follows. Our main results on (6,,), (un),
(0,,), and (fi,,) are stated in Section 2. In Section 3, we state some asymptotic
properties of a general stochastic approximation algorithm, and prove them in
Section 4. Finally, Section 5 is reserved to the proof of our main results.

2. Assumptions and main results. Throughout this paper, |.|
denotes the Euclidean norm. For any function ¢, we set ||¢]| = sup, [|¢(x)]|.
For any matrix A, AT denotes the transpose of A, and I; denotes the d x d
identity matrix. Moreover, we consider the following class of regularly varying
sequences.

Definition 1. Let vy € R and (Un)n21 be a nonrandom positive sequence.
We say that (vy,) € GS () if

(5) lim n [1 - ”"1] — .

n—-+00 Un

Condition (5) was introduced by Galambos and Seneta [11] (see also [2]);
it was used in [20] in the context of stochastic approximation algorithms. Typical
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sequences in GS (v) are, for b € R, n” (log n)b, n” (loglog n)b, and so on.

We can now state our assumptions.

(H1) (i) K is continuously differentiable, /K(:U)dx =1, /H:c]2]K(x)]dx < 00,

R4 R
and hm||mHHoo K(ﬂj) =0.

(ii) K is even in each of its coordinates.
(iii) /||x]||VK(:c)||d1: < oo and [|[VK|| s < 00.
R4

(H2) (i) f is three times continuously differentiable, || D?f||o < co and
HDngoo < Q.
(ii) [Vf(2)]T(x —0) <0 for all = # 6.

(iii) The largest eigenvalue —L() of D2 f(0) is negative.

i)
)

(H3) (i) (yn) € GS (—a) with a € (1/2,1].
)

l—-a 20—1
ith _ .
(ii) (hyn) € GS (—a) wit aE( 1 ’d+2)
(iii) limy—oo Yy € | min 1—a(d+2); 2a ; 00
2L9) L©)

(iv) (hn) € GS (~a) with @ € (120‘,20“6[_1).

Remark 1. Assumption (H1)(ii) implies in particular that / ;K (x)dx
Rd
=0forallie{1,...,d} and /aciach(:U)dx =0 for all i # j. Moreover, assump-
Rd
tions (H1)(i) and (H1)(iii) imply that / IVE (2)]dz < 00 and / VK (2)|dz <

R4 R4
0.

Remark 2. (H3)(ii) and (H3)(iv) imply that a < «/(d+ 2) and a <
a/d, respectively.

Our first result is the following proposition.
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Proposition 1. Let (uy,) be the sequence defined by the stochastic ap-
proximation algorithms (1) and (2). Under (H1)—(H3), lim,—cc ptn, = p a.s.

Remark 3. The assumptions, which ensure the strong consistency of
the sequence (6,,) defined by the stochastic approximation algorithms (1) are:
(H1), (H2), (H3)(i)-(ii), together with the condition ) v, = oo (see Section
5.1.1). Note that this lattest condition is weaker than (H3)(iii).

To establish the weak convergence rate of (6, i,,), we need the following
additional assumption.

(H4) (i) lim ny, € (min{l;dd;Qd} ;oo}

n—~oo

(ii) a < 2a and a(d+2) + 2a < .

We also need to introduce the following notations.

§ = nhﬂngo(n')/n)ila
1 d o2 f
(6) RO = 1v ; [ RK@)ds| 552 ) 0)
o1 o2 f
(7) RW = 5; /dfo(x)dx 82—%(0) :
®) =0 = p-g-ad) ) [ KXz,
Rd
(9) G = / VK (2)[VK(2)| dz,
Rd

and 2@ is the solution of Lyapounov’s equation

(10) <D2f(9) + w@ S5O 4 50) <Dz o+ Lmald -2 Id)

The following theorem gives the weak convergence rate of (6, f,).

Theorem 1. Let (0, uy,) be defined by the stochastic approximation
algorithms (1) and (2), and assume that (H1)—(H4) hold.
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o Iflimy ooy, th9t6 = 0 and lim, a0 v, th3T = 0, then

\/ glhfrjz+2 971 - 9 (9)
7 —17d ( | - N<07< Z0 E?“) >) 7
Tn hn (Mn - :u)

D . . . .
where = denotes the convergence in distribution.

o If there exist ¢ > 0 and ¢ > 0 such that lim, Y thdt6 = ¢ and
lim,, o0 ¥, LheT =€, then

\/ ’Yglhfrit+2 (971 - 9)
Vn e (e — )

D —\/¢ [D2f(0) + 2a¢15) ' RO 2@ 0
o RO ()

o Iflimy ooy, th9t0 = 00 and limy,_.s0 v, th3H = oo, then

( % (6, —0) ) e —[D*f(0) +2al,] RO
[ (T (1 - 2a¢)~'RW '

Remark 4. In the framework of Parts 1 and 2 of Theorem 1, that
is, when limy, oo v, th46 € [0,00) and lim, o 7, L& € [0,00), we have o <
a(d+6) and o < a(d +4). In view of (H4)(i), it follows that & < 2[1 —ad] !, so
that X > 0. In view of (H3)(iii), it follows that £ < 2[1 — a(d + 2)] 'L, so

1—a(d+2
that the matrix D?f(6) + Mld is negative definite. Proposition 1 in

[18] ensuring that G is positive definite, () is thus positive definite. Now, in the
framework of Parts 2 and 3 of Theorem 1, that is, when lim,, o v;, *h4*6 € (0, o0
and lim,, o 7, LT € (0, 00], we have a > a(d + 6) and o > a(d + 4). In view
of (H3)(iii) and (H4)(i), it follows that 2a¢ < L® and 2a¢ < 1, which ensures
that the limits in Parts 2 and 3 of Theorem 1 are well defined.

A stochastic approximation algorithm is said to be asymptotically efficient
if it converges at the optimal rate and if its asymptotic covariance matrix is
minimum (with respect to the order of symmetric matrices). In view of Theorem
1, the couple (0,,, iuy,) converges at the optimal rate if the stepsize (7,) is chosen
in G§(—1) and such that lim,,_,o 7y, = 70 with, in view of assumptions (H3)(iii)
and (H4)(i),

11 ) 1—a(d+2). 2a o l—dd.2~
(11) ~o > max { min 510 } T (5 min 5200
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and if the bandwidths (h,,) and (hy) are chosen such that lim,_. v, *h&T0 = ¢ >
0 and lim,,_, 7, th&t* = ¢ > 0, respectively. We then have:
( Vnhit? (6, —0) >
V nﬁ% (Hn — )

D[~V [D2(6) +2a£ly) 'R ( oD@ o >
Vv (1—2a8) 1 RW) ’ 0 xW '

Now, for (6,) (respectively, (u,)) to be asymptotically efficient, the asymptotic
covariance matrix 70X (respectively, 7oX*) must also be minimum. The fol-
lowing proposition is proved in Section 5.3.

Proposition 2.

1. For the algorithm (1) to be asymptotically efficient, the stepsize (vy) must
equal the matricial sequence (—[1 —a(d+2)][D?f(0)]"'n~1), the bandwidth
(hy) must satisfy lim,, o nh&+ = ¢ > 0 (in which case a = [d+6]71), and
we then have

Vit (0, —0) B N (—2veD2f(0)] RO, 20 ),
with £ = f(0)[1 — a(d +2)][D?f ()] G[D>f(6)] .

opt T

2. For the algorithm (2) to be asymptotically efficient, the stepsize (v,) must
equal ([1 —adn™Y), the bandwidth (hy,) must satisfy lim, ., nhit* =2 >0
(in which case a = [d + 4]7!), and we then have

\/n?%(un ) 2N (2@R(“)7Z£§1),

with S¥) = F(O)1 — ad] / K2(2)dz.
Rd

opt -

In view of Proposition 2 and condition (11), it is possible to choose the
stepsize (7,) leading to the asymptotic efficiency of the algorithm (2) only in the
case when 4[d +4]7! > min{[1 — a(d + 2)]/ [2L9)];2a/L?}. On the other hand,
since the matrix D?f(#) is unknown, it is not possible to choose the stepsize
(7n) leading to the asymptotic efficiency of the algorithm (1). The following
theorem, giving the weak convergence rate of the averaged algorithms (3) and
(4), shows that (6,,) and (Jz,,) can be simultaneously asymptotically efficient, and
this without any tedious condition on the stepsize (7y,); to state it, we need the
following additional assumption.
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(H5) limy, oo nyn[log(3f_q )]~ = 0.

Theorem 2. Let (0, u,) be defined by the stochastic approximation

algorithms (1) and (2), let (0,,1,) be the averaged algorithms defined by (3) and
(4), and assume that (H1)—-(Hb) hold.

o Iflim, oo nhdt6 =0 and lim, . nﬁff‘l =0, then

nhdt2 (g — (9)
a2 Vi hl; _(en 0) 2 wfo. =9 (()) .
\ he (7, — ) 0 g

opt
o [f there exist ¢ > 0 and ¢ > 0 such that lim,,_ nhfﬁ'G =c and
lim,, oo nhdt* = ¢, then

(13) ( Vi (6~ 0) )

o (( ~2vVeD O] RO ot 0
- ( 2WERW) ) ’ o s ]

and (0,) and (7i,)) are simultaneously asymptotically efficient.

o Iflim, o nht6 = 0o and lim,, .. nh&H* = oo, then

—[1—a(d+2)] -
(14) ( A ) e | ey DORY
h;Q (ﬂn - ,u) iR(u)
1—a(d+2)

Remark 5. In the case when lim,, ., nh&*% = 0o and lim,, ., nﬁff‘l =
o0, we have a < (d+6)~! and @ < (d +4)~!, so that the limit term in (14) is
well defined.

3. Some preliminary results on stochastic approximation al-
gorithms. As mentioned in the introduction, the proof of our main results
deeply relies on the application of asymptotic properties of a general stochastic ap-
proximation algorithm searching the zero z* of an unknown function h : R¢ — R,
This algorithm is defined by setting Zo € R?, and, for n > 1,

(15> Zn =Zp-1+n [h (Zn—l) + Rn + C»;lgn] )
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where (7,) and (¢,) are nonrandom positive sequences going to zero, and where
the random sequences (R;,) and (&,,) are defined on a probability space ({2,.4,P)
equipped with a filtration F = (F,,).

The algorithm (15) was widely studied under various assumptions; see,
among many others, [21], [17], [8], [20], and the references therein. However,
the results obtained in these references do not apply in the present framework.
The aim of this section is to state the different properties, which will enable us
to establish the asymptotic behaviour of the algorithms (1), (2), (3) and (4).
To this end, we consider the algorithm (15) under the assumptions (A1)-(A7)
stated below. (Al) says that the algorithm converges strongly to the zero z*
of the function h; this consistency property will be proved for (6,) and (u,) by
applying Robbins-Monro’s theorem (see Section 5.1). Assumptions (A1)—(A6) are
classical conditions in the framework of stochastic approximation algorithms, and
are adequate for the study of (1), (2), (3) and (4); (A2) requires that the unknown
function h : R? — R? is smooth enough at the neighbourhood of its zero z*, and
that its Jacobian H at the point z* is negative definite; (A4) requires that ¢,, is a
noise with finite conditional covariance matrix I',, satisfying lim,, .., ', =TI a.s.;
(A5) gives the convergence rate of the term (R,). A contrario, (A7) is unusual
in the framework of stochastic approximation algorithms; it replaces a condition
on the moments of (&,,), which is not fulfilled in our framework.

(A1) limy, o0 Z, = 2* ass.

(A2) (i) There exist n > 1 and a neighbourhood of z* on which h(z) = H(z —
Z) + O(|lz = ="||").

(ii) H is diagonalizable and its largest eigenvalue —L is negative.

(A3) Either (¢,) € GS(—7) with 7 € (0,1/2) or (¢,) = 1, in which case we set
T =0.

(A4) (1) E (5n+1|fn) =0.

(ii) There exists a nonrandom, positive definite matrix I" such that
limy, o0 E(ept160 41| Fn) =T aus.

(A5) There exist p € R? and (v,,) € GS(v*), v* > 0, such that lim,, .o, v, R, = p
a.s.

(A6) (i) (vn) € GS(—a) with a € (max{%,27},1].
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(i) limy— oo nyn € (min{lgLQT, %} ,oo] where L and v* are defined in

(A2) and (A5) respectively.

(A7) There exists a sequence (wy,) adapted to F,, such that |le,41|| < w,, for all
n and such that lim,,_ 7n“%21+1 log(zzzl &) = 0.

Section 3.1 is reserved to the results on (15), which will enable us to
establish the asymptotic behaviour of (1) and (2); Section 3.2 is devoted to the
results on the averaged version of (15), which will enable us to establish the
asymptotic behaviour of (3) and (4).

3.1. On the asymptotic behaviour of the stochastic approxima-
tion algorithm (15). The asymptotic behaviour of the algorithm (15) is given
by those of the sequences (L,) and (4,,) defined by:

n
L, = &iamwiy” e—(Zﬁw)H%cgl%
k=1
A, = (Z,—2")—L,.

Let 3 be the solution of Lyapounov’s equation

<H + @Io DIREDY <HT + @m) =T,

where ¢ = lim,, ,oo(n7,)~!. The following three lemmas are proved in Section 4.

Lemma 1. Let (A2)—(A6) hold. Moreover, assume that v* > (o — 271)/2
and that there exists m* > 2 such that limp_coyn " /2E[||5n|]m* | Fuo1] =0 a.s.

Then, we have
Ve L & N(0,).

Lemma 2. Let (A2)—(A7) hold.

o Ifv* > (a—27)/2, then ||L,|| = O (\/711052 log (3 "r_4 W;)) a.s.

o Ifv* < (a—27)/2, then ||L,|| = o (v;') a.s.

n

Lemma 3. Let (A1)—(A7) hold.

o Ifv* < (o —27)/2, then lim, o v, A, = —[H +v*€15) p a.s.
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o Ifv* > (a0 —27)/2, then limy, oo \/Vn c2 A, =0 a.s.

The combination of Lemmas 2 and 3 gives the following upper bound of
the strong convergence rate of (Z,), which is usefull in the study of the averaged
version of the algorithm (15) (see Section 4.6): under assumptions (A1)—(A7),

n
(16) | Z, — 2*|| = O YnCn 2 log (Z %) +o, b | as.

k=1

The combination of Lemmas 1, 2 and 3 also gives, under assumptions (A1)—-(A7),
the weak convergence rate of (Z,,), which is the first step in the proof of the
following lemma (see Section 4.4).

Lemma 4. For the algorithm (15) to be asymptotically efficient, the
stepsize (7,) must be chosen equal to (—[1 —27]H 'n~1), the sequences (c,) and
(vn) must be such that lim, . nctv,? = ¢ > 0 (in which case v* = [1 — 27]/2),

and we then have

Vn (Zy—2) 2 N (=2veH 'p, (1 —20)H'T[H ).

3.2. On the averaged version of the stochastic approximation
algorithm (15). As mentioned in the introduction, the averaging procedure
introduced by Ruppert [28] and Polyak [22] consists in: (i) running the approx-
imation algorithm (15) by using a slower stepsize; (ii) computing an average of
the approximations obtained in (i). If (15) is Robbins-Monro’s algorithm, then
the average leading to the asymptotic efficiency is known to be the arithmetic
one (see, for instance, [28] and [22]); if (15) is Kiefer-Wolfowitz’s algorithm, then
a weighted average must be used to get the efficiency (see, for instance, [6]). In
this section, we establish in particular that, in order to get the asymptotic ef-
ficiency of the averaged version of the stochastic approximation algorithm (15),
the average of the Z; must be weighted by the ci. We set

7 = CZk,
" 2“22’“

and assume that the following additional conditions hold.

(A8) (1) limy ooy [log (g )] = 0.
(i) lim,—oo nyﬂci(l_n) log(dp_; k)" = 0, where 7 is defined in (A2)(i).
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The asymptotic behaviour of (Z,,) is given by those of the sequences (A,) and
(2,) defined by

-1 n
_ —1 2 —1
Apy1 = WH E CkCry1€k+1)
k=1 Ck 1
En+1 = (Zn - Z*) - An+1.

The following lemmas are proved in Section 4.

Lemma 5. Let (A2)—(A6) hold. Moreover, assume that there exists
m* > 2 such that lim, e '™ ?E[||e, 1 |™ | Fn] = 0 a.s. Then, we have

VnEN BN (0, (1—27)HT[HYT).

Lemma 6. Assume that (A1)—(AS8) hold.

—(1—-27)
1-27—v*

1

o Iflim, oo v, y/nc2 € (0,00], then lim, oo vy Epy1 = Hp a.s.

o Iflim, .o v, tv/nc2 =0, then lim, o /1nc2 Epp1 =0 a.s.
_ The combination of Lemmas 5 and 6 gives the weak convergence rate of
(Z,) under assumptions (A1l)—(AS):

2 —
’VLUTL

n (Zn—2) 2 N0, (1-20)H 'T[HT).

o If lim,, oo nc2v 2 =0, then

n

e If there exists ¢ > 0 such that lim, .., nc2v,? = ¢ (and thus v* =
(1 —27)/2), then

vnet (Z, — ") 2N (=2/cH 'p, 1—2n)H'T[H ),
and (Z,,) is asymptotically efficient.

2

o If lim,, o nc2v, 2 = oo, then

LN —(1—27) o1

vn (Zn = 27) 1—27 —ov*

p.

4. Proof of the preliminary results on stochastic approxima-
tion algorithms. Throughout the proofs, we set s, = Y ;_; k-
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4.1. Proof of Lemma 1. Let us recall that, if U = (U,,) is a sequence of
random vectors adapted to the filtration F, then a predictable quadratic variation
of U is a random sequence (U) = (U),, defined by setting (U)o = 0 and (U),,
(U1 = E[(Up—Up_1)(Up—Upn_1)T|Fn_1) (see for instance [9, Definition 2.1.8]).

Now, set
J
M;n) = \/%Ilc%es”H Z e’skaykc,zlek.
k=1

M®) = (M;n))lg j<n is a martingale triangular array whose predictable quadratic
variation satisfies

n

<M>$Ln) _ 7;10i68"H [Z e_s’“Hvic,fE(ake{]Fk,l)e_s’“HT eS”HT,
k=1

and the application of Lemma 4 in [19] ensures that

lim (M)™ =% a.s.

Moreover, we have
S [ |7
- Sk [Jontaradetal ||

n
=0 (w;lci)m*/?e-mn S bk R [Hskum*yfk_l})

k=1

n
_ O((7;10»%)7”*/26_[””*8”ZeLm*sk’Yk —m* (’Y; m*/Q)) a.s.

k=1

= 0 (mlci)m*/?eWSnZeLm*swkomc,;Q]m*/?))

k=1
= 0 ('™ Po(bue 1™ 7)) as.
= o(1l) a.s.,

which ensures that Lyapounov’s condition is fulfilled. Lemma 1 follows.

4.2. Proof of Lemma 2. Let —\ be an eigenvalue of H”, let w be an
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eigenvector associated with —\, and let M,, be the martingale defined by
n
(17) M, = Ze/\s’“ykc,;lesk.
k=1

Let us at first assume that either lim,, .., nvy, = oo or a — 27 < v*. The pre-
dictable quadratic variation of (M,,) equals

n
> e 2T E el | F

and the application of Lemma 4 in [19] ensures that

(18) lim v, lc2e 22 (M), = w'Sw a.s.

n—oo n
Since (v,,1c2) € GS(a — 27), we have

Yol
In(y,'c?) = In(yy'ed) +Zln k k

Vi— 1ck1
1
—12
= In(1 —
Yo cO Zn( + +0<k)>

= In(yy'cd) +Zln 1+ [ = 27J¢7k + o(7k))
k=1
(19) = [a—27]¢sy + o(sp).

It follows that
In [y, 'c2 exp(—2Xs,)] = [a—27)€s, + 0(sn) — 2Asp
(1 —27]€ —2X 4+ 0o(1))sy,
Since lim,, o0 S, = 00 and since 2\ > 2L > [1 — 27]¢, we deduce that

lim In [7;10721 exp(—2Asy)] = —o0

n—oo
i.e.

lim ~,, 'c2 exp(—2Xs,) = 0,

n—oo

which proves that lim, oo (M), = 0o a.s.
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Let 1 be the funtion defined by n(z) = v2x Inln z; we have

My, — Mn—q| eyt [wley| /2InIn(M),
(M)u[n((M),)]71 D,

e/\sn

-1
InCn Wn
" 22 -2, T
\/26 Snay,cn “w!t Yw

< C’;ﬂ/’ynwn\/ln Sn

< \/ln In(e2Asn Ay, cp 2w Lw)

where (C),) and (C,’L) are a.s. bounded adapted sequences. Thus, there exists an
adapted sequence (C),) going to zero and such that

[Myp1 = My < ColM)[n((M))] ™

The application of Theorem 6.4.24 in [9] then gives

lim sup 7|Mn’ <1 a.s.
n—oo N((M)n)
In view of (18), we thus have
M, = O (eAS" \/’yncﬁ2 In ln(e”‘sn%c,f)) a.s.

— O(e)‘S”\/’ynchIIlsn) a.s.

Since w! Ly 41 = e " M, 1, it follows that, for any eigenvector w of HT

}wTLn} =0 (\/%052 In sn) a.s.

Part 1 of Lemma 2 and Part 2 of Lemma 2 in the case when lim,_, ny, = 00
follow. It remains to prove Part 2 of Lemma 2 in the case when lim,,_, o, ny, < co.
The application of Theorem 1.3.24 in [9] ensures that the martingale (M,,) defined
in (17) satisfies, for all v > 0,
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‘Mn‘2 = 0

n I+y
e k0 ([vi(Ink) )71 [ln ( 62)\87“)%’1),;2)] a.s.

+
0 (62)\8” [v2 (Inn) ]t [ln (62)\8”’1);2)} 7) a.s.
0 (62)\8” [v2(Inn) ]~ [In n]HV) a.s.
0 (62/\5"1);2) a.s.

It follows that, for any eigenvector w of HT, ’wTLn} =o0 (v
cludes the proof of Lemma 2.

-1

- ) a.s., which con-

4.3. Proof of Lemma 3. Set 1, = R, + R, with ||R,|| = O(||Z, — 2*||"),
and note that (15) can be rewritten as

(20) Zny— 2" =Zp 1 — 2"+ H (Zy_1 — 2°) + Ynrn + My, en.
Noting that

Ly =cyten+ L, | =~pcte, + [Id +vH + O (fyi)] Ly, 1,
we get
(21) Ap =g+ vnH) Ano1 4+ [0 (yn) Ln—1 + 4] -

Set A € (0,L); in view of Proposition 3.1.2 in [8] there exist a matrix
norm ||.|| 4 and @ € (0,1/A) such that, for all v < a, |14+ vH| 4, < 1—~A. Now,
for x € RY, define M (z) = [zx...x] the matrix in My(R) all of whose columns
are x; the function ||.|| , defined on R? by ||z 4 = || M (z)]| 4 is then a vector norm
compatible with the matrix norm ||.|| , (see [13, pp. 297]). For n large enough,
we thus obtain

[An[[ o< (1= Ayn) [An-all 4 + [0 (vn) [ Lnalla + lIrall 4] -

Since limy, o0 [O () || Ln—1ll 4 + |7l 4] = 0 a.s., the application of Lemma 4.1.1
in [8] ensures that

lim ||[Apll4, =0 a.s.
n—oo
Noting that
rn = Ru+O([Lnal”) + O (|An]") as.,
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we rewrite (21) as
Ap = i+l An1+ %[0 (1) Lno1 + O([| Lna[|") + O([|An—1[|") + Ry
= g +vnH + o) An1 + 7 [0 (1) Ln-1 + O(| L") + Bl
Now, let (u,) be the sequence defined as
(vn) if a — 27 > 20%,
(un) = ( vnlc%> if o — 27 < 2v*,

and note that (u,) € GS(u*) with v* = min{v*, (o — 27)/2}. In particular, we
have

u
=1 +U*£'7n+0(’7n) .
Up—1
It follows that
u
UnAn = - (Id + 'YnH + 0(’771) Un— lAn 1

Up—1 )
+nttn [O (n) Ln-1 + O([| Lyn—1[|") + Ry]
= (la+m [H+u"¢l4] + o(m)) un—18n—1
+ntn [O (Yn) Ln—1 + O([|Ln—1[|") + Rn] -
Set m = —[H + u*{[d]_lp]lu*zv* and 6, = u, A, — m. We have:
on = (La+mm[H+ v &la) + 0o(n)) On—1 + (W [H + u Elg] + 0o(yn)) m
+ Yntn [O () Ln—1 + O(|| Lp—1[]") + Ry]
= L+ [H +0"€Ld) + (1)) n1 + 7 [nBo+ Bu
with
By = O(w) Luct +O(ILu").
B, = upR,+[H+v"g)m+o(1).
Set A € (v*¢, L); there exist a matrix norm Il ; and @ € (0, 1/A) such that,
for all v < @, |[Ig+~[H +v*¢l4]l|l7 < 1 —~A. Let |.| ; be the vector norm

compatible with the matrix norm [|.|| 5 (for all z € RY, ||z|| ; = ||M ()] 5). For n
large enough, we have

10allz < (1= A+ 0(m)) 18-l 5+ |waBo + B
Set B € (v*{,g); for n large enough, we get

1811 5= (1 = Bya) 60115+ [1nBu + B ..
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Since limy,— o0 Uun By + En = 0 a.s., the application of Lemma 4.1.1 in [8] then
ensures that lim,,_. . d,, = 0 a.s., which concludes the proof of Lemma 3.

4.4. Proof of Lemma 4. The combination of Lemmas 1, 2 and 3 ensures
that, under assumptions (A1)—(A7):

o If limy, o0 7, tc2v,2 = ¢ > 0, then

V1t (Zn — 2%) B N(—e[H +v*elg) " p, 3).

o If lim, .00, 'c2v, 2 = 0o, then v, (Z, — z¥) LA [H + v eIy tp.

It follows that, for (Z,) to converge at the optimal rate, (7,) must be chosen
1—-27 v*

2L 'L
202 = ¢ > 0 (in which case v* = (1 — 27)/2).

TLUTL

such that lim n~y, = € (min{ } ,oo> and the sequences (c¢,) and
n—oo

(vp,) must be such that lim,,_,, nc
We then have

—1
Az, - ) BN (—cho e %z> |

For (Z,) to be asymptotically efficient, the asymptotic covariance matrix yoX
must also be minimum. To find this minimum covariance matrix, we allow the
stepsize (7y,,) to be matricial. In other words, we consider the stochastic approx-
imation algorithm defined as

Y, =Y, 1+ g [h(ynfl) + R, + 0771871] s

where A is a d X d nonsingular matrix. Following the proof of Lemmas 1-3 (by
replacing v, H, Ry, and &, by n=!, AH, AR,,, and Ae,, respectively) we show
that, under assumptions (A1)—(A7), if the matrix AH +[(1 —27)/2]14 is negative
definite, and if lim,, . nc2v,2 = ¢ > 0, then (Y,,) satisfies the central limit
theorem

(22) VY, — 2 2N (—\/E[AH +

1-27
2

-1
Id} 4p, 2<A>) |

where 3(A) is the solution of Lyapounov’s equation

1-—-27 1-27

(23) (AH + Id> Y(A) + 2(4) (HTAT + Id> = —ATAT,
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Now, set A(A) = %(A) — (1 —27)H T[HT; in view of (23), we have

(AH 41 _QQTId) A(A) + A(A) (HTAT . _QZTId)
1—-27

= —ArA" - (AH + Id) (1 —27]H'T[HT)

1-2
([t — 27| H-'T[HT) <HTAT + de)
= —ATAT —(1-2n)AT[H " —(1—27)*H'T[H']" — (1 —2r)H'TA"
—[A+(Q—-2r)H'T[A+ (1 —2r)H .
It follows that the matrix A(A) is nonnegative. Moreover, A(A) = 0 if and
only if A = —(1—27)H~!. We thus deduce that the matrix X(—(1 —27)H 1) =
(1-27)H'T[H~Y7 is minimum. Now, if A = —(1—27)H !, then (22) becomes
VY, —2) BN (=2y/eH ' p, (1 — 27)H'T[H 1) .

Lemma 4 thus follows.

4.5. Proof of Lemma 5. Set M,y = Y ,_; C%C’;ilgk+1; (M) is a
martingale whose predictable quadratic variation satisfies

n

n
(Mni1 = chep i Blenei|Fr) = Yl (1+0(1) as.
k=1 k=1

Since (c2) € GS(—27) with 1 — 27 > 0, we have

2
(24) lim & =1-27,
n—oo 3Th_1 G

and thus
lim [nc2] N (M)pi1 = (1 —27)7'T a.s.

n—0oo

Moreover, We have

2] 12 Y B [ — M| 7]

k=1 "
= ( */22 {HSkHHm*‘ fk})
=
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= 0 ([nc /2ch o <k:m*/2 1)) a.s.
= 0 ([nci]—m*ﬂ S ko ([kci]m*/2)> a.s.
k=1

= o(1l) a.s.,
which ensures that Lyapounov’s condition is fulfilled. It follows that
(nc2] "2 M, BN (0, (1—27)7'T).
Noting that A1 = —[>p_; c2] "' M,41, and applying (24) again, we obtain

VA1 BN (0, (1—27)H'T[HT).

4.6. Proof of Lemma 6. In view of (20), we have
Zpoy— 2 =~ Y H Y [(Zy — 2°) = (Zngr — 29) — H Ve — ¢, P H ey,
and thus

= 1 —1 & 2 -1
Zn—2" = mlf > G [(Zryr = 27) = (21, — 27)]
k=1
1 n
H CrTh+1 — H! cic,;l Ekt1-
CSpgt e g
It follows that

- _ 1 2 3
(25) S = —H[RY, R+ RY
with
1 n
Rl = Zk = Z iRy,
2 1 - _
R’Sl“l)’l = n 9 Zci’Yk—&l [(Zy — 2%) = (Zjp1 — 27)],
k=1%k
(3) 1 = 2 *
Rotr = sz 2 %0z —2"[").
i > h=1Ch =1

(4)

We now successively establish the almost sure asymptotic behaviour of Ry,
ie€{1,2,3}.



672 Khédidja Djeddour, Abdelkader Mokkadem, Mariane Pelletier

e In view of assumption (A5), we have:

1 1
R’El-i)-l ST 2 chvk pll 4+ o(1)] a.s.
k=1 “k k=1

In the case lim,, . v, '\/nc2 € (0,00], we have 1/2 — 7 — v* > 0; hence 1 — 27 —
v* > 0, and thus

TLCQU71

lim 2_1—1—27'—1}*.

n—00 Y ko1 CRUE
Applying (24), we deduce that

(1 1-27
(26) Jim R =

In the case lim,, o v, 'v/nc2 = 0, we have v, ' = o([nc2]~/?), and thus
2 n
Jim \/nc%Rn_H = 7112&%20(/{_1/2%) a.s.
k=1 “k k=1
27 = 0 as.
(
e Since (c2v,}4) € QS(a — 27), we have

p a.s.

2 * — *
Rﬁw)ﬂ = Zk e 0172 (Zl —2") - C%Vni1(zn+1 —2")

n
+ [ — o 12k - Z*)]
k=2

- §r7gﬁﬁ%%—fwfbﬁﬁaﬂ—f>
k=1%% |
+ch7k+1
1 2 —1 * 2 —1 *
= Zn 02 C172 (Zl_z )_Cn7n+1(Zn+1_Z)
k=1"%k

+ Z Ck’YkJrl (Zk —Zz )]

Now, let (m,,) be the sequence defined as

(mnp) :{ ( n_lcg2> if Hm,,— oo UpV/ 1™

(U; 1) otherwise,

k 1%

(Z — 2 )]

iﬂkﬂ

len? = o0,

and note that (m,) € GS(—m*) with m* = min{v*, (1 — 27)/2}. Applying (16)
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and (24), we obtain

c,%%ﬁl [ Ynen 2 log(s,) + 051}

] =

ne2 2
ncs, ncs,

D res ciﬁykjllfl [ Pykclf log(sk) + vkl]

+ e a.s.
Ayt cn?log(sy) + vt
1 nYn+1 YnCn ™~ 108(Sn n
=0 ne2 e
n n
ZZ 20k7k+1k ! [\/7/&:%2 log(sy,) +Uk1]
+ nc? a.s
_ o2 n~lyn log(sn) gt
B ne ne2 Yn
n
+W Z[cklflﬂwk 1 log(sk) + iy L=t vy 1]) a.s
" =2
_ o2 n~lynlog(sn) ot
B ne2 nc2 nYn
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o In view of (16), (24), and (A8), we have

HR”HH = (ni z”: [Pykck log s)"? + v, }) a.s.

k=1
- (ni Zc [ 1/2)+0(vk1)}) a.s.
k=1
- (g «
= — a.s.
" k=1
(29) = o(my) a.s.

Part 1 (respectively, Part 2) of Lemma 6 is then a straightforward consequence
of the combination of (25), (26), (28) and (29) (respectively, of (25), (27), (28)
and (29)).

5. Proof of the main results. From now on, F = (F,,) denotes the
o-field spanned by (X1,...,X,).

5.1. Proof of Proposition 1. We first establish an upper bound of the
strong convergence rate of 8,,, and then prove the consistency of p,,.

5.1.1. Upper bound of the strong convergence rate of 8,,. To
prove an upper bound of the strong convergence rate of 0, we apply Lemmas 2
and 3. To this end, we first rewrite (1) as

(30 On = s+ [VIOn) + RO 4+ 14220
with
RO = L p|vi (= Fo1| =V

1 0 — X 0 —
0 _— _—_ In-l T An ) u
g, = \/@ {VK( I ) E [VK( I )’fn_l]}.

Moreover, we note that, under (H1) and (H2), we have

1 0,1 —
RO — T /VK <7}1 x) F(2)dz — V(0n_1)
n Rd n

_ h_ln /VK(z)f(Hnl — hpz)dz — Vf(6n1)
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- / K(2)Vf(Bn1 = hu2)dz — Vf(6n1)

(31) - R’f vf / @ | D | 0,) 002,
T () ()
- [t o () o
= u / VEE) VK] (61~ hee)ds
(32) - h; F(On) / VEEIVE ()] dz| + o)

We now check that assumptions (A1)-(A7) required in Lemmas 2 and 3 are
fufilled by the stochastic approximation algorithm (30). To this end, we need the
following Robbins-Monro’s Theorem (see for instance [8, page 61]).

Theorem 3 (Robbins-Monro). Let (Z,) be defined by the stochastic
approximation algorithm (15), and assume that

e ¢, =0(1), v, = o(c%), Y4 =00 and Y. vie,? < oo;

e There exists a continuously differentiable function V : R* — R, such
that V'V is Lipschitz-continuous, and such that, for all x € R?, ||h(z)|? <
cte(1 + V(x)) and [VV (2)]Th(x) <0;

o E(enlFa-1) = 0, E([len|?|Fa-1) = O+ V(Zn-1)) and 35| Rull* < oo
a.s.

Then, the sequence V(Z,) converges a.s. and > vu|[VV(Z)|Th(Z,)| < 00 a.s.
To apply Theorem 3, Lemma 2, and Lemma 3, we set V : z — ||z — 0|2,
h=V1, (en) = (%), ey = el and R, = RY.

e Let us first note that it follows from (32) that supnIE(Hs,(f)H2|f ~1) < 0.
Moreover, (31) implies that HR%Q)H = O(h2), so that, in view of (H3), we
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have ZVRHR%Q)HQ < oo. In view of (H2) and (H3), Theorem 3 applies.
Thus, the sequence (||6,, —0||) converges a.s., and >_ v, |(0, — )TV f(6,,)] <
oo a.s. Assumption (H2) together with the condition >+, = oo (which is
implied by (H3)(iii)) imply that lim, .. 0, = 6 a.s. Assumption (Al) is
thus fulfilled and the claim in Remark 3 is proved.

e (H2) ensures that (A2) holds with H = D?f(0) and L = L),
e In view of (H3), (A3) holds with 7 = a(d + 2)/2.
o It follows from (32) and (Al) that (A4) is satisfied with
T = f(0) / VK (2)[VK(2)]"dz.
Rd

e Note that R = /K(z) [Vf(On—1—hnz) =V f(lp-1)]dz. A two-order

Taylor’s development and the application of Lebesgues’ Theorem give

2
nh—>noloh RV ZZ 8%8% /zisz(z)dz ().
R4
In view of (H1)(ii), (A5) thus holds with (v,) = (h,,?) (and thus v* = 2a)
and p = R (R being defined in (6)).

o (A6) follows from (H3) (see Remark 2).

e (HI)(iii) and (H3) ensure that (A7) holds with w,, = 2||VK]||sh hn 2.

Set

(33) L0 = osn[D?f(0)] Z efsk[DQf(O)},ykhl;(d+2)/2€§€9)7
k=1

(34) AY = (6,—6)— LY.

The combination of Lemmas 2 and 3 ensures that

(35) 10, =0 = O (max{ hi ; *ynh;(dH) In sn}) a.s.

5.1.2. Proof of Proposition 1. To prove Proposition 1, we apply
Theorem 3. To this end, we rewrite (2) as

(36) Lo = fn-1+n [h(p,n_l) + RW 4 pd/ 25,(1“)}
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with

RY = f(On-1)— f(0) + BY,
1 0,1 —X
(M) _ n—1 n
BT = 5a® < zn )| 7] - 0,
5%#) - L{K(M)—E[K(M)’fn@}
,/ﬁg hn hn

To apply Theorem 3, we set V : 2z +— (2 — )%, (cp) = (ﬁi/Q), En = 8,(1“), and

R, = R,(L“ ). We first note that

()] - ()

R
= 1t | K?(2)f(Op1 — hn2)dz
/

(37) = h (f(9n1)/K2(Z)dZ+0(1)) ,
Rd
which implies that suan(\5%“)|2|fn,1) < 00 a.s. Now, we have
1 Op—1—x
m — Inl 7 _
Bn 7Ld K ( 71% ) f(x>dx f(en—l)

= /K(z)f(enl - ﬁnz)dz — f(On-1)

2 ~
o <9>) + (i),

—
(38) = IZLZ( / 22K (z)da

d

Moreover, the application of (35) ensures that
£(6) = F(O)] = O(6n = 0% as.

(39) = 0 <max{ [ Sl CarOl sn}) a.s.

In view of (H3), we deduce from the combination of (35) and (39) that
Z’yn[R%“ )]2 < oo a.s. The application of Theorem 3 then ensures that
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> (i — ) (0n) — F(O)]] < 00 aus., that is, Y- v (pn — p)* < 00 as. Propo-
sition 1 follows from the fact that ) v, = o0

5.2. Proof of Theorem 1. We have seen in Section 5.1.1 that Lemmas
2 and 3 can be applied to the stochastic approximation algorithm (30) with
— Vf, H = D*f(9), (cn) = (W) 7 = a(d+2)/2, e = &), T =
£(0) / VK ()VE ()| dz, Ry = RY, (v,) = (h7?), v* = 2a, and p = R©®
R4
(R® being defined in (6)). Let (L) and (AY)) by defined by (33) and (34),
respectively. The following properties thus hold.

(40) o If a > a(d +6), then HL’(TQ)H =o0 (hi) a.s.

(41) o If a > a(d +6), then lim h2A) = — [D2f(0) + 2a§Id]71R(9) a.s.

(42) o If a < a(d+6), then lim \/~n 'hd2A0) =0 a.s.

Now, set
n ~
TR S )

AW = (uy, —p) — L.

n
We apply Lemmas 2 and 3 to the stochastic approximation algorithm (36). To this
end, we set (¢,) = (hﬁ/ 2), en =l ), and R, = RY" ), and check that assumptions
(A1)—(AT7) required in Lemmas 2 and 3 are fulfilled.

e (A1) follows from the application of Proposition 1.

(A2) clearly holds with H = —1 and thus L = 1.

In view of (H3), (A3) holds with 7 = ad/2.

Since limy,_,o 0, = 0 a.s. (see Remark 3), (37) ensures that (A4) holds with
['= f(0) [ga K*(2)dz.

The combination of (39) and (H4)(ii) ensures that |f ( n) — f(O)] = o(h2)
a.s. It then follows from (38) that (A5) holds with (v,,) = (h,;2) (and thus
v* =2a) and p = R (RM being defined in (7)).

(A6) follows from (H3) and (H4) (see Remark 2).
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o (H1)(iii) and (H3) ensure that (A7) holds with wy, = 2| K ||ocfin /2.

The application of Lemmas 2 and 3 then ensures that the following properties
hold.

(43) o Ifa>a(d+4), then HL%")H =o0 <%721> a.s.
(44) o Ifa>a(d+4), then lim h2AM =1 —2a¢] 'RW q.s.
(45) o Ifa<a(d+4), then lim \/vn ' hdAW =0 a.s.

Theorem 1 follows the combination of Properties (40)—(45) together with the
following lemma.

Lemma 7. Let the assumptions of Theorem 1 hold. If o < min{a(d +
6),a(d+4)}, then we have

—1;d+2 7(0)
Vi D D N(o,<20 z?u>>>'
/%71}% L%“)

We now prove Lemma 7. Set H = D?f(0), o (0) *ykh,;(dﬁ)/?, Jli“) =

%h , and
M(n) B /Pyglh%f—i-Qean 0 J e_SkHO_IEJQ)SI(CQ)
J - 1ig.—s Z oSk o) (1) )
0 Yo hGe™" ) k=1 k Sk

For a given n, M(™ = (M ;n))lgjgn is a martingale whose predictable quadratic
variation satisfies

—13,d+2 s, H
[V e 0
! 0 Vo hdes
’Yn ne
o /,yglhfll+2€anT 0
n ~
0 \/Yn thdemsn

o—skH (9) _(9)
(el ) (oo ol )

with

H—ZE

ska €

fk—l]
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9)]2 *SkHE 2,:.(‘9)[ (0)]Tfk71:| 6fskHT IS;) (W) skefskHE{ () (H)f' ]

_; Jk U(M)E[[ 9) Tgéu)}}— } - o (u)]z 2skE[ ‘]_-k }

It follows that

A A
(n) _ 1,n 2,n
<M>n B < AS n A4 n )

) )

with

A, = %:1hg+2ean {Z[Ui(ce)]Qe_skHE [51(69) [81(69)]T‘fk71] e—skHT} eanT7

k=1
b = g {3 e 4040 )
A3,” = A2n7
A4,n = ’Yglil,dle {Zn: ,u)2 2skE|: ’sz 1]}

k=1

Since (32) implies that
lim E [ ]| £ ] = 106,
and since (37) implies that

lim E[ }fk 1} = £(0) | K*(2)dz,

k—o0
the application of Lemma 4 in [19] ensures that

lim Ay, = Y@ and lim Ayp = E(“),

n—oo n—oo

where 2% and 2 are defined in (8) and (10), respectively. Now, setting h} =
min(hg, hy), we note that

E[sk sk ’.7:,1}
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[ v (15 e (1) ] oty
(46) = o(1)

since the function z — [VK(2)]K(z) is odd in each of its coordinates. We thus

get
n
lsall, < /A2 Y|
k=1

— 0 as n—

e(sn—sk)(H—Id) 20 (,yz hk(d+2)ﬁkd>

by application of Lemma 3 in [19]. It follows that

. " =@ 0
(47) nh_{go<M>7(z) = ( 0 Z(“)> -5

Let us now check that (M ;n))lgjﬁn satisfies Lindeberg’s condition. Set b > 2; we
first note that

b

-

n
Z E ||/ ’y;lh%JrQeS”He*SkHa,(f)s](f)
k=1

b/2 n B b
_ 0 ([’Ynlhiﬂ} o—bLsn ZebLsk%l;hk bd+2)/2 [H&;@G)H }fk"lD

k=1
13442172 “bLe, N~ bL
= 0 [’YE hn+:| e Phom Ny " et toryay,
k=1

— —b(d+2)/2—db/2+d — —db— —_
ap = 7]1; 1hk ( )/ / ,yb lhk db—b+d (hk b+2)

k
= o([yehy, TPy = o(fyhy, CTI2).

H /,yglh%+2€an€fskHU’(€9)8l(€9)

It follows that

(48) Zn:E
k=1

b
'fk_ll = o(1).
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Fi ]
~ 1b/2

- n ~ b
T R Zebsk%ghk bi/2g [’6’(;)‘ ’]__kl])

k=1

1b/2 n -~
efbsn Z ebsk,y]l; h};bd-&-d)

k=1

Similarly, we have

n

> E

k=1

—17d ,—5n .8 ()()
} v thde etk oyl !

[ —17d]%? s - s T
’ynlh;jl_ e bsn Zeb Fyko([ykhy d]b/2)>

k=1

I
Q

|
S Q Q
Z——~ —
=
L
ol
Sa

(49) =
Lemma 7 then follows from (47), (48) and (49).
5.3. Proof of Proposition 2 and Theorem 2. To prove Proposition

2 (respectively, Theorem 2), we need to apply Lemma 4 (respectively, Lemma 6)
to the stochastic approximation algorithms (30) and (36). To this end, we set

Afﬂ - Zz%hgﬁ -1 Z nd+? hk+dl+2)/2 l(<: +) y
S = @n —0) - Affll,

Ag:L)1 = Zk ; k ; hd kf{Q klfH?

5221 = (f,—n)— Afﬁﬁl-

e We have seen in Section 5.1.1 that assumptions (A1)—(A7) stated in Section
3 are fulfilled by the stochastic approximation algorithm (30) with h = Vf,

H=D%f(0), (co)=hID?), r=a(d+2)/2, e,=e?,

T = f(0) / VEK(2)[VE(2)|Tdz, Ry = RY, (v,) = (h72), v* = 2a, and p = RO
Rd
(R being defined in (6)). The first part of Proposition 2 is thus a straightfor-

ward consequence of the application of Lemma 4. At this first step, we note that
(H2), (H3)(i) and (H5) ensure that (A8) holds with n = 2, and it thus follows
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from Lemma 6 that:

(50) if lim nh®*tC € (0,00],

n—oo

a0 _ —[l—ald+2)] o —1p(6)
then nhl&hn S e F Y [D°f(0)] "R a.s.,

(51) if lim nh®*6 =0, then lim \/nht? =¥ =0 as.

n—oo n—oo

e We have seen in Section 5.2 that assumptions (A1)—(A7) stated in Section 3
are fufilled by the stochastic approximation algorithm (36) with H = —1, (¢,,) =
(h?), 7 = ad/2, en = ¥ T = £(0) fpa K2(2)d2, Ry = RY, () = (h3?),
v* = 2a, and p = R (RW being defined in (7)). The second part of Proposition
2 is thus a straightforward consequence of the application of Lemma 4. To start
the proof of Theorem 2, let us note that (H5) ensures that (A8) holds with n = 2.
It thus follows from Lemma 6 that:

= 1—ad
(52) if lim nhd™ € (0,00], then lim 7,2 SV, = 1_7“

n—o0 n—o0

(53) if lim nh®™* =0, then lim \/nhd 57({21 =0 a.s.

n—o0 n—oo

Properties (12), (13), and (14) in Theorem 2 straightforwardly follow from the
application of (50), (51), (52), (53), together with the following lemma.

Lemma 8. Under (H1)-(H5),

(W&fﬁ) D N<07<2§§i 0 ))

()
nhi A 0o x¥

We now prove Lemma 8. Set

]

wm = ~ -1 /2
J _
{”hg} hdhk+1€l(c+)1
W = (Wj(n))lgjgn is a martingale triangular array whose predictable quadratic
variation satisfies

<W>7(7,n) e ( wl’n w2’n )

W3,n  Wihn
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with
(d+2) , —(d+2 0
Win = hd” Zh )hk—H 'E [ (42 [5I(c-i)-1]T}‘7:k] ,
_ Zthh ) ]2 f‘
W4, 1 5k+1 k|
he k=1
1 - d+2)/2 d/2
Wy, = — Zhd+2hk-i,(-1 )/ hdhm{ E{ €pt+1€ k+1’}—}
\/ (RhET2) (nhd) k=1

w37n = w2T7n.

We have

lim 1wy, = Tim MZh(d”)f Gl1+o(1)] = [1 —a(d +2)] 7' f(0)C

n—oo

and

lim wy, = lim — Zh f( / K?(2)dz[1 + o(1)]

n—00 n—oo
n k=1

=[1—ad f9) | K?(2)dz.
Rd

Moreover, (46) ensures that

Wop = O( L — )io(hédﬁ)/gﬁzm) a.s.
( k

nh&?)(nhd) ) k=1
= o(l) a.s.
It follows that
(54)  lim (W){M) =
[1—a(d+2)]1f(0)G
0 = ad-Lf(6) fRd a.s.

Let us now check that (Wj(n))lgjgn satisfies Lindeberg’s condition. For b > 2, we
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have
3 [ P TR )
k=1
- (nhi”)*bﬂZo(hZH)
k=1
(55) = o(1),
and
ZE[Mnﬁi)—l/?ﬁdhki{Q v ﬂ} = (k)Y 0 (hf)
k=1 k=1
= O (nhi' ™)
(56) = o(1).
We deduce from (54), (55) and (56) that
n) D [1—a(d+2)] " f(O)G
w2 (o (P ) o))

Lemma 8 then follows from the fact that

/ d+2 ()

nh A7(1—21
with
—npdt2 _
( S D) o )
A, = k=1 " T4
0 S .

- ( “[1-a(d + DO 0 )
0 1—-ad /°
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